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Multipliers of spherical harmonics 
and energy of measures on the sphere 

K a t h r y n  E. Hare and  Maria  Roginskaya(1) 

Abstract .  We consider the operator, f(A) for A the Laplacian, on spaces of measures on 
the sphere in R d, show how to determine a family of approximating kernels for this operator 
assuming that certain technical conditions are satisfied, and give estimates for the L2-norm of 
f(A)# in terms of the energy of the measure #. We derive a formula, analogous to the classical 
formula relating the energy of a measure on R d with its Fourier transform, comparing the energy 
of a measure on the sphere with the size of its spherical harmonics. An application is given to 
pluriharmonic measures. 

1. I n t r o d u c t i o n  

W h e n  A is the Laplacian  on the un i t  sphere S d - I  in R d the act ion of an op- 

erator, f ( A ) ,  can be defined on various f \mction spaces using the spectral  theorem. 

We consider the act ion of this operator  on the space of measures.  The  operator  acts 

as a convolut ion  operator,  and  in the ease when f ( t ) - ~ 0 ,  when t---~cx~, it is na tu ra l  

to expect tha t  the operator  is welt behaved.  As a result,  there are s t anda rd  tech- 

niques which can often be used for s tudy ing  the operator  f ( A )  on smooth  funct ion  

spaces. However, the opera tor  is not ,  in general,  well enough behaved to apply these 

techniques to spaces of measures.  Consequently,  the s tudy  of the act ion of f ( A )  on 

spaces of measures  consists of the s tudy  of par t icu lar  funct ions  f ,  with explicitly 

computed  kernels of the convolut ion,  and  typical ly involves the considerat ion of a 

family of kernels which approximate  the kernel of convolution.  

In  Section 2 of this article we begin  with a funct ion  f which satisfies cer ta in  

condit ions,  and  show how to calculate an  explicit form of a kernel (or family of 

approx imat ing  kernels) for the opera tor  f ( A )  act ing on measures  on the un i t  sphere 
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in Rd=R2'~L Conditions are given which ensure that  f ( A ) #  belongs to L 2. 

In Section 3 we consider integral operators which arise from a Riesz potential  
and prove that  for all 0 < t < d - 1 ,  

oc 
(1.]) ~ ~ dl~(2g) dl~(Y) r.~lll~o 2• 2 

Ix-yl  ,,=1 

where #k is the projection of the measure tt on the spherical harmonics of degree/~. 
As the spherical harmonics are the analogue of the Fourier t ransform for measures 
on the sphere this result is in the same spirit as the following classical relationship 
between the Fourier t ransform of a measure on R a and its energy (see [M2], [F]): 

(1.2) It(p)=/Ra/R dd#(x) d#(y) 
I -yl 

A similar formula is also known for measures on the torus ([HR]). Because the size 
of the t-energy of a measure, It(p), is closely related to geometric properties of the 
measure, the classical relationship has proven to be very useful. For example, it 
has been applied to s tudy the Hausdorff dimension of projections and intersections, 
distance sets, and the average rate of decay of the Fom'ier t ransform (cf. [B], [M1], 
[MS], [SS], [W] and the references cited therein). 

Formula (1.1) can easily be seen to be true if p is a sufficiently smooth function 
(cf. [Rub]). However, the arguments are more delicate if this is not the case. In 
particular, if the measure has a singular component,  then either side of (1.1) could 
be infinite, and in this case the formula should be understood to mean that  both  

parts  are simultaneously infinite. 
The formula is applied to estimate the size of the coefficients of pluriharmonic 

measures in Section 4. 

2. Mult ip l iers  on spherical  harmonics  

In this section we assmne that  d is an even integer and we set m = � 8 9  
Consider the Laplacian A on S d-1. This is a self-adjoint, negative operator 

whose eigenvalues are given by )~k=-k(k+d-2), for k E N ,  with the corresponding 
eigenfunctions being the spherical harmonics of order k. If f is a complex-valued 
function defined on the spectrum of A, then we can define the operator f ( A )  by 
using the spectral theorem. We are interested in understanding when f ( A )  acts on 
a space of measures, where by a measure we mean a finite, positive, Borel measure 
supported on the unit sphere in R d, where d>2.  
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A multiplier on the spherical harmonics has the property that  it acts on the 
spherical harmonics {Yk}~_-0 by T(Yk)=mkYk for some sequence {mk}~-0. An 
example of a multiplier is the integral operator, 

