Banach spaces not containing l_{1}

Jorge Mujica

Dedicated to the memory of Klaus Floret (1941-2002).

Abstract

We show that if E is a complex Banach space which contains no subspace isomorphic to l_{1}, then each infinite dimensional subspace of E^{\prime} contains a normalized sequence which converges to zero for the weak star topology.

The preceding result has been established by Hagler and Johnson [7] for real Banach spaces (see also [3, Chapter XII]). By adapting their proof we show that the result remains true in the case of complex Banach spaces. This result yields a very short proof of the Josefson-Nissenzweig theorem. We also give some applications to the study of the Schur property, the Dunford-Pettis property, and the separable quotient problem.

Before proving the main result we need some auxiliary lemmas. All unexplained terminology can be found in the book of Diestel [3]. For information on the Schur property or the Dunford-Pettis property we refer to Diestel's survey [2]. For information on the separable quotient problem we refer to the author's survey [10].

We recall that a sequence $\left(A_{n}, B_{n}\right)_{n=1}^{\infty}$ of pairs of disjoint nonempty subsets of a set S is said to be independent if for each sequence $\left(\theta_{n}\right)_{n=1}^{\infty} \in\{-1,1\}^{N}$ and each $p \in \mathbf{N}$ we have that

$$
\bigcap_{n=1}^{p} \theta_{n} A_{n} \neq \emptyset
$$

where

$$
\theta_{n} A_{n}= \begin{cases}A_{n}, & \text { if } \theta_{n}=1, \\ B_{n}, & \text { if } \theta_{n}=-1 .\end{cases}
$$

Then we have the following lemma, which is a variant of a result of Dor [4] (see also [3, Chapter XI]).

Lemma 1. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a bounded sequence in $l_{\infty}(S ; \mathbf{C})$. Let C and D be nonempty subsets of \mathbf{C} such that

$$
\operatorname{Re}(z-w) \geq R \text { and }|\operatorname{Im}(z-w)| \leq r \quad \text { for every } z \in C \text { and } w \in D
$$

where $R>r>0$. Let

$$
A_{n}=f_{n}^{-1}(C) \text { and } B_{n}=f_{n}^{-1}(D) \quad \text { for every } n \in \mathbf{N}
$$

If the sequence $\left(A_{n}, B_{n}\right)_{n=1}^{\infty}$ is independent, then $\left(f_{n}\right)_{n=1}^{\infty}$ is a basic sequence in $l_{\infty}(S ; \mathbf{C})$, which is equivalent to the canonical Schauder basis of l_{1}.

Proof. To prove the lemma we will show that

$$
\left\|\sum_{j=1}^{n} \lambda_{j} f_{j}\right\| \geq \frac{R-r}{4} \sum_{j=1}^{n}\left|\lambda_{j}\right|
$$

for every sequence $\left(\lambda_{j}\right)_{j=1}^{\infty} \subset \mathbf{C}$ and every $n \in \mathbf{N}$. Let $\alpha_{j}=\operatorname{Re} \lambda_{j}$ and $\beta_{j}=\operatorname{Im} \lambda_{j}$ for every j. Since $\left\|\sum_{j=1}^{n} \lambda_{j} f_{j}\right\|=\left\|\sum_{j=1}^{n} i \lambda_{j} f_{j}\right\|$, we may assume, without loss of generality, that

$$
\sum_{j=1}^{n}\left|\alpha_{j}\right| \geq \sum_{j=1}^{n}\left|\beta_{j}\right|
$$

Let

$$
P=\left\{j: 1 \leq j \leq n \text { and } \alpha_{j} \geq 0\right\} \quad \text { and } \quad N=\left\{j: 1 \leq j \leq n \text { and } \alpha_{j}<0\right\}
$$

