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On completely invariant Fatou components 

Chun-Lei Cao and Yue-Fei Wang(1) 

Abstract. Completely invariant components of the Fatou sets of meromorphic maps are 
discussed. Positive answers are given to Baker's and Bergweiler's problems that such components 
are the only Fatou components for certain classes of meromorphic maps. 

1. I n t r o d u c t i o n  

Let f be a transcendental meromorphic map defined in the complex plane C. 
The Fatou set F(f) of f is the largest subset of C where the iterates f~ of f are well 

defined and form a normal family. The complement of F(f) is called the Julia set of 

f and denoted by J(f). It is clear that  F(f) is open and completely invariant under 

f ,  and d(f) is closed and also completely invariant. If U is a component of F(f), 
then ff~(U) is comained in some component of F(f) which we denote by U~. If 

U,~nU,~=~ for all n#rn, then U is called wandering. Otherwise U is called periodic 

or preperiodic. In addition, if f - 1  (U)C U and I(U)C U for a component U of F(I), 
then U is called a completely invariant component of F(f). More details of these 
can be found in [11], [12] and [18]. 

We define FV(f )  to be the set of Fatou exceptional values of f ,  that  is, the 
points whose inverse orbit 

O-  (z) = {w: fn  (w) = z for some n E N} 

is finite. The set FV(f )  contains at most two points. Transcendental meromorphic 
maps can be divided into the following three classes: 

(i) E = { f : f  is entire }; 
(ii) P = { f : f  is meromorphic, has exactly one pole, and ooEFV(/ )} ;  

(iii) M = { f : f  is meromorphic, has at least one pole, and oc~FV(f )} .  

(1) Both authors are supported by NSFC and the 973 Project. 
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The iteration of maps in E was studied by Fatou [14], Baker [1], [2], [3], [4], 
[5], [6], and other authors. If f is a map in P then we may assume without loss of 
generality that  it has a pole at the point 0, and it then follows that  f must be an 
analytic map of the punctured plane C* = C \  {0} onto itself. The iteration of such 
maps was studied first by R~dstrSm [20] and then by others [5], [16] and [17]. In a 

series of papers [7], [8], [9] and [10], Baker, Kotus and Lfi studied the iteration of 
maps in M. 

For a rational function f with degree more than one, it is known that  F(f)  
can have at most two completely invariant components and if F(f)  has two such 
components, then these are the only components of F(f). In [2], Baker showed that  
if f E E ,  then there is at most one completely invariant component of F(f). He also 
asked whether the existence of a completely invariant component of F(f)  precludes 
the existence of other components or not (see [3]). Eremenko and Lyubich [13, 
Theorem 6] showed that  this is true if f C S A E ,  where 

S = { f  : f is meromorphic and has finitely many critical and asymptotic values}. 

Less is known about completely invariant Fatou components of meromorphic maps 
with at least one pole. Bergweiler [12, Questions 13 and 14] put forward the fol- 
lowing questions for meromorphic maps: Let f be a meromorphic map. Can F(f)  
have more than two completely invariant components? If F(f)  has two completely 
invariant components U1 and U2, does F(f)  contain only U1 and U27 Baker, Kotus 
and Lfi [9, Theorem 4.5] showed that  if f E S ,  then F(Z) has at most two completely 
invariant components. 

Our first result shows that  the completely invariant components are the only 
Fatou components for the class S. 

T h e o r e m  1. Let f be a rneromorphic map in S. If F(f)  contains two corn- 
pletely invariant components V1 and V,2, then F(f)=V1UV2. 

Remarks. 1. We note from [8] that  f(z)=tan(z) (ES) has exactly two com- 
pletely invariant domains, the upper and the lower half-plane, separated by d(f)= 
R. 

2. Our proof of the theorem is different from that  of Eremenko and Lyubich 
in [13]. 

We also consider another class F, where 

F = { f :  f(z) = z+r(z) exp(p(z)), where r is rational and p is a polynomial}. 
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T h e o r e m  2. Let f be a map in F N E .  If iv(f )  has a completely invariant 
component U, then F ( f ) = U .  