T(f) = fse 1 k(z.y)f(y) dy, 

77~ o c  where k is a continuous function. The associated sequence of scalars { 'k}k=0 can 
be found by the Fnn~Hecke  formula (cf. [Rub, p. 11]). The operator Z(ZX) is also a 
multiplier on the spherical harmonics, with the scalars being given by {f(Ak)}k~_0 . 

oo Given a sequence { k}k=0 we define a function f on the spectrum of A by 
f(A~)=m~. Assuming that  certain technical conditions are satisfied, we will de- 
scribe a process for determining a kernel, K(x, y), so that  

f(ZX)(p) = f K(x ,  y) d~(y). 
J s  d--i 

Bounds for the L2-norln of f(A)(#) will be given in terms of the t-energy of the 
measure #, -/t(#), which is defined as 

It(#)-- Js" 1~,_~ d#(x) d#(y)lx_y It 

We formally define the kernel K by 
oo 

K(z,y)=~f(Ak)Z(k)(x)  fo rx ,  y e S  d 1, 
k - - O  

where Z:~ k) (x) are the zonal harmonic functions. The zonal harmonics have a simple 
expression in terms of the ultraspherical (or Gegenbauer) polynomials on [-1,  1], 
P~(t), namely 

: 

for suitable constants Cd(k) (see [SW, Section IV.2]). If we set a(k+l)=f(~k)Cd(l~), 
then we can write K(x, y)=P(z.y), where 

oo 

P(t) =- ~ a(k+l)P;"~(t), t E [-1,  1]. 
k--O 

It is well known that  P~'~(t) is the coefficient of z k in the series expansion of 
the function 9t(z)=(1-2tz+z2) -m. This function is analytic on f~, .={zEC: Izl < r}  
for any r < l .  Consequently 

1 ~o 9t(Z) dz' 

where 0f~,, is the boundary of f~,-. Our first result uses this fact to compute P(t). 
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P r o p o s i t i o n  2.1. Suppose that Q(z)=~k~__0 a( k )z k is analytic in a neighbour- 
hood of the unit disk and P( t )=} -~_  0 a(k + l)P~(t)  for tC[-1 ,  1]. Then 

(Zl) 

p(t) - 
1 ( d i n - 1  [1 / / , , 1  ( 1 ) ]  

lfVzg-t  F Q 
d ~ -  1 1 

Pro@ If we let QN and PN denote the N th  partial sums of Q and P, respec- 
tively, then clearly 

Let U be a neighbourhood of the point t0E[-1,  1] and assume that  the set cOu_C 
aT,~, ={z~C:~ '<  Izl < < }  is a neighbourhood of the arc {t• 2 : t E g }  on which 
Q(1/z) is analytic. Notice that for each N, 

i fo g~.(z)ON ( ~ ) d z ~ - P N ( t ) ,  as r ' ~  oc, 2rci ~ .... 

since the integral over the larger circle converges to zero. 
Since the function gt(z)QN(1/z) is meromorphic in f~.r.,,-' with only two poles, 

t + i  l x / ~ - t  2 , it is holomorphic in f~.,. ~.,~cou provided t c U ,  and therefore its integral 
over the boundary of ft~,<\COu vanishes. Thus 

Px(t) - 2rri coo- 

As Q(z) is analytic in a neighbourhood of the unit circle, its partial sums 
converge uniformly for all z such that  1/z~&ou. Because 9t(z) is uniformly bounded 
for zCOcou and tEU, we can pass to tile limit in the integral, uniformly in t. Hence 

PN(t)--+ P ( t ) -  1 ~o 9 t ( z ) Q ( : )  dz, as N--->oo, 2rci ~u 

uniformly in tC [-1, 1]. 
For any fixed t, the integrand defining P has only two singularities inside the 

domain cOu, poles of order m at t4 - ix /1 - t  2 , hence the residue theorem can be 
applied to yield 

Evaluating this gives the desired result. [] 



Multipliers of spherical harmonics and energy of measures on the sphere 285 

Recall that  fbr a measure #, the projection of # onto the space of spherical 
harmonics of degree k is given by 

The L 2 norm of #k can be computed as A'-' fs'-' Z; k) (x) d#(x) d#(y) and the L 2 
norm of # is given by ~k~=0 IIP~ I1~- This coincides with the L z norm of its density 
function if the measure is absolutely continuous and otherwise is infinite. 