Since the sequence $\left(A_{j}, B_{j}\right)_{j=1}^{\infty}$ is independent, we can find $s, t \in S$ such that

$$
s \in\left(\bigcap_{j \in P} A_{j}\right) \cap\left(\bigcap_{j \in N} B_{j}\right) \quad \text { and } \quad t \in\left(\bigcap_{j \in N} A_{j}\right) \cap\left(\bigcap_{j \in P} B_{j}\right) .
$$

Thus $f_{j}(s) \in C$ and $f_{j}(t) \in D$ if $j \in P$, whereas $f_{j}(t) \in C$ and $f_{j}(s) \in D$ if $j \in N$. It follows that

$$
\begin{aligned}
\operatorname{Re} \sum_{j=1}^{n} \lambda_{j} f_{j}(s)-\operatorname{Re} \sum_{j=1}^{n} \lambda_{j} f_{j}(t) & =\sum_{j=1}^{n} \operatorname{Re}\left[\lambda_{j}\left(f_{j}(s)-f_{j}(t)\right)\right] \\
& =\sum_{j=1}^{n}\left[\alpha_{j} \operatorname{Re}\left(f_{j}(s)-f_{j}(t)\right)-\beta_{j} \operatorname{Im}\left(f_{j}(s)-f_{j}(t)\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{j \in P} \alpha_{j} \operatorname{Re}\left(f_{j}(s)-f_{j}(t)\right)+\sum_{j \in N} \alpha_{j} \operatorname{Re}\left(f_{j}(s)-f_{j}(t)\right) \\
& -\sum_{j=1}^{n} \beta_{j} \operatorname{Im}\left(f_{j}(s)-f_{j}(t)\right) \\
\geq & \sum_{j \in P}\left|\alpha_{j}\right| R+\sum_{j \in N}\left|\alpha_{j}\right| R-\sum_{j=1}^{n}\left|\beta_{j}\right| r \\
= & R \sum_{j=1}^{n}\left|\alpha_{j}\right|-r \sum_{j=1}^{n}\left|\beta_{j}\right| \\
\geq & (R-r) \sum_{j=1}^{n}\left|\alpha_{j}\right| \\
\geq & \frac{R-r}{2} \sum_{j=1}^{n}\left|\lambda_{j}\right| .
\end{aligned}
$$

It follows that either

$$
\operatorname{Re} \sum_{j=1}^{n} \lambda_{j} f_{j}(s) \geq \frac{R-r}{4} \sum_{j=1}^{n}\left|\lambda_{j}\right| \quad \text { or } \quad-\operatorname{Re} \sum_{j=1}^{n} \lambda_{j} f_{j}(t) \geq \frac{R-r}{4} \sum_{j=1}^{n} \lambda_{j}
$$

Hence

$$
\left\|\sum_{j=1}^{n} \lambda_{j} f_{j}\right\| \geq \frac{R-r}{4} \sum_{j=1}^{n}\left|\lambda_{j}\right|,
$$

as asserted.
We recall that a sequence $\left(S_{j}\right)_{j=1}^{\infty}$ of nonempty subsets of a set S is said to be a tree if $S_{2 j}$ and $S_{2 j+1}$ are disjoint subsets of S_{j} for every $j \in \mathbf{N}$. The notion of tree was introduced by Pelczyński [13].

Lemma 2. Let $\left(f_{n}\right)_{n=1}^{\infty}$ be a sequence in $l_{\infty}(S ; \mathbf{K})$. Let C and D be disjoint nonempty subsets of \mathbf{K}, and let

$$
A_{n}=f_{n}^{-1}(C) \text { and } B_{n}=f_{n}^{-1}(D) \quad \text { for every } n \in \mathbf{N}
$$

Suppose there exists a tree $\left(S_{j}\right)_{j=1}^{\infty}$ of subsets of S such that

$$
S_{j} \subset A_{n} \quad \text { for } 2^{n} \leq j<2^{n+1}, n \geq 1, j \text { even }
$$

and

$$
S_{j} \subset B_{n} \quad \text { for } 2^{n} \leq j<2^{n+1}, n \geq 1, j \text { odd } .
$$

