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Wiener regularity for large 
solutions of nonlinear equations 

Denis A. Labutin 

1. I n t r o d u c t i o n  

This paper concerns large solutions to nonlinear elliptic equations in arbitrary 
bounded domains f ~ c R  ~, n>_3. These are solutions u~C~o~(f~) to the nonlinear 
problem 

AU--I~1q--12s = 0 in f2, 

(1.1) ~ ( , )  ~ +oo,  when ~ -~ O~. 

For the parameter q we always assume in this paper that  

(1.2) q > l .  

Equation (1.1) is the model equation for a broad class of semilinear elliptic problems 
admitting comparison principle. Apart from the importance for partial differential 
equations, interest in large solutions in general domains comes from two different 
sources: the theory of spatial branching processes and conformal differential ge- 
ometry. Of the two basic questions concerning problem (1.1) in arbitrary domains 
f~--namely, existence and uniqueness our main result completely resolves the first. 
Theorem 1.1 states that  the solubility of (1.1) is equivalent to a Wiener-type test 
with respect to a certain capacity. As to the second question, it is well known that  
uniqueness for (1.1) fails in general domains [39], [14], [29]. Note that  the strong 
maximum principle for elliptic equations implies that  u from (1.1) satisfies 

(1.3) u>O,  A u - u q = 0 i n ~ .  

Hence without loss of generality we need to consider only positive solutions of (1.1). 
After the ground-breaking papers by Perkins [67], Dynkin [19], and Le Gall [45], 

solutions of (1.1) and (1.3) at tracted a lot of attention from probabilists. Currently 
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this is a very active area of research on the interface between the theory of random 
processes, nonlinear partial differential equations, and analysis. We refer to the 
ICM reports by Perkins [68] and Le Gall [48] for a survey of the progress in the 
 eld and bibliography, see also [46]. Re ent monographs [21], [20], [241, and [49], 
are dedicated to different aspects of the theory. At the moment the probabilistic 
methods are limited to the case 

(1.4) 1 < q ~ 2  

in (1.1) and (1.3); see [23] on this issue. Our paper was inspired by a result of Dhersin 
and Le Gall [17]. They proved that  the existence of a solution to problem (1.1) for 

(1.5) q = 2  

is equivalent to a Wiener-type criterion for f tC=R~\f t .  This result is one of the 
milestones of the theory, see [48] and [49]. The crucial idea of Dhersin and Le 
Gall was to combine classical potential theory with sharp bounds on the hitting 
probability for the super-Brownian motion associated with positive solutions of 

(1.6) A u - u  2 = O. 

Further probabilistic t reatment of related problems for equation (1.6) and its para- 
bolic counterpart can be found in [18], [16] and [15]. An open problem in this area 
was to extend the result from (1.5) to the full range (1.2); see, for example, [49]. 
Relying entirely upon analytic ideas, the present paper proves the Wiener test for 
solubility of (1.1) for all q > l .  This approach also finds applications in conformal 
geometry; see Remark 1.2(i). 

Large solutions (1.1) were initially studied by Loewner and Nirenberg [52], 
as well as in the earlier papers of Keller [37] and Osserman [66]. Loewner a n d  

Nirenberg considered the case 

n + 2  
( 1 .7 )  q - 

~ - - 2  

that  arises in conformal differentiM geometry. They proved that  in smooth domains 
~2 problem (1.1) has a unique solution. Later the questions of existence, uniqueness, 
and the rate of the boundary blow-up were investigated by many authors. The bib- 
liography for the subject is very extensive [76]. For example, Brezis and V6ron [11] 
proved that  singletons are regular boundary points for (1.1) if and only if 

(1.s) 1 < q < 
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Aviles, Bundle, Ess6n, Finn, Marcus, McOwen, V6ron, and others investigated the 
questions for domains bounded by nonsmooth hypersurfaces or manifolds of lower 
dimensions, as well as for more general semilinear equations. In particular, Marcus 
and V6ron [54] found sharp asymptotics for solutions of (1.1) near conical and cus- 
poidal boundary points. Kondratiev and Nikishkin [39] discovered the nonunique- 
ness for (1.1); see also [14] and [29]. We refer to the survey [65] and the mono- 
graph [76], for further description and references. Additionally, papers [54], [28], 
[58], and [77] contain very recent results. However, up to this point, the analytic 
approach has not given necessary and sufficient conditions for existence in (1.1). 

The capacity appropriate to problem (1.1) is defined as follows. Fix x 0 C R ' ,  
n_>3. Let K c R  "~ be a compact subset of the ball B(zo,  ~). For l < p < o c  define 

(1.9) Cp(K) : i n f e r  ID2FIP:~cC~(B(xo ,2 ) ) ,  91K >_ 1}. 
�9 ( j B ( x o , 2 )  

Following the axiomatic potential theory approach [10], [12] and [35], we extend Cp 
to an outer capacity on the collection of sets E such that E ~  B (x0, ~). Capacities 
defined with different x0 are equivalent; see Section 2 for further explanations. 

The capacity C~) is essentiMly the Bessel capacity associated with the Sobolev 
space W2,P(Rr~). Such capacities have been carefully investigated in the theory of 
nonlinear potentials. The theory originates in early works by Maz'ya and Serrin 
in the 1960s, and was later developed during the 1970s and 1980s in papers by 
Adams, Fuglede, Havin, Hedberg, Maz'ya, Meyers, and many others. We will use it 
extensively. The main references will be the monographs [5], [61], and [80], wherein 
the reader can also find a rich bibliography as well as ample historical notes. Now 
we state the main result of this paper. 

T h e o r e m  1.1. Let f ~ c R  ~, n>3 ,  be a bounded domain, and let q > l .  The 
following statements are equivalent: 

(i) Problem (1.1) has a solution nCC~oc([~ ). 
(ii) The set YF=R~\f~  is not thin, that is, 

dr 
(1.1o) T 

l/2hef'e 
I i 
-+--=1. 
q q' 

In Remark 1.2(iii) we sketch how (1.10) and well-known properties of the ca- 
pacity imply the solubility of (1.1) for specific classes of domains fL 
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For q=2, Theorem 1.1 was proved in [17] using probabilistic methods. More 
precisely, Dhersin and Le Gall proved a stronger theorem stating that  the existence 
of a solution blowing up at a point x0EcQf~ is equivalent to the Wiener criterion 
being satisfied at x0. It is very likely that  the proof from [17] can be generalised 
to the case (1.4) using ideas from [22] and [23]. All our estimates in the proof 
of Theorem 1.1 are local. Thus, in a manner similar to [17], we in fact establish 
the stronger statement that, the existence of u solving (1.3) and blowing up at a 
boundary point is equivalent to the Wiener test (1.10) at that  point. 