C o r o l l a r y  2.2. Suppose that Q(z)=Ek~ 0 a(k)z  k 'is analytic in a neighbour- 
hood of the unit disk. I f  f ( A k ) = a ( k + l ) / c d ( k ) ,  then the operator f ( A )  is given by 
the continuous kernel K ( x, y)=Ek~176 0/(Ak)Z.~ k> (x), i.e., for any measure # on S d-1 
we have Jsd ~ K(x ,  y) d p ( y ) = f ( A ) # .  Moreover, 

O~ 

d 1 d 1 k : O  

Proof. The arguments above imply that  KN(X,y)--EN=0 f (Ak)Z(~)(x)  con- 
verges to K(x ,  y) uniformly in x, yCS d-1. Since 

and 

N 

KN (x, y) dl~(y) = ~ f (Ak)pk 
d- -1  

k=0 

N 

d--i d - - i  ]~=0 

the result follows. [] 

We will use these ideas to prove the main technical result of this section. 

T h e o r e m  2.3. Let d = 2 m + 2 > 2  be an even integer and let 3 - d < s < 2 .  Sup- 
pose that Q(z)=~k~176 a(k)z  ~ is analytic in a neighbourhood of the disk. I f  there is 
a constant C1 such that Jbr each j =0, 1, ..., m -  1, 

dJ z = t •  ( 1 - ~ 2 )  (s+j)/2Cl <_ for [-1,1], 

then there is a constant C2 depending only on d, s and C1 so that for any finite, 
positive measure # on S a 1 we have 

S a(k+l)IlPk11~ 1I,o112+ ~ ,  Cd(k) <C24§ 
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Pro@ Throughout  the proof C will denote a constant depending only on d, 
s and C1, which may vary. We will continue to use the notation outlined above. 
In particular, P( t )=E~~ a ( h + l ) P ~ ( t )  and K(z,v)=P(:c.~j).  The key idea is to 
examine the order of the singularities of P(t)  at +1. For the duration of the proof 
we will denote the poles of gt as Zo=t-t- i lx /~- t  2 and z l = t - i l x / ~ T - t  2 . Note that  

Iz0l=lzll=l. 
We begin by calculating (2.1); the proof of this lemma is entirely elementary. 

The notation rn(j) denotes the product rn(m+l) . . .  ( rn+j -1 ) .  

L e m m a  2.4. For N>O and k>_l, 

dz N (z_b)_mQ = f  (-1)Jrn(j)  dN-J 

j o 

and 

dz k Q = ~ ObO = Z k+n "~ 

where a(~) ) are suitable coefficients and Q(~) denotes the nth derivative of Q. 

Applying the residue formula (2.1) and the lemma (with N = m - 1 )  one can see 
that P(t)  is equal to 

1 "rn--2 'rn~.--j am _  1 j .--~n+j--n+l 

(m- 1)! bj (z~-zz)~+J 
(k,/)=(0,1),(1,0) j =0  rL=l 

b,,~-i / 1 \'~ 

where b j :  s (_ 1)5,~u). Since I ~ -  ~ I :  2 , /1 -  t~. the a~sumption on the deriva- 
tives of Q implies that  tbr n _ < r n - l - j ,  

Q ( n ) ( 1 ) ( z k _ z l ) _ ( m + j  ) C C 

It follows that  
C IP(t)j <_ (l_t2).~+(~ i)/2" 
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Thus 

- ((l+x.y)(1 -x.y)) rn+(s-1)/2" 

Since x and y are on the sphere, 2• Hence 

is dominated by 

1 6"fs lfSd l(Ix@yl 21YO'q-'s-]" ~lx--yl2"ri~176 dl~(x) dl-~(y)" 
Define f i (E)=p(E)+p(-E) .  As #_>0 it is clear that  / t (p)</ t( /2)  for any t. 