If  f is an analytic self-map of C*, we see from [5] that  there are four types of 

maps f :  
(a) f ( z ) = k z  ~, kr n~Z ,  nr (we are excluding MSbius transforma- 

tions); 

(b) f ( z ) = z  .9 non-constant entire, heN;  
(c) f ( z ) = z - ~ e x p ( g ( z ) ) ,  9 non-constant entire, h E N  (we note that  without 

loss of generality, f E P  is just this type); 

(d) f ( z ) = z  ~ exp(g(z)+h(1/z)) ,  9, h non-constant entire maps, m E Z .  
We call f a transcendental  analytic self-map of C* if f has the form (b), (c) or 
(d). In all cases the set J ( f )  is closed, non-empty and even perfect in C*, with the 

complete invariance property f ( J ( f ) ) = f - 1  ( j ( f ) ) _ j ( f ) ,  thus f ( i v ( f ) ) = F ( f ) .  One 
may ask how about  completely invariant domains of maps in P,  or more generally, 
of analytic self-maps of C*. Considering this problem we have the following results. 

T h e o r e m  3. Let f EP.  If F ( f )  has a completely invariant component, then 
(i) all components of iv(f)  are simply connected; 
(ii) in every other component of iv( f ) ,  f is either a univalent map or a two-fold 

map. 

T h e o r e m  4. Let f be a transcendental analytic self-map of C*. Then F ( f )  
has at most one completely invariant component. In particular, this is the case for 

f E P .  

C o r o l l a r y  1. If  f is a transcendental analytic self-map of C*, then the number 
of the components of the Fatou set is either O, 1 or oc. In particular, this is the 
case for f c P .  

In addition, using the same method as in the proof of Theorems 3 and 4, we 
can obtain a result about  Julia sets as Jordan arcs. A Jordan arc 7 in C is defined 
to be the image of the real interval [0, 1] under a homeomorphism ~. If the interval 
[0, 1] is replaced by the unit circle then 7 is said to be a Jordan curve. Finally, if f 
is a meromorphic map which is not rational of degree less than two, c~ is said to be 
a free Jordan arc in J ( f )  if there exists a homeomorphism fJ of the open unit disc 

onto a domain D in C such that  J ( f ) N D  is the image of ( 1, 1) under f~ and a is 
the image of some real interval [a, b] where - l < a < b < l .  We are able to prove the 
following result. 

T h e o r e m  5. Let f be a transcendental meromorphic map with at most finitely 
many poles. If J ( f )  contains a free Jordan arc, then J ( f )  must be a Jordan arc 
passing throug h oc and both the endpoints of d ( f )  are finite. 
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2. Complete ly  invariant domains for analytic self-maps of  C* 

We first prove Theorems 3, 4 and their corollary. We shall need the following 
lemmas. 

Lemma 2.1. ([5]) If f ~P, then F ( f )  has at most one multiply connected 
component. Furtherwmre, if the multiply connected component exists, then it is 
doubly connected and it separates the pole of f and cx~. 

Lemma 2.2. Let f be a transcendental meromorphic function. If  U is a com- 
pletely invariant component of F ( f ) ,  then 

(i) U is unbounded; 
(ii) O V = J ( f )  (we denote the boundary of" a domain D by OD); 
(iii) U is either simply connected or infinitely connected; 
(iv) all other components of F ( f )  are simply connected; 
(v) U is simply connected if and only if J ( f )  is connected. 

Remark. In this lemma, (i), (ii) can be found in [9], Lemma 4.2 and its proof; 
(iii) is Lemma 4.1 of [9]; (iv), (v) in Beardon's book [11, pp. 82 83] are shown to be 
true for the case when f is a rational flmction, however, the proofs of the rational 
case apply to the general meromorphic function without further difficulties. For 
completeness, we give the proofs of (i), (ii), (iv) and (v) here. 