Capacity (1.9) has the following property: 

1 . (1.11) @({x}) > 0 for p > 5n, 

see, for example, [61], Chapter 7, and [5], Chapter 2. Property (1.11) implies that 
the integral (i.I0) diverges for any domain ~ provided that q satisfies (1.8). In 
Section 2 we will explain that  for such q, problem (1.1) admits a solution in any f~. 
Therefore, to exclude this trivial case we make the standing assumption that in all 
p ro@ in this paper 

n q > - - .  
--n--2 

If l < q < ' n / ( n - 2 ) ,  uniqueness also holds for (1.1), provided that f~ satisfies 

0a=0((fi)0; 

see [77] 
Conditions similar to (1.10) are called Wiener criteria. Wiener proved in his 

fundamental papers [79] and [78] that  a condition of this type containing the classical 
electrostatic capacity is necessary and sufficient for solvability of the Dirichlet prob- 
lem for harmonic functions. Later, Wiener tests for the solvability of the Dirichlet 
problem for more general linear second-order (degenerately) elliptic and parabolic 
equations were established in [51], [27], [9], [13], [25], and [26]. Recently tile first 
complete results were obtained for linear elliptic equations of higher order [63], for 
an overview see [64]. The seminal papers [59] and [30] launched research on Wiener 
regularity of the Dirichlet problem for quasilinear equations of the second order by 
proving the sufficiency of a Wiener-type criterion. A recent paper [38] completed 
the investigation of the basic question by proving the necessity; see also an earlier 
contribution [50]. Monographs [70], [34] and [53] give a comprehensive exposition of 
these results. Trudinger and Wang presented in [73] an alternative, more general, 
and more concise approach to quasilinear equations of the second order. In [43], 
the Wiener criterion was proved for Hessian equations. Hessian equations [74], [72], 
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and [71] are fully nonlinear (i.e. nonlinear in the second derivatives) elliptic equa- 
tions. We refer to the surveys [3] and [62] for further description of this area and for 
the bibliography. In connection with the present paper, we mention the following 
result. Consider the standard (finite data) Dirichlet problem 

{ /ku--l~tlq-l~t=0 in ft, 

= f on 0f~, 

with arbitrary q> l .  Adams and Heard [4] and [2] proved that  it is solvable for all 
f~C(Oft) if and only if the classical Wiener test from [79] and [78] holds for ft. 

Capacity (1.9) has been used in previous works on potential theory for senfilin- 
ear equations. Baras and Pierre [8] used it to characterise removable singularities 
for solutions of (1.3). In [6] and [36] this capacity was used to investigate a differ- 
ent class of senfilinear equations. We also mention the continuing series of papers 
by Marcus and V6ron [55], [56], [58], and [57] on Riesz-Herglotz-type effects for 
equation (1.3) and its parabolic counterpart, questions that  are also under current 
active study from the probabilistic point of view by Dynkin, Kuznetsov, Le Gall, 
and others [22], [23], [41], [40], and [47]. 

The crucial fact about solutions of (1.3) that  will be used constantly in this 
paper is the elliptic comparison principle. As a consequence of this principle, local 
regularity estimates hold for solutions of (1.3). In particular, if uEL~oc(f~) is a 
distributional solution of (1.3) in ft, then, in fact, ucC~o~(f~) and ~ is the classical 
solution. Another consequence of the comparison principle is the existence of a 
mar solution Ua cC~(ft)  of (1.3) such that  the inequality 

Ua>_u 

holds for any u solving (1.3); see Section 2. To illustrate the main phenomenon 
behind Theorem 1.1 we now formulate ore' crucial estimate in the model form. Let 
K c B ( 0 ,  1) be a compact set in R ~ with n_>3, let t 2 = R ~ \ K ,  and let q>n/(n-2).  
Then 

cr 
(1.12) Ufl(z) ~ izl~,_2 for Izl > 2. 

Theorems 3.1 and 3.2 provide the sharper versions of estimate (1.12) that  will 
actually be used in the proof of Theorem 1.1. For q=2 estimate (1.12) has a 
probabilistic interpretation, see [17]. 

Remark 1.2. (i) In [44] we apply the techniques from the present paper to the 
singular Yamabe problem in the case of negative scalar curvature. The problem 
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which arose in the work of Loewner and Nirenberg [52] and of Schoen and Yau [69], 
consists of finding a complete metric on an open set f~ of, say, the unit sphere in 
R ' ,  n_> 3, that  is conformally equivalent to the standard metric g0 and has constant 
scalar curvature. Analytically, one seeks a solution of (1.3) with q satisfying (1.7) 
such that  the metric 11,4/('n-2)90 is complete in fL The latter replaces the condition 
of pointwise blow-up. A further description and references can be found in the 
survey [65]. In [44] we prove that  a Wiener test similar to (1.10) characterises the 
open sets admitting such complete conformal metrics with negative scalar curvature. 

(ii) In the present paper we consider only the model problem (1.1). It is in- 
teresting to extend Theorem 1.1 to the more general nonlinearities considered by 
Dynkin and Kuznetsov [23] and [42], and to more general linear elliptic operators. 
Generalisations to some nonlinear equations admitting the comparison principle are 
straightforward. Another open question is to adapt the techniques from the present 
paper to the problem 

Au+ f(u) 0 i n f ' ,  

u(x) --+ +oc, when x ---> 0f~, 

in plane domains f i c R  2 for exponential nonlinearities f ,  see [75] and [76]. Ca- 
pacities suitable for the exponential nonlinearities were recently introduced and 
investigated by Grillot and V6ron [31]. 