Using the relationship between the energy and the Fourier transform (1.2) it is also 

easy to see that 4It(#)_>I~(~). Hence the previous corollary implies that 

~_oa(k+l) ll#kll~ < cd(k) - ~-l s  lK(x'y)ldp(x)d#(y)<CI2~+~-l(#)'- [] 

Remark 2.5. Using facts fbund in [SW, IV.2] one can compute cd(k). It is well 

known that Z?)(x)=akw211, where w ~ ,  = 2 ~ n / r ( � 8 9  is the surface area or s ~ *  
and ak is the dimension of the space of spherical harmonics of degree k: 

(d+k-3)! (d+2k-2)  for k >_ 2. ao=l,  a ;=d  and ak= (d-2)!k!  

As P~'~(x.x)=P[~(1) is the coefficient of z k in the Taylor series expansion for 
p,,,, _ d+k-3~. ( 1 - ~ ) ~ - ~ ,  we have ~ ( 1 ) - (  ~ , Thus 

z?) (x )  r( �89  

Next, we demonstrate how this approach may be modified to handle the sit- 

uation when the power series, Q(z)=~k~_0 a(k)z ~:, is analytic only on the interior 

of the disk. In this case some additional hypothesis is required; positivity of the 
scalars a(k) is sufficient. 
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C o r o l l a r y  2.6. Assume that d>2 is an even integer and 3 - d < s < 2 .  Suppose 
oc k that Q(z)=Ek=oa(lc)z is analytic in the open unit disk and a(k)>_O for all k. 

For R > I  let Q R ( z ) = Q ( z / R ) .  I f  there is a constant C1 such that for each j =  
0, 1 , . . . , m - 1  and R > I ,  

dJ z=t-t-i lx/l:~-t 2 6 1  ~z j Q n ( z )  -< ( l - t2 )@ +j)/2 for" all t E [-1,  1], 

then there is a constant C2, depending on d, s and C1, so that for any finite, positive 
measure p on S d ~ we have 

\ k--1 

Pro@ As QR is analytic in a neighbourhood of the disk, the coefficients a ( k + l )  
are positive and cd(k)~k,  Theorem 2.3 yields 

( 
-- k = l  

for some constant C2. Letting R - + I  gives the desired result. [] 

This can be used to bound the L 2 norm of f ( A ) #  in terms of the energy of the 
measure /~. 

C o r o l l a r y  2.7. Suppose that f is real-valued and set a(k + l)=f()~k)2Cd(k). I f  
the hypotheses of the previous corollary are satisfied with Q ( z ) = ~ = 1  a( k ) zk, then 
.[or any measure p on S d-1 we have 

IIf(A),ll~ = ~ f(~k)211,kll~ --< C2L+d a(,). 
k--0 

C o r o l l a r y  2.8. For any s~[O, 2) and any even integer d = 2 m + 2 > 2  there is a 
constant C=C(s ,  d) such that for all finite, positive measures # on S d-1 we have 

2 o~ 1 

Ibo Ih §  ~ llffk 1122 < CId-s-1  (~). 
k : l  

Pro@ Consider Q ( z ) = ( 1 - z )  s 2. The Taylor series coefficients of Q are non- 
negative and asymptotically equivalent to k 1 8. Since IR zkl2>_l- t  the result 
follows from Corollary 2.6. [~ 
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Example 2.9. Suppose that  Q corresponds to the projection onto the harmonics 
of order divisible by n and the dimension d=4.  In this case formula (2.1) reduces 
to 

P ( t ) -  2i (O( t_ i  lx/iT~_t2)_Q(t+i lx/r~_t2)) 

Because f is real-valued, this further simplifies to 

P( t )  - 4 

Hence the family of kernels corresponding to the approximating function Qn is 

given by KR(x, y)=PR(x.y), where 

8 ( R n + ( n  1)z '~)  t + i ~ / l _ t  2 
Pn(t) = rc2~/l_t 2 R '~-11m z R~_z, ,  for z = . 

3. Energy and spherical harmonics 

Corollary 2.8 is a partial generalization of the classical formu]a (1.2) relating 
the energy of a measure on R Ct with its Fourier trans%rm. In this section we use 
properties of" the heat kernel to obtain a more complete generalization. We no longer 
require d to be an even integer. 