Proofs" of Lemma 2.2(i), (ii), (iv) and (v). Since ~ is an essential singularity of 
f ,  it follows from the big Picard theorem that f ( z ) = a  has infinitely many solutions 
in any neighborhood of oo for all a~U except for at most two points. Since U is 
completely invariant, all these solutions belong to U. Thus U is unbounded and 
this is (i). 

To prove (ii), we need to prove only that  d( f ) cOU.  Let V be a domain in 
C such that  VNOU=O. Then either V c U  or V c C \ U .  In the first case we have 
VCF(.f);  in the second case, we have f '~(V)NU=O (m=0,  1, ...). Thns {f'~}~=0 
is normal in V, and so, V c F ( f ) .  Both cases imply J ( f ) cOU.  

To prove (iv), observe that  from (ii), J ( f ) U U  is the closure of U and so is 
connected ([11, Proposition 5.1.1]). By Ill,  Proposition 5.1.5], the components of 
its complement are simply connected and as these components are just the com- 
ponents of F ( f )  other than U, (iv) follows. Finally, (v) is a direct consequence of 
Lemma 2.2(ii) and [11, Proposition 5.1.4]. [] 

By Lemma 2.2(iv), we can immediately obtain the following result. 

Corollary 2. Let f be a meromorphic function. If  F ( f )  has two or more 
completely invariant components, then each component of 'F(/)  is simply connected. 
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Proof of Theorem 3. (i) The result follows immediately from Lemma 2.1 and 
Lemma 2.2(iii) and (iv). 

(ii) Let U be a completely invariant component. Then by Lemma 2.2(i) and 
Theorem 3(i), U is unbounded and all components are simply connected. Suppose 
that  there is a component V~U of F(f) in which f is neither a univalent map nor 
a two-fold map. Let K be a component  of F(f) such that  f(V)cK. Then KC=U. 

Take a value a in K such that  f(z) =a has infinitely many simple roots (f'(z)=0 
at only countably many z so we have to avoid only countably many choices of a), and 

take three distinct points p,q, rEV with f'(p)~O, f'(q)r and f'(r)TLO such that  
f(p) = f ( q ) = f ( r ) = a .  Thus there are three different branches z=P(w), z=Q(w) and 
z=R(w) of the inverse f 1 of w=f(z), which are regular at w=a~K and satisfy 

p=P(a), q=Q(a) and r=R(a). 
By Gross'  star theorem (see e.g. [19]), we may contirme P(w), Q(w) and JR(w) 

analytically to oc along almost any ray start ing at a, in particular along some ray 
L which meets U. Denote by ~ the segment of L from a to a certain point bcU. 
Then as w moves along ~/ the functions P(w), Q(w) and R(w) trace out curves 
P(V), Q(7) and R(y),  which are disjoint and join pEV to p'=P(b)EU, q~V to 
q'=Q(b)EU and rEV to r'=R(b)EU, respectively. 

Join p to q by a simple arc c~cV, q to r by flcV and r to p by (~cV. Also join 
p'  to q~ by a s i m p l e  arc c d c U ,  q' to / by fl~cU and r ~ t o p '  by 6'cU. Let/5 be 
the last intersection of c~ with P(~/) and q be the first intersection with Q(~y). Let 

be the subarc of c~ which joins/5 to q. Similarly define/5~ as the last intersection 
of a '  with P(@,  q' as the first intersection with Q(7) and a '  as the subarc /5'q' 
of a ' .  Denote by re1 the subarc/5/5 ~ of P('y), by aq the subare qq' of Q('y). Then 
rclda41 lc~-1 is a Jordan curve C1. In the same way we can obtain Jordan arcs Ca = 
fti_2~i2~2 1 / 3 - - 1 C Q ( , T ) U / ~ I U R ( v ) U / ~  and 63:763g'24"315 -1CR(q/)Ud~ZUP(~7)U(~ , where 