(iii) We illustrate how Theorem 1.1 implies the solubility of (1.1) for domains 
subject to some transparent geometric conditions: 

(1) The connection (4.6) between capacity and Lebesgue measure implies at 
once that  (1.1) is solvable whenever there exist constants C>O and a satisfying 

2 
a _ < l +  

such that  for any x E Of~ we have 

IwnB(x, )l  CIB(x,T)I for all 0<T.< 1 

Using (4.6) it is also possible to derive an analogous result for q=n/ (n -2 )  in a 
logarithmic scale. 

(2) We set 

q-1  

Exploiting the well-known relationship between capacity and Hausdorff measure 
(e.g. [5], Chapter 5) we deduce that  (1.1) is solvable in any domain • such that  
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c0~-~- - l~ l [_J l~2[_J . . .  , where Pj for j = l ,  2, ..., is an immersed submanifold of class C 1, 
say, with 

dim Pj > d(q). 

Sets with finite Hausdorff d(q)-measure have capacity zero. Consequently, from 
(1.10) we also recover the result of Loewner and Nirenberg [52] stating that  (1.1) is 
not solvable if 

Hd(q) (0~) < -[-o0. 

(3) The well-known formulae for the capacity of cylinders [1], and [61], Chap- 
ter 7, allow us to analyse the solubility of (1.1) for all values of q and n in the case 
when g2 r is the Lebesgue cusp. For q=2  this was done in [17] and the general case 
can be t reated in the same way. 

Notation. If E C R  ~, then E~=R~\E is the complement of E in R *~, IEI is the 
Lebesgue measure of E,  and XE is the indicator (characteristic) function of E.  For 
x C R  n and r > 0  we denote by B(x,r) the open Euclidean ball of radius r centered 

at x. For j E Z  we put r j = l / 2 J .  By Bj we denote the dyadic ball, Bj=B(O, rj). We 
denote the Green's function and the Poisson's kernel for the Laplacian in B(0, R) by 

Gn and PR, respectively. By C, C, C1,. . . ,  we denote positive constants depending 
only on the dimension n and the parameter  q > l  from (1.1) and (1.3). The value of 

C, C, C1,. . . ,  may vary even within the same line. We write 

if 

for some C. We write 

A < B  (A>B)  

A < C B  (A>CB) 

A ~ B  

i fA<B<A.  

Organisa~ion of the paper. In Section 2 we recall some known results about  
solutions of (1.3) and the capacity (1.9), and prove preliminary estimates. In Sec- 
tion 3 we establish estimates of type (1.12) for the maximal solution of (1.1) or (1.3) 

near the boundary: In Section 4 we conclude by proving the main Theorem 1.1, 
relying on the estimates from Section 3. 
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tion. I wish to thank Nina Ivochkina, Vladimir Maz'ya,  and Laurent V6ron for very 
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2. P r e l i m i n a r i e s  o n  e q u a t i o n  a n d  c a p a c i t y  

In this section we set about proving some preliminary estimates and state some 
well-known facts about the solutions of 

(2.t) u > 0 ,  Au ~q =0 ,  

with q > l ,  and the capacity (1.9). The proofs that  we omit can be tbund in [52], 
[11], [76], [5], [61], and [80]. 

Solutions to (2.1) exhibit the following dilation invariance: for all a > 0  and 
r>0 ,  

(2.2) u solves (2.1) in B(O,r') ~ a2 /0 t -0u(a  .) solves (2.1) in B(O,r'/a). 

Let u solve (2.1) in a domain f/. Then 

1 
(2.3) u(z0) < for all Xo ~ fL 

dist (z0, Ofl)2/(q-O 

This estimate, first discovered by Keller [37] and Osserman [66], follows fi'om the 
comparison principle. It allows us to define large solutions in the following way. 

First, let f~ be a bounded domain with, say, 0 f l ~ C  2. Then, as was discovered 
by Loewner and Nirenberg [52], there exists a unique solution to the problem 

f A ~ - - ~  q = 0 in t~, (2.4) 
u(x) -4 +0% when x -+ Of/. 

Moreover, for CCoCOQ and r>0 ,  let tL be a solution of (2.1) in 9 such that  

u(z) ---> +oc, when x ~ (Og)nB(zo, r). 

Then 

\ ( 2i- , when x-+ 

Now, let ~ be an a rb i t ra ry  domain,  not even necessari ly bounded.  Take a 
sequence of" bounded smooth domains { g j } j ~  1 such tha t  

C ~  

fl~ c ... C [ ) j  C f~j+~ c ... , U f~J = fL 
~=1 
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Let uj be the unique solution to (2.4) in ftj. In combination, the comparison prin- 
ciple, regularity, and (2.3) imply that  the sequence {uj }~-t decreases to a function 

u=u~, u~eC~c(a), and 

(2.6) v,j -+ U~? in C~:(f t) ,  when j --+ co. 

Moreover, U~ is the maximal solution to (2.1) in ft. It means that  the inequality 

(2.7) u _< U~? in f~ 

holds for any classical solution u to (2.1) in 12. From (2.7) it follows at once that  

(2.8) Uf~ 1 < U~: in f~2, when I21 D 122. 

Let K1, ..., K~, be compact sets, let 

K = K 1 U . . . U K r n  , 

and let U, U1, ..., U,~ be the maximal solutions of (2.1) in K c, K~, ..., K ~ ,  respec- 
tively. Then on the one hand 

U~ +...+U,, 

is a supersolution of (2.1) in K ~, but  on the other hand I-I61der inequality ensures 
that  

1 
7i~1/q (U1 @ . . . -~ Urn)  

is a subsolution of (2.1) in K ~. Hence, smooth approximation of K and application 
of the comparison principle imply that  

Tr~ 7~ 

(2.9) 1 ~ u ~ < u < _ ~ u ~  i n k  ~. 
rnUq 

i=1 i--1 

Suppose now that  
n 

l < q < n _  2 

Then simple calculations show that  the function 

(2(n-q(n-2))'~ U(q-1) 1 
~(~)= k ~ / Lxl2;~q -a) 

solves (2.1) in R'\{0}. 
(2.7) we conclude that  

Let f~ be an arbitrary domain. Take any xoCO~2. From 

u~(x) > ~(x-z0), 
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and therefore that U~ solves (2.4). From now on we always assume that 

f~ 
(2.1o) q> - - .  