T h e o r e m  3.1. For each O < s < d - 1  there are constants a,b>O such that 

O 0  

(3.1) aL (/~) _< ii/~0112 + ~ "  k~ d§ 2 
k = l  

for all finite, positive, Borel measures # supported on the unit sphere S a-1 with 
d>2. 

Before beginning the proof we note that  as the sphere is a compact  manifold of 
positive Ricci curvature, the heat kernel H is unique and has the form H(t, x, y ) =  

~o~ eaktZ(k)(x), where, as before, Z(k)(x) are the zonal harmonic functions of k=0 
degree k with pole at y and A ~ = - k ( k + d - 2 )  are the eigenvalues of the Laplacian. 

We will use the following well-known facts about  heat kernels. Throughout  
this section d(x, y) refers to the interior metric on the sphere (i.e., the length of the 
shortest geodesic), a metric equivalent to the usual Euclidean metric. 

T h e o r e m  3.2. (IDa, 5.5.1]) The heat kernel H(t, x, y) is a strictly positive C ~ 
function on (0, oc) x S d-1 X S d-1  
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T h e o r e m  3.3. ([Da, 5.5.6, 5.6.1]) For all 0 < 6 < 1  there exist positive constants 
C and c, depending only on d and 5, such that 

c C 
rain{l, t}(d-1)/2e~t(x,y)Uno-5)t <- H (t, x, y) < rain{l, t}(d-1)/2ed(x,Y)U 4(1+5)t 

for all t>O and x, yES d 1. 

Proof. We begin by considering Et(p)=--f H(t, x, y) dp(x) dp(y) for t>0.  It is 

known ([SW, p. 144]) that  the function Iz~k)(x)l is bounded by a polynomial in k, 
uniformly in x and y. As e tak decreases exponentially in k for every fixed t>0,  the 
series in spherical harmonics for H(t, x, y) converges uniformly in x and y. Thus 

OO 

d - - 1  
k=O 

As I~(x)l  i~ dominated by IIZ~ k/(x) I1~ II.H, similar arguments establish that 

Et(#) = Z  etak fsd 1 c~ ~ Z(k)(x) dp(y) d#(x) = Z e  takll#hl[~. 
k=0 k=0 

Taking 5= �89 Theorem 3.3 gives the estimates 

c C 
min{1, t } (d-1) /2ed(x ,Y)2  /2t ~ H(t, x, y) <_ min{1, t}(d--1)/2ed(x,Y)2 /6t  " 

Thus 

nfin{1, t}(d-1)/2ed(x,Y)2/2t dp(x) d#(y) 

<---etxkllPkll2<-c d_~ min{1,t}( d 1)/2ed(x,Y)2/6t dp(x) d#(y), 
k=0 d--1 

for t>0 ,  where the constants c and C depend only on d. 
Next, multiply both sides of the inequalities by the positive function 

t a+s/2, if t < 1, 

~(t) = t 1+(.~-d+1)/2, if t_> 1, 

and integrate over t in (0, oc). As all integrands are positive, we can change the 
order of integration to obtain 

s163 c K2(x,y) dp(x )dp(y)<_~ r 
d - - 1  d 1 

k=0 

< c y) d~(~) d~(y), 
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where 

(3.3) , • 0  
~ l~-l+(s-d+l)/2 

K A ( X , y )  ed(x,y)2/A ~ dt 

oc T- - l+(s- -d+l) /2  (d(~')2)(s-d-l-1)/2 ~ 0 .1/T 
A(d-s-1) /2d(a: ,y  s d+l F 1 �9 ) ( [ ( d - s -  1 ) )  

dr 

for A=2,  6. 

Suppose that  kT~0. We. have 

[Ak[ s/2 dO e r t i T +  ~ l + ( s  d+l) /2et~k  d/~. 