9r2, Z',--2,/~, rcj, 6', x3 and 6 are subarcs of Q(@,/3',  R(@,/3, R(~/), 6', P ( ? )  and 6, 
respectively, as in the construction of C1. Denote by Di the interior of C~ ( i=  1, 2, 3). 
Since none of P(@,  Q(~/) and R(~) contains a pole of f and f has only one pole, 
we can see that  there exists at least one number jE{1 ,  2, 3} such that  D:i contains 
no pole of f .  Without  loss of generality we assume that  Dz contains no pole of f .  
Then D1 is mapped by f into a bounded region f(D1) whose boundary is contained 

in f(C1)c f(ce)Uf(~')U~y. 
Now f(c~) (cK) and f(cd) (cU) are closed, bounded and disjoint curves pass- 

ing through a and b, respectively. Denote by M the unbounded component of their 
complement. Since U and K are simply connected, M contains J(f). Thus M meets 

7, since J(f) does. Now f(TCl) is a segment o f t  which joins f(c~) to f(c~'). I f t  is the 
last point of intersection of ~ with f(c~) and t '  the first intersection with f(c~'), then 
the segment tt  ~ of ~ is a cross-cut of M whose ends belong to different components 
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of the boundary of M. Thus tt' does not disconnect M. Since tt' belongs to f(7cl) 
every point of tt' is a boundary value of f (D1).  Thus f (D1)  must contain the whole 
of M \ t t ' ,  i.e. an unbounded set. This contradicts the boundedness of D1 and the 
result is proved. [] 

The following result is a generalization of Gross' star theorem and can be found 
in Stallard [22, Lamina 2.11]. 

L e m m a  2.3. If R is a branch, analytic at zo, of the inverse of a Junction g 
that is meromorphie in C or in C\{0}  then R can be continued analytically along 
almost every ray from Zo to oo. 

L e m m a  2.4. ([11, p. 108, Proposition 4.6]) Let f be a continuous map of a 
topological space X onto itself, and suppose that X has only a finite number of 
components. Then .for some integer m, each component is completely invariant 

under f '~. 

L e m m a  2.5. Let f be a transcendental analytic self map of C* not in class 
(b). I f  U is a completely invariant component of F ( f ) ,  then 

(i) U is unbounded; 

(ii) for any neighborhood D of zero, DAU r  hence OEOU; 

(iii) OU--J ( f )  in C; 
(iv) all other components of F ( f )  are simply connected. 

Remark. In Lemma 2.2 we have shown that (i), (iii) and (iv) in Lemma 2.5 are 
true when f is a meromorphic map, however, since 0 and oc are essential singularities 
of f2 for a map f of the form (c) or (d), the proofs of the meromorphic case apply 
to the transcendental analytic self-map of C* in the classes (c) and (d) without 
further difficulties. We omit the proof. 

By Lamina 2.5(iv), we can immediately obtain the following corollary. 

C o r o l l a r y  3. Let f be a transcendental analytic self-map of C* not in class 
(b). I f  F ( f )  has two or more completely invariant components, then all components 
of F ( f )  are simply connected. 

L e m m a  2.6. ([2]) I f  f is a transcendental entire map, then F ( f )  has at most 
one completely invariant component. 

Proof of Theorem 4. We distinguish between two cases. 
(I). Suppose that  f has the form (b). 
In this case 0 is a removable singularity for f .  Let f (0 )=0 .  Then f is extended 

to the complex plane as a transcendental entire map, denoted by fz. It follows 
from Lamina 2.6 that  the Fatou set of f l  has at most one completely invariant 
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component. Since the normality is a local property, F(f) and F(fl) are the same 
except possibly at 0, and d(f) and d(f~) are also the same except possibly at 0. 
Since f (z)=fl(z)  for all z r  we see that  F(f)  also has at most one completely 

invariant component.  
(II). Let f be a map in the class (c) or (d). Suppose on the contrary that  

F(f)  has two mutually disjoint completely invariant components U and V. Then 
by Lemma 2.5 and Corollary 3, U and V are simply connected and unbounded. 