Then the sequence $\left(A_{n}, B_{n}\right)_{n=1}^{\infty}$ is independent.
Proof. Let $\theta_{1}, \ldots, \theta_{p} \in\{-1,1\}$ be given. Let T_{1} be the unique S_{j} such that $2 \leq j<2^{2}$ and $S_{j} \subset \theta_{1} A_{1}$. Let T_{2} be the unique S_{j} such that $2^{2} \leq j<2^{3}$ and $S_{j} \subset$
$T_{1} \cap \theta_{2} A_{2}$. In general, if $1<n \leq p$, let T_{n} be the unique S_{j} such that $2^{n} \leq j<2^{n+1}$ and $S_{j} \subset T_{n-1} \cap \theta_{n} A_{n}$. It follows that

$$
\bigcap_{n=1}^{p} \theta_{n} A_{n} \supset \bigcap_{n=1}^{p} T_{n}=T_{p} \neq \emptyset
$$

Lemma 3. Let $\delta>0$ and let $0<\varepsilon<\frac{1}{6} \delta$. Let

$$
C=\{z \in \mathbf{C}:|z| \leq \delta+\varepsilon \text { and } \operatorname{Re} z \geq \delta-\varepsilon\}
$$

and

$$
D=\{w \in \mathbf{C}:|w| \leq \delta+\varepsilon \text { and } \operatorname{Re} w \leq-\delta+\varepsilon\} .
$$

Then
(a) $\operatorname{Re}(z-w) \geq 2(\delta-\varepsilon)$ and $|\operatorname{Im}(z-w)| \leq 4 \sqrt{\delta \varepsilon}$;
(b) $2(\delta-\varepsilon)>4 \sqrt{\delta \varepsilon}$.

Proof. Given $z \in C$ and $w \in D$, it is clear that

$$
\operatorname{Re}(z-w) \geq 2(\delta-\varepsilon) \quad \text { and } \quad|\operatorname{Im}(z-w)| \leq 2 h
$$

where $(\delta-\varepsilon, h)$ and $(\delta-\varepsilon,-h)$ are the points of intersection of the circle $x^{2}+y^{2}=$ $(\delta+\varepsilon)^{2}$ and the vertical line $x=\delta-\varepsilon$. Hence $h=2 \sqrt{\delta \varepsilon}$, and (a) follows. The inequality in (b) is equivalent to the inequality $\delta^{2}+\varepsilon^{2}>6 \delta \varepsilon$, which is clearly verified if $0<\varepsilon<\frac{1}{6} \delta$.

Given nonempty subsets J and K of \mathbf{N}, we write $J<K$ if $j<k$ for every $j \in J$ and $k \in K$.

Let $\left(x_{n}\right)_{n=1}^{\infty}$ and $\left(y_{n}\right)_{n=1}^{\infty}$ be sequences in a Banach space E. We recall that $\left(y_{n}\right)_{n=1}^{\infty}$ is said to be a block sequence of $\left(x_{n}\right)_{n=1}^{\infty}$ if each y_{n} can be written as a linear combination

$$
y_{n}=\sum_{j \in J_{n}} \alpha_{j} x_{j}
$$

where $J_{1}<J_{2}<J_{3}<\ldots$. The block sequence $\left(y_{n}\right)_{n=1}^{\infty}$ is said to be l_{1}-normalized if $\sum_{j \in J_{n}}\left|\alpha_{j}\right|=1$ for every n. We write $\left(y_{n}\right)_{n=1}^{\infty} \prec\left(x_{n}\right)_{n=1}^{\infty}$ if $\left(y_{n}\right)_{n=1}^{\infty}$ is an l_{1}-normalized block sequence of $\left(x_{n}\right)_{n=1}^{\infty}$. The relation \prec is reflexive and transitive.