- n - 2  

Our next goal in this section is to discuss the properties of the capacity Cp, 

1 <p<oo, defined in (1.9). Later when dealing with (1.10) we will take p=cf. Thus 

according to (2.10) we can restrict consideration to the case 

1 l < p _ <  En. 

Fix z0ER% Take a compact set K c B ( z 0 ,  3)" Then 

(2.11) 
Cp(K) m inf{ 

and %Olo = 1 for some open set 0 D K } .  

Following the standard scheme of axiomatic potential theory, we define Cp(E) as 
the corresponding outer capacity for any set E e B ( z o ,  3). The fuuction Cp defined 
in this way is a capacity in the sense of Choquet. The equivalence (2.11) implies 
that, by fixing a different point ~0, K C B ( ~ o ,  3), we obtain an equivalent capacity 
Cp, i.e. 

for compact subsets of B(a:o, 3)fqB(~o, 3). Hence conditions of type (1.10) do not 
depend on the choice of Zo. 

In this paper, we will need the following (partially known) result concerning 
the behaviour of the capacity with respect to the dilation scaling. 

- 1 Then L e m m a  2.1. Let E be a Borel set with E c B ( O ,  3),  and let l < p < f f n .  

(2.12) c A r E )  • t  -2"cp(z) .fo  o < t < 

1 1 1 2 
(2.13) C.,~/2(tE) ~ Cn/2(E) § C~z/z(B(O,t)) /'or 0 < t <  5" 

Pro@ (1) The proof of (2.12) is a straightforward application of (2.11) and 
is well known. The proof of (2.13) is not available in the literature except for the 
particular case n = 4  [17], when the linear theory can be applied. In what follows 
we prove (2.13). 



(2) 
writing 

L// v . ( 7 ) :  ~(B(x, ,.))2/(~-2) _d~" d~(x), 
n T 

After approximation, we can assume that  in (2.13), 

E = / r  

where K is a compact set that  is the disjoint union of finitely many closed domains 
with smooth boundaries. For such K a basic result in nonlinear potential theory, 
combined with the Wolff inequality [5], Chapters 2 and 4, implies that  
(2.14) 

1 
0~/2(K)2/(~ 2) ~inf '{F~(1):  supp#  C K, [[#]1 : 1 and # is absolutely continuous}. 

We claim that  

(2.15) dF~ 1 for T >  1, d7 (7) ~ 7 

for any absolutely continuous Radon measure #>_0 such that  supp # c K  and [[#[[ =1. 
Indeed, applying the dominated convergence theorem we discover that  

dr,d7 (7) = ]7/R~, #(B(x, 7)) 2/(~-2) d#(x). 

Now the condition [[#[[=1 implies at once that  

dF~ 1 
d 7  ( 7 )  < - - -  7 "  

To establish the lower bound for F~ we cover the set K by the fixed number of balls 
B(aj, �89 j = l ,  ..., N(n). Clearly there exists a number i, l < i < N ( n ) ,  such that  

1 

For 7>_1 we infer that  

dF ,  1 ~ ~(B(z ,  1)) ~/(~-~) d~(z) 

1 / B  
>_- ~(s(~,~)) ~/('-~) ~(~)> 1 

T (a~,1/2) T 

This finishes the proof of (2.15). 
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For a Radon measure #>_0 we define the function F / ( 0 , + o c ) - - + R  1 by 

T>0. 
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(3) ~Ve claim that  

(2.16) 1 < 1 1 f o r 0 < t < l .  

In fact, utilising (2.14), we can find an absolutely continuous Radon measure # > 0  

such that  

1 
ll ll=l, supp cK, and 

For t>O we define Tt: R~--+R ~ by zw-~tz, and consider the corresponding push- 

forward of #, 

(Tt*#)(E) = #(Tt l  E) = # ( ~ ) ,  

for E c R  ~ with s u p p ( T t . # ) c ~ K .  Then we deduce from (2.14) that  

Hence, invoking (2.15), we discover that  

[,1/~ 1 1 
1 < F~(1) F/~(T)dr < + l o g - .  

C~/2(tK)2/(,z 2) @]1 Cr~/2(K)2/(n 2) t 

This establishes (2.16). 

(4) We claim tha t  

(2.17) 1 1 1 f o r 0 < ~ < l .  
C~/2(tK)~/(,~_2 ) > C,~/2(K)2/(,~_2 ) +log T 

In fact, we can find a Radon measure in (2.14) such tha t  

1 
C~/2(tK)2/(~_2 ) • F,(1) .  

Consider the push-forward Tt-~.#, Tt.(Tt-~.#)=#. Arguing as in the previous step, 
we deduce that  

> j~Tt.(a_l..)(1) = FT~_l.[t C~/2 (tK)2/(n-2) 
f l / t  1 1 

C,~/2(K)2/('~-2) t 
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(5) For the capacity of a ball we have the estimates [5], Chapter 5: 

, 9 (2.1s) G (  B ( o ,  r) ) x <  - 2~, o < ~ < r~, 

( 1 ' {  2".;/2 9 
(2.19) G~/2(B(O,r))x l o g r /  , 0 < r < y  6. 

Combining (2.19) with (2.16) and (2.17), we arrive at (2.13). [] 

Next we derive a preliminary a priori estimate for solutions of" (2.1). 

L e m m a  2.2. Let K C B ( 0 ,  3) be a compact set, and letu be a solution to (2.1) 
in K ~. Then there exists a function ~CC~(B(0 ,2 ) )  satisfying 0 < ~ < 1  in B(0,2) 
and ~=1 in an open neighbourhood of K such that 

(2.20) f ID2j)I q' 5 Cq,(t(~), 
JB (0,2) 

and such that ~ ] = ( 1 - ~ )  2q' satisfies 

JR/u(IDr;] + IA.I) < G '  (~:). (2.21) 

Pro@ (1) The open set K c can be approximated fl'om the interior by domains 
with smooth boundaries. Consequently, by standard continuity properties of ca- 
pacity, we can assume in the proof that  K is a disjoint union of a finite number 
of closed domains with smooth boundaries. Take any e>0. Appealing to (2.3), we 
choose R > 4  such that 

u < c on OB(O,R). 

Set B = B( 0 ,  R). Let v solve the problem 

A v - v q = O  i n B \ K ,  

v(x) --+ +oc, when x -+ K, 

v = 0 on cOB. 