Take a value a in V such that  f(z)=a has infinitely many simple roots ( i f ( z ) = 0  
at only countably many z so we have to avoid only countably many choices of a), and 

take three distinct points p, q, rCV with f'(p)giO, f'(q)r and f'(r)r such that  
f(p) = f ( q ) = f ( r ) - a .  Thus there are three different branches z=P(w), z = Q ( w )  and 

z=R(w) of the inverse f 1 of w=f(z),  which are regular at uJ=aCV and satisfy 

By Lemma 2.3, we may continue P(w), Q(w) and R(w) analytically to oc along 
almost any ray start ing at a, in particular along some ray L which meets U. Denote 
by 7 the segment of L from a to a certain point bcU. Then as w moves along 7 the 
functions P(w), Q(w) and R(w) trace out curves P(7) ,  Q(7) and R(7); which are 

disjoint and j o i n p E V  to p'=P(b)EU, q~V to q~ Q(b)EU and rCV to r'=R(b)cU, 
respectively. Following the same deduction as in the proof of Theorem 3(ii) we can 
obtain a contradiction. Thus f has at most one completely invariant component  

and Theorem 4 is proved. [] 

Proof of Corollar~l 1. Suppose that  F(f) has only finitely many components 
U1, ..., Ut~. For the transcendental analytic map f of C* to itself, f (F( f ) )=F( f ) ,  
then by Lemma 2.4, each Uj is completely invariant under some iterate fd. But f(t 
is a transcendental analytic map of C* to itself, and so it follows from Theorem 4 
that  f a  has at most one completely invariant component.  So we deduce that  k = l  
and the proof is complete. [] 

3. Comple t e ly  invariant domains  for f CS 

Next we prove Theorem 1. 

Lemma 3.1. ([9]) Suppose that f is a transcendental meroraorphic map, f c S 
and that F(f)  has a simply eonr~ected completel;q invariant component Uo. Then ec 
is an accessible point of OUo. 

Proof of Theorem 1. Since by Lemma 2.6 and Theorem 4, F(f)  has at most 
one completely invariant component when f is transcendental  entire or f E P ,  and 
the result is known for rational functions (see, for example, [11, Theorem 9.4.3]), 
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we only need to consider the case f E M .  It follows from Lemma 2.2 and Corollary 2 

that cgV1 =cOV2 =Y(f )  and all components of F(f) are simply connected. 

Suppose that  F(f) has another component U, Ur UvkV2. Then U is simply 

c o n n e c t e d  ar id  0 U c  Y ( f ) - O -  (oc)'. Let Zl, Z 2 E 0 g ,  z I ~s 2. T h e n  Za, z2 C J(f) = 

OVl=cqVu and we can choose two neighborhoods Ds and D2, ZlED1, z2CD2, such 

that D l~D2=~ .  Then there are four points al, a2 E D1 and bl, b2 C D2 such that 

al,blcV1 and a2,b2EV2. We join al to bl in 171 by a Jordan arc 51, and a2 to b2 in 

Vu by a Jordan arc 52. We also join as to Zl, a2 to zl in D1, bl to z2, b2 to z2 in D2 

by Jordan arcs al,  01, or2 and 02, respectively, such that A = o - l U 5 1 U c r 2 U 0 2 U 5 2 U 0 1  

forms a Jordan curve in C. The curve A separates C \ A  into two components N1 

and N2. Let N1 be the bounded component in C. Take any points q on 51, q:/:al, 
q~bl, and r on 52, rTka2, rCb2. Join q and r in N1 by a cross-cut r/. Then r/ 

goes from V1 to 172, and hence must meet Y(f). Let ZoE~<Y(f). Then N 1 is a 

neighborhood of z0 and contains a point pEO (oc). Thus p is a pole of fk for some 

positive integer k. By Lemma 3.1 there is a curve 7 in V1 such that 7--+o0. Thus 

there is an image 7 '= f -~( -~)  which tends to p and lies in V1, i.e. p is accessible in 

1/1 along 7 ~. We can therefore find a cross-cut F1 of 1/1 which has two ends at p and 

oc, and meets A only at q, for 51 is in the domain 1/1 and qE51. 