Let $\left(\phi_{n}\right)_{n=1}^{\infty}$ be a bounded sequence in the dual E^{\prime} of a Banach space E. Following Hagler and Johnson [7] we define

$$
\delta\left(\left(\phi_{n}\right)_{n=1}^{\infty}\right)=\sup _{x \in S_{E}} \limsup _{n \rightarrow \infty}\left|\phi_{n}(x)\right|
$$

Then one can readily verify that

$$
\delta\left(\left(\psi_{n}\right)_{n=1}^{\infty}\right) \leq \delta\left(\left(\phi_{n}\right)_{n=1}^{\infty}\right)
$$

for each sequence $\left(\psi_{n}\right)_{n=1}^{\infty} \prec\left(\phi_{n}\right)_{n=1}^{\infty}$. By using a diagonal procedure, Hagler and Johnson [7] proved the following lemma, which can be found also in [3, p. 220] or [10, Lemma 4.6].

Lemma 4. ([7]) Given a bounded sequence $\left(\phi_{n}\right)_{n=1}^{\infty} \subset E^{\prime}$, there always exists a sequence $\left(\psi_{n}\right)_{n=1}^{\infty} \prec\left(\phi_{n}\right)_{n=1}^{\infty}$ such that

$$
\delta\left(\left(\theta_{n}\right)_{n=1}^{\infty}\right)=\delta\left(\left(\psi_{n}\right)_{n=1}^{\infty}\right)
$$

for each sequence $\left(\theta_{n}\right)_{n=1}^{\infty} \prec\left(\psi_{n}\right)_{n=1}^{\infty}$.
We remark that Hagler and Johnson [7] deal with real Banach spaces, and their definition of the function δ is slightly different from the one presented here. Our definition of the function δ coincides with that in [3] and [10], and the proof of Lemma 4 in [3, p. 220] and [10, Lemma 4.6] is valid for real and complex Banach spaces.

Now we can prove the following theorem, which is due to Hagler and Johnson [7] in the case of real Banach spaces (see also [3, Chapter XII]).

Theorem 5. Let E be a Banach space, whose dual E^{\prime} contains a bounded sequence $\left(\phi_{n}\right)_{n=1}^{\infty}$ such that $\psi_{n} \nrightarrow 0$ for the topology $\sigma\left(E^{\prime}, E\right)$ for each sequence $\left(\psi_{n}\right)_{n=1}^{\infty} \prec\left(\phi_{n}\right)_{n=1}^{\infty}$. Then E contains a subspace isomorphic to l_{1}.

Proof. Without loss of generality we may assume that $\left(\phi_{n}\right)_{n=1}^{\infty} \subset B_{E^{\prime}}$. By Lemma 4 there exists a sequence $\left(\psi_{n}\right)_{n=1}^{\infty} \prec\left(\phi_{n}\right)_{n=1}^{\infty}$ such that

$$
\delta\left(\left(\theta_{n}\right)_{n=1}^{\infty}\right)=\delta\left(\left(\psi_{n}\right)_{n=1}^{\infty}\right)
$$

for each sequence $\left(\theta_{n}\right)_{n=1}^{\infty} \prec\left(\psi_{n}\right)_{n=1}^{\infty}$. It follows from the hypothesis that $\psi_{n}(x) \nrightarrow 0$ for some $x \in S_{E}$, and therefore $\delta\left(\left(\psi_{n}\right)_{n=1}^{\infty}\right)>0$. Let $\delta=\delta\left(\left(\psi_{n}\right)_{n=1}^{\infty}\right)$ and let $0<\varepsilon<\frac{1}{6} \delta$.