Then 
A(v+c)--  (v+c) q < 0 

Hence by (2.5) and the comparison principle 

in B \ K .  

(2.22) u < v + c  in B \ K .  
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(2) We set /9=B(0 ,2 )  and note that  B G B .  We claim that there exists a 
function ~oEC~~ with 0_<~o<_1 in /? and ~o=1 in an open neighbourhood of K 
such that (2.20) holds. To prove this, we first recall a well-known result in nonlinear 
potential theory [33] (see also [5], Chapter 2, and [61], Chapter 9) that states that 
there exists a function ~ U ~ ( B )  such that 

~ l K > l ,  ~ D2~l q :Cq , (K) ,  and 

Next, take a function H E C ~ 1 7 6  1) such that 

1 ] and H ( t ) = l f o r t > 2 .  H(t)=O for t < 5, 

Now we take g to be the smooth truncation of ~, ~ = H ( ~ ) .  Then 

D - ~ I  ~ ~< IH" (~ ) I~ ' ID~ I  ~ + IH  (~)1 ~ IU2~l v �9 

To obtain (2.20), we just  apply the Gagliardo Nirenberg interpolation inequality 
[61], Chapter 9, to the first term: if l < r < o o ,  then 

(2.23) IIDflIL~, (~)< IID2/II~/(~) ~/2 IIIIIL~(~) for any f ~ co~(~).  

We remark that arguments of this type first appeared in [601 and [71 (see also [61], 
Chapter 9, and [5], Chapter 3). 

(3) Let ~ =  1 - ~ .  We claim that 

(2.24) /B vq~'~ < C(m, r~, q) Cq, (K) for m _> 2q'. 

In fact, by Green's formula 

where ~ is the outer normal on OB. Since ~bl{=l,<>2}=l we conclude that 

= 0 on 0t3. 
0~ 

By the comparison principle, VIB\K >0. Hence 

c g p - -  
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Using the HSlder inequality, we compute 

(2.25) 

where 

Bvq~ "~ <_ ./B vA(~ "~) 

<_s 
< ~ . s  ~ - * t A ~ / § 1 6 3  v~ "~ ~ID~I 2 

,~l/q / r ,\ l /q, 

,kl/q .~l/q' 

X = m - q ' ,  and Y - m - 2 @  

We can assume that the left-hand side in (2.24) is positive. From (2.25) it then 
follows that  

fBvq~'~ <_rn~q' f~ (La~[q'+[D%2q'). 

Applying the inequality (2.23), we obtain 

L vqOm <_c(rn, n,q) L ,D2~, q', 
and (2.24) follows from (2.20). 

(4) Define r/=Ib zq'. We claim that  

(2.26) L v(lArll + lDrll) < CN, ( K). 

In fact, for s=2q'  we have by the same calculations as in (2.25), 

(2.27) fsv[Arl, <_s(/Bvq@~ a)q)l/q (f~ ,A~,q')l/q' 
( fB \ l /q/  r J \t/q' +s(~-~) ~(~-~)~) (I. D~o 2~x 

N / \ a ~  

(2.28) JBv,Drj,<_s(jBvq,#(~-l)q)l/q(/D,D~,~')Wq'. 
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For s=2q' we have 

(s-2)q=2q', and (~-l)q=2q'+q. 

Thus we can use (2.24) to estimate the integrals containing v q in (2.27) and (2.28). 
Applying the interpolation inequality (2.23) to the last term in (2.27), we conclude 
on the basis of (2.20) that  

fu v[A~;l <~ Cq,(K)l/q (/~ [D2~ q )l/q' <~ Cq,(K). 

Similarly, applying the Poinca% inequality to the last integral in (2.28) gives 

We conclude that (2.26) indeed holds. 

(5) From (2.22) and (2.26) we obtain 

s ~(IDwI+IA~I) = ~ u(IDwl + [AWl) < Cr (K)+c ~ (IDwI+ IA~I). 

To establish (2.21) we let s-+0 both in (2.22) and in the last inequality. [] 

Finally, for later use we record the following elementary inequality, (see for 
example [5] or [61]). Let J ~ Z ,  and let the function ~b: (0, r j ) ~ R  ~ be either nonde- 
creasing or nonincreasing. Then for any x c R ,  

oc ~ f r  j dr oo 
(2.29) E +(rj)rj <jo O(r)r~-- < E ~(rj)r~" 

T 
j = J + l  j = J  

3. Capacitary est imates  

Let K c R  ~ be a compact set. In this section we establish estimates from above 
and below of type (1.12) for solutions of 

(3.1) u > 0 ,  A u - ~ d = 0 i n K  c. 

The lower bound will be used in Section 4 to prove the sufficiency of (1.10) for the 
solubility of (1.1), whereas the estimate from above will be used in the proof of tile 
necessity. The following theorem provides a lower bound. 
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T h e o r e m  3 .1 .  Let K c  {x:p<lxl<l} be a compact set, where 0 < t ) < l ,  and let 
UcC~,~:(K':) be the maximal solution of (3.1). Then 

(3.2) C~,(KnBj) 
u(o) ~> Z ,~-~ 

j o rj  

We emphasize that  the implicit constant in inequality (3.2) is independent of g. 

Pry@ (1) First utilising (2.6) we approximate K and will assume further that  
K in (3.2) is the closure of a finite number of domains with smooth boundaries, 

KcB(o, 1)\B(0, o). 
The Bessel kernel ff2EC~c(R'~\{0}) is defined via the formula 

( l - A )  i f = J 2 *  f for all f E N .  

It satisfies the estimates (see, for instance, [5], Chapter 1) 

(3.3) 

1 
J72(x) .~ ix]._ 2 for x ~/9(0, 1), 

1 
J 2 ( x )  ~ e'*l Iml(~ 1)/2 for 2s ~ B ( 0 ,  ~)<:, 

For j E Z define 
Sj={x:rj_< Ixl<rj ~}. 

Fix a positive integer J such that  2 g<g.  Consider the sets KNS:j, j = l ,  ..., g. A 
basic theorem in nonlinear potential theory (see [5], Chapter 2) states that  for any 
j there exists a nonnegative Radon measure r such that  

supp p.j C KNSj  

and 
P 

c~, (/~ n sj) • **.j (Kn sj) ~ JR- (& *~j )~. 