Similarly we can find a cross-cut F2 of 1/2 which has two ends at p and oo, 
and meets A only at r. Then F=F1UF2 forms a Jordan curve in l~, F separates 

t~ \F into two components E1 and E2, and A \ F  separates into two Jordan arcs 

#l and #2 which both have deleted ends q and r. Suppose z lC#l .  If z2E#s, 

then as #1 = (61n / t1 )UOl  U01U(52N#l) or #l =(51N#l)Ocr2UO2U(52N#l) and z1, Z2C 

J(f), we have zl,z2C~sUO1CD1 or zl,z2Ecr2UO2CD2, i.e. D1AD2:/=O, which is a 
contradiction. Therefore, if q e # l ,  then z2E#2. Since F meets A only at q and 

r, we have #inF=~) ( i=1,2) .  It follows from the connectivity of gq and #2 that 

/*iCEs or # i c E 2  (i=1, 2). If #s and #2 are in the same component, say El,  then 

N I C E s  as N1 is bounded in C and E1 and E2 are both unbounded in C. Thus 
pcEs, a contradiction. Hence/*1 and #2 are in the different components E1 and E2. 

Since zl E#l and z2E#2, the points zs and z2 are in the different components E1 
and E2. Therefore by ziEcOU (i=1, 2), U contains both points of E1 and E2, which 

contradicts the connectivity of U since FNU=0 .  [] 

4. Complete ly  invariant domains of  f E F N E  

In this section, we will prove Theorem 2. To this end, we need the fbllowing 

lemmas. 

Lemma 4.1. ([21]) If f ~F, then f does not have wandering domains. 
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L e m m a  4.2. ([21, Lemma 4_3]) For a specified K > I ,  and a function f in the 
class F, let 

GK( f )  = { f ,  = r  d)-l : 0 is K-quasieonformaI fixing O, 1, oc, fr is meromorphic}. 

Then the family G~c(f) can be expressed uniquely in terms of a finite set of complex 
parameters X1, ... , X~(K,r �9 

L e m m a  4.3. I f  f ~F,  then every periodic cycle of simply connected Baker 
domains of f contains a singularity of f 1. 

Pro@ Let U be a simply connected Baker domain of f with period p and sup- 
pose that  U, U1, U2, ..., Up 1 do not contain singularities of f - 1  where U~ (hEN) 
is a component of F ( f )  containing ff~(U). It follows that  Un is simply connected 
and that  flu~ is univalent for all n. As observed by Herman [15, p. 609], this implies 
that  the space of quasiconformal deformations of f is infinite dimensional. But by 
Lemma 4.2, GK(f ) ,  the quasiconIbrmal deformation family of f ,  depends only on 
finitely many parameters, which is a contradiction. [] 

The following result is due to Eremenko and Lyubich [13, Lemma 11]. 

L e m m a  4.4. Let f be a transcendental entire .function. I f  F ( f )  has a corn- 
pletely invariant component U~ then all the critical values and logarithmic singular- 
ities of f 1 are contained in U. 

We denote the set of all singularities of f -1  by sing f-m and define 

P(f) = ~J ff~(sing f 1). 
7~--0 

L e m m a  4.5. ([12, Theorem 7]) Let f be a merornorphic map, and let G= 
{Uo, U1 .... , LZp 1} be a periodic cycle of components o f F ( f ) .  

(i) / f  G is a cycle of immediate attractive basins or Leau domains, then we 
have UjNsing f-17kO for some jE{0,  1, ... , p - l } .  

(ii) If G is a cycle of Siegel discs or Herman rings, then O U j c P ( f  ) fo'r all 
je{0,1,...,p-1}. 