The second term in the final sum is clearly bounded by [A~]-le xk. As the function 
1 _ l it follows that  f ( x )  =z- l+~ /2e  -~, decreases when x>_ -~ s -  1 and I~1 _>d- 1 > ~s 

/ ~ t l+(s-d+l)/2et)'k d t <  
Ce 1-~(d- 1)-1+*/2 

Since the first integral dominates f2  T - - l + s / 2 e  - r  dr_>2e-ls  -1, the first term in the 
sum satisfies 

2 ~< 1 /[Akl T 1+s /2  F(18) 

IAk] ~/2es ]Akl "/2.0 e ~ d r <  I~k] */2 

If k=0,  then 

f0 ~176 2 2 t(~) dt = - + - - .  
s d - s - 1  

Combined with (3.2) and (3.3), these results imply that  for 0 < s < d - 1  we have 

( ) - ~ d - 8 - 1  s Ik~;I~l 2 
k 1 

_< 

where the constants c , C > 0  depend only on the dimension d. Since IA~l~k 2 we 
obtain the desired formula. [] 
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Remarks 3.4. 1. We thank Prof. L. Colzani for suggesting this approach which 
improved upon a previous version of this paper. Colzani has also communicated 
to us tha t  another proof of Theorem 3.1 can be given by using the Poisson kernel, 
( l_r2) l rx_y l  d, rather  than  the heat kernel, and that  this would give explicit 
constants. We prefer to give the heat kernel approach as it readily generalizes to 
other manifolds. 

2. Another alternative is to consider the kernels Ix-/3yl t and let/3-+i. S. Eil- 

ertsen has communicated to us that for 0<fl< 1 

/s 1 ~_~ ~-~ i~_Gyl~ d~(~) d~(y) = ~ ~(z~)ll~ll~, 
k=O 

where as ~-+1 the coefficients ek(/3) tend to 

r(lt+k) r(~d)r(d-t-1) 
Ck ~ ~d-lp(d-]-]~--l-- lt) r(�89189 

(Here b2d_ 1 is the surface area of  sd-1.)  If  t > d - 2 ,  then ck(~) increases to ck, 

hence one can obtain the precise result t ( p ) = ~ k = 0  ckllP~]12. If t<_d-2 one can 
only conclude t h a t / t ( # )  _> Ekoo--o ck HPk 1122. 

4. T h e  s i ze  o f  p l u r i h a r m o n i c  m e a s u r e s  

We identify R 2~ with C '~ and consider the set of positive functions which are 
pluriharmonic in the unit ball. The Taylor series around the origin of such a function 

can be presented as c0+~1,~1>_1 c~z~+c~z% Its boundary value on the sphere is a 
finite measure called a pluriharmonic measure. 

4.1.  S i z e  o f  c o e f f i c i e n t s  

We have the following estimate on the size of the coefficients of pluriharmonic 
functions. 

P r o p o s i t i o n  4.1. For any integer n ~ 2  there is a constant C such tha~ if 
f(z)=Co§ 1 c~z~§ a is a positive, pluriharmonic fanction defined on the 
unit ball in C ~ and 0<c<1~ then 

~ 1 7 6  ~+~ 1o~,,~ ) C c ~  Ic~l ~ _< < oo .  
C 
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Pro@ As remarked in [A], if # is any pluriharmonic measure, then p(B(a,  r)) < 
C~r ~ 2p(s2r~-l) tbr all a ~ S  2n-~ and r>0 .  It is shown in IF, p. 65] that  this implies 

that  

I 2 ~ _ 2 _ c ( # ) < ( C ~ ( 2 n - 2 )  ~-1)#($2~-~) 2 for every c > 0. 

When # is the boundary value of f ,  then # k =~ l~ l=k  c~,z~+c~z ~ when k > l ,  
and therefore (see [Rud, p. 16]) 

21c 12 i I1  11 = 
I~l=k I~1 

Also, #(S2"~-l)=f(O)=co because f is harmonic in the ball. Now apply Theorem 3.1 
(or Corollary 2.8) with s = 2 n - e - 2 .  [] 

4.2.  H a u s d o r f f  d i m e n s i o n  

The Hausdorff dimension of a measure # is defined as 

dimH p = inf{dimH E : p (E)  > 0}. 

It is known that  if I t (p )<oc ,  then dimH p>_t (ef. IF]). 
In [Do] an example is constructed of a singular, pluriharmonic, probability 

measure p on the sphere in C n with spherical harmonics satisfying I I~kl12 _< ck-1/2 for 
k>  1. It is an easy consequence of formula (3.1) that  such a measure has Hausdorff 
dimension 2 n - 1 ,  the maximum possible. 
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