C.onsequently, after a suitable regularisation of #j and an additional smooth ap- 
proximation of K,  we obtain J functions 9j CC~(RT') ,  9r >_0, j = l ,  ..., J ,  such that  

(3.4) supp.gj c K n S j ,  
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(2) We set B = B ( 0 , 2 ) .  Take c>0  and let the functions gl, ... ,gJ be as in the 
previous step. Consider the Dirichlet problem 

j 
A u = - c E g j + u q  i n B ,  

j = l  

u = 0 on OB. 

The problem has a unique solution u E C12oc (/3) A C (B) such that  u > 0 [52], [54], and 
[76]. Of course, uniqueness here is a straigt~tforward consequence of the comparison 
principle. Our goal will be to show that  there exists c=e(n ,  q )>0  such that  

(3.6) 
J ~(0) ~> 5~ ~ 6'(KnB~) 

.= r.} z -2  

To prove this we first note that  for x c B ,  

J 

~(~) _< -~/B c2 (x, ~) ~ a (y) dy. 
j = l  

Thus 

(3.7) 

J 

j = l  

,I >_s IC2(0, x)l 3-]~ gj(x)ax 
j 1 

= e I - e q I I .  

To obtain (3.6) we will estimate I from below and I I  from above. 

(3) By a simple estimate for the Green's function and an application of (3.4) 
and (3.5), 

J J 

B ] EgJ(X) dx~ECq' (K~SJ)  
I ~  [X[n 2 j = l  j = l  r j  

We rewrite this estimate in terms of the balls Bj rather than the shells Sj. From 
the inequality 

Cq , (KnBj_ l )  < C q , ( K n S i j ) + 6 , ( K n B j )  
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we deduce that 

J J fcq,(~c~B~_l) 6 , ( K n B j ) ~  
z > ~ 2  .... 2 j=l rj 1 j = l  \ r J - 1  (2rj)n-2 ] 

(3.s) 
> (l_m~_ )s  > ~6,(Kr~Bj)__ . 

j=0  rj j=0  r ~  2 

(4) To obtain an upper estimate for [I in (3.7) we first apply (3.3) and write 

(3.9) H<Llxl~ ~ 3 "  95 (xDdx< E ~1 , ] 2 , E g k  (xDdx. 
- -  j = l  J j x k - - 1  

If we set g.J+2 =g  J+l =go =g 1 ~0 ,  then (3.9) can be continued: 

j = 1  J J , - 1  k = j - 1  k = i + 2  

J I [" / j+l ~q 

= X + Y + Z .  

In this calculation we have used the simple inequality 

Jo(ZI +... + NN ) q <_ ](91 <_ [(9](Hf l l[Loo(O)-k... + llf N[[L~(O) ) q [[(fl +...+ fN)q[[C~(O) 

valid for measurable functions f j > 0 ,  j = l , . . .  ,N.  Thus in order to estimate I I  in 
(3.7) we must estimate X, Y, and Z in (3.10). 

(5) In light of (3.5) it is clear at once that  

J 1 .,+' L J s 
(3.11) X < E r ? - ' ) ~  ~j (J'2*gk)q < N-" Z~ ,,, 2 <~ Cq,(KRBj)r; -2 

j = l  .? k=. '--i  " ,J= 1 r'j j =0  " 

(6) Next, we deduce from (3.3) that  

1 
- -  f o r a l l x E S j  ys  lc<j-2 .  
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Recalling (3.4) and (3.5), we derive the estimate 

j=l ~ 1 ~'k ~- ' - 1 /'k / (a.ls) 

- w  �9 

j = 0  , /~k / 

(7) We assert next that  

J 

To prove this we conclude with the help of (a.a) that  

1 
J e ( x - y ) <  fbr all x 6 S  O, y~Sk ,  k > j + 2 .  

Consequently, 

"= k = j + 2  3 k . /= r j  k-- 2 

To estimate the last sum we introduce the function 9: (0, 1)--+R 1 by writing 

9 < )  = Cr (KNB(0, , ' ) ) ,  0 <~ '<  1. 

Bringing (2.29) into play, we continue the estimate for Z, 

r(r~-2)q-s 

Note that 
n 

( n - 2 ) q - l > l  w h e n n > 3 a n d q _ > - - .  
- n - 2  

Hence we can apply the Hardy inequality [32], Chapter 9, to discover that  

s 1 9( t )  ,i~(r) v 1 dr'. 

Applying (2.29) to the last integral we confirm (3.13). 
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(8) We claim that  

(KnBj) 
(3.14) Y+Z < E Cq, 2 

j ~ 

Indeed, we combine (3.12) and (3.13) and find that  

j = 0  , =  /~ / 

Next we introduce the function ~: (0, 1)--+R 1 by writing 

fr 1Cq,(KAB(O,t)) dt 
~(~') = ~,~ ~ T '  

0 < r < l .  

The function ~5 is nonincreasing. Consequently, we can employ (2.29) to rewrite 
(3 .15)  as 

/01 (3.16) Y+z5 ~r d~.. 

We estimate the integral in (3.16). The function (I) is absolutely continuous. There- 
fore, integrating by parts and noting that  

lim (I)(r) 0, 
r -~ l  0 

we compute 

~o 1 q ~01 ,~(,.)q d, = - ~  ,.2e(~.)q-le,(~.) d~.. 

From (2.18) and (2.19) we deduce that 

~rr 
l ff~-2q' dt < 1 

(~:)(T) ~ t n - 2  t ~ T 2 / (q -1 )  when 0 < r < 1, 

whence 

[lr~(r)qdr< f r2 1 (-~'(r))dr< lim ~(r). 
s Jo ~ r'--+O+O 

According to (2.29) 
J (KnBj) 

lira q~(r)<ECq' n 2 

r--+0+0 j = 0  ~'J 

In view of (3.16) claim (3.14) is established. 
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(9) Combining (3.11), (3.14), and (3.10), we now estimate I I  in (3.7), 

@ Cq,(Kngr 

In conjunction with (3.8) we obtain from this estimate and (3.7), 

J 

j~o Cq'(KABj) ~(o) > (~c~(~,q)-~(,c~(~,q)) : ~ 

Choosing s=s (n ,  q)>0 small enough, we obtain (3.6). 