Proof of Theo~'ern 2. At first, since f E E  and by Lemma 2.20), U is unbounded. 
We see from [4, Theorem 3.1] that  all components of F ( f )  are simply connected. 
By Lemma 4.1, f has no wandering domains. Thus every component of F ( f )  is 
(pre)periodic. Now suppose that  D is a periodic component of F ( f )  with D # U .  
Since f E F ,  it follows from Stallard [21, pp. 218 219] that  there are no transcenden- 
tM singu]arities of f 1 Thus by Lemma 4.4, all singularities of f - I  are contained 
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in U. It follows from Lemmas 4.3 and 4.5 that  D can only be a Siegel disc. On the 
other hand, since f is transcendental entire and f - 1  ( U ) c  U, we see that  f l u  cannot 
be a univalent map, then U is neither a Siegel disc nor a Herman ring. Thus the set 
~_>0 ff~(sing . f - l )  has only one limit point (possibly oc). Consequently D cannot 
be a Siegel disc in view of Lemma 4.5(ii). Thus U is the only periodic component 

of F(J').  
If F ( f )  has a preperiodic component V, then there exists a positive integer n 

such that  f " ( V )  is periodic. Thus fT~(V) c U .  However, U is completely invariant, 
hence V = U .  

We have proved that  F ( f )  has only one component U so that  F ( f ) = U .  [] 

5.  J u l i a  s e t s  a s  J o r d a n  a r c s  

Finally, we prove Theorem 5. We begin with some lemrnas. 

L e m m a  5.1. ([22, Theorem A]) Let f be a meromorphic map which is not 

rational of degree less than two. I f  J ( f )  contains a free Jordan arc, then J ( f )  is a 
Jordan arc or a Jordan curve. 

L e m m a  5.2. ([22, Lemma 3.1]) I f  f is a map in class E or P then J ( f )  

cannot contain a flee Jordan arc. 

L e m m a  5.3. ([22, Lemma 4.1]) Suppose that f is a map in class M and that 

J ( f )  is a Jordan arc with precisely one finite endpoint a. Put P(z)  z2+a. For 

some zx such that f P ( Z l ) = a r  oc, take a fixed branch of P l ( w ) = ( w - a )  1/2 at 
w = a .  Then F = P - S  f P  continues analytically to a fanetion in class M and J (F)  
is a Jordan curve. 

Proof of Theorem 5. Since f is transcendental meromorphic, J ( f )  must be 
unbounded. It follows from Lemma 5.1 that g ( f )  must be one of the following 
c&ses: 

(I) a Jordan curve containing oo; 
(II) a Jordan arc with precisely one finite endpoint a; 
(iII) a Jordan arc passing through cc and with both endpoints finite; 

Thus we need only prove that  Cases I and II are impossible. 
In Case I, since a(f) must pass through oc, F ( f )  has precisely two components, 

U, and U2, both of which are simply connected. We have either 
(Ia)  f ( U , ) c U ,  and f (U2)cU2,  or 
(IB) f (U1)cU2 and f (U2)cU1.  
In Case IA, we also have f I(U1)CU 1 and f-I(U,2)CU2, that  is, [/1 and 0"2 

are completely invariant components of F ( f ) .  Suppose f ( z )  has n poles (when f ( z )  
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is entire, we let n=0) .  Since f is transcendental meromorphic, we can take a point 

aEU1 which is neither a Picard exceptional value nor a critical value of f(z). Since 

[/1 is completely invariant and f - 1  (a) is an infinite set, f - 1  (a)C U1, and we can take 

n + 2  branches g~(z) ( k - l ,  ..., n+2)  of the inverse function of f(z) which are regular 

at a and satisfy 9.i(a)r f'(gi(a))r ( i , j = l , . . . , n + 2 ,  i r  By Gross' star 
theorem one can continue g~ (z) (k= 1, ..., n+2)  analytically to infinity along almost 

all rays emanating from a. We can therefore pick such a ray L which meets U2. 

Denote by ~/ the segment of L joining a to a certain point b in [/2 and directed 
from a to b. Then as z moves along ~/the functions gk(z) ( k = l ,  ... , n+2 )  trace out 

curves gk(v) ( k = l ,  ... , n+2) ,  which are disjoint, for none of gk(z) ( k = l ,  ... , n + 2 )  

has a singularity on 7. Thus all 9k(7) ( k = l ,  ..., n + 2 )  intersect the boundaries of [/1 

and [/2. If g~(7) is oriented from 9k(a) to gk(b), let t~, denote its first intersection 

with 0[/1 = J ( f )  ( k = l ,  2, ..., n+2) .  Then there exist at least n + l  mutually disjoint 

open subarcs of J(f), each of which has one deleted endpoint at ti and the other at 

tj (ir since Y(f) is a Jordan curve. Now that f(z) has n poles and they are all 

on J(f), we can see that  among these arcs, there is an arc that contains no poles 

of f .  We denote it by ~ and its deleted endpoints by t and t ~. Without loss of 

generality we can suppose that t~91(7) and t'Eg2(7). Thus 91(7) joins a l g a l ( a )  

in U1 to u2=91(b) in U2 and similarly 92(7) joins vl =g2(a) in U1 to v2=92(b) in U2. 
Now we join ul to vl by a simple arc /~ICU1 and join u2 to v2 by a simple arc 
N2CU2. For i=1 ,  2, if/~g is oriented from ui to v~, let u~ denote its last intersection 

with 9~(7) and v~ its first intersection with g2(v). Let /3~ denote the subarc of/~i, 

whose endpoints are u~ and v~, oriented from u~ to v~ and let vr and x denote the 

arcs ulu 2 '  ' and vsv2' ' of g1(7) and g2(7), respectively, oriented from u~ to u~ and from 

v~' to v 2.' Then 7r[~z-l(fl~) -~ is a simple closed curve. Denote this curve by F, and 
the interior of F by D. Now that D contains no poles of f according to our choices 

of 91 (z) and 92(z). Hence f(z) is analytic in D and hence f(D) is a bounded region. 

Moreover the boundary of Z(D) is contained in f ( r )  and hence in 70f(fll)Of(fl2). 
For i=1,2, the curve f(fl~) is closed, bounded and lies in Ui- Since U1 and U2 

are unbounded and simply connected, it follows that  f(fll) and f(fl2) are mutually 
disjoint and exterior to one another. Consider the unbounded component H of 

the complement of f([dl)Of(fl2). The component H meets 7 and in fact if r is 

the last point of intersection of 7 with f(fll) and s the first point of intersection 

of 7 with f(fl2), then the segment rs  of 7 is a cross-cut of H whose endpoints 
belong to different components of the boundary of H. It follows that  rs does not 

disconnect H. Now in fact a point w of rs (7~r, s) is the image f(z) of an interior 

point z in the arc 7c of F. In the neighborhood of z and inside F the function f(z) 
take an open set of values near w, some of which lie off ~ and in H\rs.  Then 

since the boundary of I(D) is contained in 7Of(ill)Of(fl2), we see that f(D) must 
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contain the whole of H\rs .  But  this contradicts  the boundedness  of f (D).  
In Case IB, we have f -I(U1)cU2 and f-I(U2)cU1. As in Case IA, we can 

take a point  aEU1 which is neither a Picard  exceptional value nor a critical value 

of f(z) .  Since f - l (U1)cU2, we have f I (a )CU2.  Following the same deduct ion  as 

in Case IA, just  subst i tu t ing U1 by U2, and U2 by U1, we also obtain  a contradict ion.  

Hence J ( f )  cannot  be a Jo rdan  curve as described in Case I. 
In Case II, J( f )  is a Jo rdan  arc with one end at cc and one finite endpoint  a. 

Let  P(z)=z2+a. For some z0 such tha t  fP ( zo )=ar  oo, take a fixed branch 
of P- l (w)=(w-a)~ /2  at w = a .  We consider the funct ion h = P - l f P .  Since by 

L e m m a  5.2, f E M ,  it follows from L e m m a  5.3 tha t  h continues analyt ical ly to a 
function in class M and J(h) is a Jo rdan  curve. We also see tha t  h has only finitely 

many  poles. Thus  J(h) is a curve as described in Case I, which is impossible. 

Therefore J( f )  must  be in Case III ,  i.e. J( f )  is a Jo rdan  arc passing th rough  

oc and bo th  endpoints  of J( f )  are finite. [] 
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