(10) From (2.7) we deduce that  

U >_ u on O(B\Is 

Hence (3.4) and (2.7) allow us to apply the comparison principle to U and u in 
B \ K .  We conclude that  

U(0) _> u(O). 

Now (3.2) follows directly from (3.6) because the terms w i t h j > J  in (3.2) vanish. [] 

Next we derive an upper bound for solutions of (3.1). 

T h e o r e m  3 .2 .  Let KC{x:~<[x[<l}  be a compact set, where O<g<l, and let 
U~C~or ~) be the maximal solution of (3.1). Then 

oc Cq,(KNBj) n 
(3.17) U(O) • E r.~)-2 for q > n - ~ '  

j = 0  Y 

(3.18) u(~ <~-2 ~ - 2  
j = 0  3 

First we prove the following lemma. 

L e m m a  3.3. Let K c B 1  be a compact set, and let uEC~oo(K c) satisfy (3.1). 
Then 

(3,i9) ~(x) 5@(K) when Ixl~3. 

Pro@ Take s>0.  Using (2.3), we choose N E Z  with N < - 2  such that  

< c on OBN. 
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We then set B=BN and R=rN. We next fix a function r] as in Lemma 2.2 with 
r/l{x=lxl>2 } =1, and consider x satisfying Izl_>3. Using the properties of the Green's 
function and the Poisson's kernel, we obtain 

<-/B aR(x, y)(r]Au+ uA.,]+ 2DuDrl)(y) dy+cd oB [ PR(x,~) do-(~) 

</ .  GR(x, y)(uAr]+ 2DuD~l)(y) dy+e (3.20) 

=-/B GR(x,y)(uA~l)(y) dy- 2 ./B DyGR(x,y)Dr](y)u(y) dy+e 

<c+f u(IArJl+IDrll). 
J R n 

To obtain (3.19) we apply the estimate (2.21) from Lemma 2.2 to the second term 
in (3.20) and let e-+0. [] 

With the aid of the scaled estimate (3.19), we now prove Theorem 3.2. 

Proof of Theorem 3.2. (1) For j ~ Z  we define the shells 

SS={ : j_<lxl_<rj 

Fix j_> 1. Cover Sj by N=N(n) number of closed balls B(ak, 8j), k = l ,  ..., N(n), 
_ 1 where akESj and aoj--i~drj. For k = l ,  ..., N, let Vk=Vkj be the maximal solution 

to (3.1) with K replaced by KAB(a~,, 85). Let Uj be the maximal solution to (3.1) 
with K replaced by KnSj. 

(2) Fix q_>n/(n-2). Utilising (2.2), we scale estimate (3.19) in Lemma 3.3 to 
discover that  

Vk(O) ~, Cq'((I4~NJ~J 1 ) / r j - 1 )  
r2/(q 1) j - t  

Consequently by (2.9), 

N ( ([ (NBj_I ) / r j_ I )  

Choose an integer J such that  2 - J  <~. We employ (2.9) and the previous estimate 
on Uj(O) to see that  

u(o) 
j=l j=o ,,j 
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The estimate (3.18) is thereby proved. Moreover, (3.17) also follows immediately 
by scaling (2.12). [] 

4. P r o o f  o f  t h e  W i e n e r  c r i t e r i o n  

In this section we prove our main result, namely Theorem 1.1. We use the 
capacity estimates from Section 3. 

Proof of Theorem 1.1. (ii) ~ (i) Assume that  (1.10) holds. Let U be the 
maximal solution to (1.3) in f~, U~C~oc(~2). Fix x0 E0fL To prove the solubility of 
(1.1) we will demonstrate that  

( 4 . 1 )  lira U(x) = + ~ .  
xCf~ 

X - - } X  0 

In proving this, we may assume that  x0----0. Take any M > 0 .  By (1.10) there exists 
p>O such that  

~ 1 6 ,  (QmB(0 ,  r)) dr > M .  
r n 2 r -- 

Let U o be the maximal solution to (1.3) in f~OB(0, 30). By monotonicity (2.8), we 
have 

U >_ U, i n f ' .  

To estimate U e from below fix any zoEB(O, 0). Then apply both estimate (3.2) 
from Theorem 3.1 and (2.29), 

Uo(ZO) ~, ~1 
~-bol 

Consequently 

/ 1  (eros(0,7.)) ~r > M. cq,(amB(~0,r)) dr > 6 '  
rr~ 2 r r n - 2  7" 0 

U~>M in B(0,0)na, 

S j =  { x : r j + l  < X  < r j } ,  

~j = {x :rj+2 < x_< r~_l}. 

and define the dyadic shells 

and (4.1) follows. 

(i) ~ (ii) (1) Assume that  (1.1) has a solution u. Take any zEOfL We need 
to prove that  (1.10) holds. We again assume to economise on notation that  z=0 .  
We set 

K - - f K ,  
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Let U1, U2, Us, and U4 be the maximal  solutions to (1.3) for the exteriors of K ~  

B~+2, KnSj, ( K n B 0 \ B . j _ ~  , and K\B1, respectively. Of course, these functions 
also depend on j .  From (2.9) and (2.7) we learn tha t  

u<U]+U2+U3+U4 i n S j .  

Consequently, 

(4.2) 

The definition of u ensures that  

(4.3) inf u -+ +oc,  
sj 

infsj u < II u~ IIg~<s~)+ II u3 llLO~<s~)+ II U4 IIL~<Sj)+i~f g2. 

when j --+ oc. 

The crux of the proof lies in obtaining an upper capacity estimate for u in Sj. 
Estimates (3.17) and (3.18) from Theorem 3.2 provide the necessary upper bounds 
for the first three terms in (4.2). We now proceed to estimate the infimum of U2 in 
Sj from above. 

(2) Denote E=KNS1. Let w be the maximal  solution to (1.3) in E c. In other 
words, denote U2 for j = l  by w. Fix functions ~2 and r] as in Lemma 2.2, where K 
is replaced by the compact  set E. We claim that  

(4.4) /B(o,2) w~] < Cq, ( E). 

To prove this we set B = B ( 0 ,  4), and take OEC~(B) such that  0_>0 and 018(0,3)--1. 
For z E B  we use an argument  similar to the one that  proved (3.20) to show that  

(w~jo)(x) _< -/B &ix, y)(~a(,o))(y) ay-2/ ,  Dy(&(~, y))D(~0)ty)w(y) ~y. 

Hence by Fubini's theorem 

The definitions of r] and 0 ensure that  

supp(D{+rl)~supp(D~O) ={~ for I~1, I~1-> 1. 
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As a result, 

12x(~/O)l : I(Lx~j)o+wLxOl ~ PA~II+xBW<o,~), 

ID(~10)] : I(Dr/)0+r/D0[ ~ IWzr +x~w(0,~). 

Returning to (4.5) we compute 

(<2) (0,2) 

We apply estimate (3.19) fi'om Lemma 3.3 to the first term, and estimate (2.21) 
from Lemma 2.2 to the second term. This concludes the proof of (4.4). 

(3) We recall the well-known connection between capacity and Lebesgue meas- 
ure, see [5], Chapter 5, or [61], Chapter 7. There exists a constant 6 '>0 such that  
the following holds: if t > 0  and l < p <  �89 and if the function h is defined by 

x { fn,/(n-~p) when 1 < p <  [rz, 

t~(~) : t~(t,p) : e x p ( - C t  ~/c,,,-~)), when p : �89 

then for any r c R "  with f C B ( ~ 0 ,  ~) we have 

(4.6) IFI < h(Cv(F), p). 

Now we claim that  for any c>0, 

1 
(4.r) c , , , (z )  < ~ ~ I{~ �9 < :  ~(*) < loo }1 < h(~, q'). 

Indeed, denote the set in the right-hand side of (4.7) by El.  Then 

~(x) ~ } 
El----{ x ~ S I :  1 - - 1 ~ - '  >1  , 

where s=2q'.  By definition (1.9) with Xo=0, we find, in view of (2.20), that  

0r ~ 1_100_~ / ID2~ q 5Cr 

we then infer (4.7) from (4.6). 
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(4) We assert that there exists small enough ~>0, c=e(n ,  q), such that  

(4.8) Cq,(E) _<c ~ inf w ~< Cq, (E). 
$1 

To prove this, we choose e>0, e e(n, q), in (4.7) so small that  

Then for the set 

we have 

1 
E 2 : {  g ~ S 1  : / / ( g ) >  1~0} 

IZ21 ~ ~l&l.  
Hence by (4.4), 

q,(E)>s 
(0,2) , 

and (4.8) is proved. 

z w > infw, 
2 ~ S 1  

(5) Let q>n/(n-2) .  We prove (1.10) in this case. 
In fact; take any large j c N ,  say, )_>10. On the basis of the definitions we can 

state that  
(K•Taj) / , j  1 c ~. 

Thus we can scale estimate (4.8) using (2.2) and (2.12), and determine that  there 
exists s>0,  c=s(n ,  q), such that 

(4.9) cq, (KnBj_2) n-2v' <_e ~ inf'U2 <~ dq'(lgABJ 2) 

Tj  _ 2 Sj  Tr~ j--2-- 2 

First assume that there exists J E N ,  J_> 100, such that  

Cq,(I~ABj 2) <~  for a l l j > Y .  
I n  2q' -- 

j 2 

Then fbr j>_J we estimate the first and second terms in (4.2) by invoking (3.17). 
The third term in (4.2) is estimated by (2.3). We estimate the last term in (4.2) by 
appealing to (4.9). In summary 

J (KnB~) (KnBj ~) X<, C~,(KnB~) i n f u <  Cq,(KNBj) ~ Cq, Cq, < L +i. 
n 2 --1@ n 2 rn  2 

33 7"2 2 ~j,= r k  rJ - 2  k=0 k 
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Because of (4.3), this estimate and (2.29) yield (1.10). 
Next assume, alternatively, that  

G' > c  
,n--2q ~ r j  

tbr infinitely many j .  Then for any such j 

Cq,(KnBs)  e 
r)z_ 2 2--r2/(q_l) ~-}-oo, w h e n j - + o c .  

In this case (1.10) follows at once from (2.29). 

(6) Let q = n / ( n  2). We prove (1.10) in this case. 
First by scaling (2.13) we find a constant C > 0  such that  for all j > l ,  

Cnl2(is ~ 5 Cnl2((~l~lt~j_l)/fj_l) - ~ - C n / 2 ( ~ j _ l )  . 

We can assume that  

GU2(KABj)  ~ ~ G W 2 ( B j )  for all j large. 

Otherwise, we could inter from (2.19) that,  for infinitely many j ,  

2j 7 ~-2 Gu~(KC~Bj) > Gu2(Bj)  > -+ +oo, when j--+ +oc, 

and (1.10) would fbllow at once from (2.29). Thus, without loss of generality, we 
may assume that  there exists d E N  such that for all j>_d, 

(4.10) Cn/2(([ NB j CCn/2(KNBj  1)Cn/2(Bj 1) 

Next fix any j c N ,  say j > d + 1 0 .  From the definition, we have 

Hence we can scale estimate (4.8) using (2.2). Then taking (4.10) into account, we 
discover that  there exists c>0  such that  

G/ffKnBj_2) 
C~w2(KNBj-2)<-a ~ i n fU2<  ~ 2 

$3 rj _ 2 
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Since 

Cn/2([s -+ O, when j -~ oc, 

we can take advantage of the last implicat ion and conclude, after possibly increasing 

J ,  tha t  

(4.11) i n fg2  ~< C~/2(KNBj_2) for all j_> J. 
sj 

?~j - 2 

Now for j > J  we est imate the first and second terms in (4.2) using (3.18) 

and (4.10). The  third  te rm in (4.2) is es t imated by (2.3). We obta in  a bound  on 
the last t e rm in (4.2) from (4.11). In  s u m m a r y  

inf u < r~,_ 2 ,~-2 ~-2 
Sj 2 k d Pk ~'~j 2 

~ Cn/2(KNBk) ~-A(t2, J), 
n - - 2  

k=0 7"k 

where A(t2, J )  is a positive constant .  This es t imate  and (2.29) give (1.10) due 

to (4.3). [] 
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