Let $0<\varepsilon^{\prime}<\frac{1}{5} \varepsilon$, let $N_{\mathrm{I}}=\mathbf{N}$, and let $A=\left(m_{j}\right)_{j=1}^{\infty}$ and $B=\left(n_{j}\right)_{j=1}^{\infty}$ be infinite subsets of N_{1} such that $m_{j}<n_{j}<m_{j+1}$ for every j. Since $\frac{1}{2}\left(\psi_{m_{j}}-\psi_{n_{j}}\right)_{j=1}^{\infty} \prec\left(\psi_{n}\right)_{n=1}^{\infty}$, it follows that

$$
\delta\left(\frac{1}{2}\left(\psi_{m_{j}}-\psi_{n_{j}}\right)_{j=1}^{\infty}\right)=\delta\left(\left(\psi_{n}\right)_{n=1}^{\infty}\right)=\delta .
$$

Hence, there exists $x_{1} \in S_{E}$ and an infinite subset $J \subset \mathbf{N}$ such that

$$
\left|\frac{1}{2}\left(\psi_{m_{j}}-\psi_{n_{j}}\right)\left(x_{1}\right)\right| \geq \delta-\varepsilon^{\prime} \quad \text { for every } j \in J
$$

Hence the sequence $\left(\frac{1}{2}\left(\psi_{m_{j}}-\psi_{n_{j}}\right)\left(x_{1}\right)\right)_{j=1}^{\infty}$ admits a cluster point $c_{1} \in \mathbf{C}$, with $\left|c_{1}\right| \geq$ $\delta-\varepsilon^{\prime}$. After multiplying x_{1} by a suitable $\gamma \in \mathbf{C}$, with $|\gamma|=1$, we may assume that c_{1} is real, and $c_{1} \geq \delta-\varepsilon^{\prime}$. After passing to a subsequence we may assume that

$$
\frac{1}{2}\left(\psi_{m_{j}}-\psi_{n_{j}}\right)\left(x_{1}\right) \in \Delta\left(c_{1} ; \varepsilon^{\prime}\right)
$$

and therefore

$$
\frac{1}{2} \operatorname{Re}\left(\psi_{m_{j}}-\psi_{n_{j}}\right)\left(x_{1}\right) \geq \delta-2 \varepsilon^{\prime} \quad \text { for every } j \in J
$$

Since $\left(\psi_{m_{j}}\right)_{j=1}^{\infty} \prec\left(\psi_{n}\right)_{n=1}^{\infty}$ and $\left(\psi_{n_{j}}\right)_{j=1}^{\infty} \prec\left(\psi_{n}\right)_{n=1}^{\infty}$, it follows that

$$
\delta\left(\left(\psi_{m_{j}}\right)_{j=1}^{\infty}\right)=\delta\left(\left(\psi_{n_{j}}\right)_{j=1}^{\infty}\right)=\delta\left(\left(\psi_{n}\right)_{n=1}^{\infty}\right)=\delta
$$

and therefore

$$
\limsup _{j \rightarrow \infty}\left|\psi_{m_{j}}\left(x_{1}\right)\right| \leq \delta \quad \text { and } \quad \underset{j \rightarrow \infty}{\limsup }\left|\psi_{n_{j}}\left(x_{1}\right)\right| \leq \delta
$$

Hence there exists $j_{0} \in J$ such that

$$
\left|\psi_{m_{j}}\left(x_{1}\right)\right| \leq \delta+\varepsilon^{\prime} \text { and }\left|\psi_{n_{j}}\left(x_{1}\right)\right| \leq \delta+\varepsilon^{\prime} \quad \text { for every } j \in J, j \geq j_{0}
$$

We claim that

$$
\operatorname{Re} \psi_{m_{j}}\left(x_{1}\right) \geq \delta-5 \varepsilon^{\prime} \text { and } \operatorname{Re} \psi_{n_{j}}\left(x_{1}\right) \leq-\delta+5 \varepsilon^{\prime} \quad \text { for every } j \in J, j \geq j_{0}
$$

Indeed

$$
\begin{aligned}
\operatorname{Re} \psi_{m_{j}}\left(x_{1}\right) & =\operatorname{Re}\left(\psi_{m_{j}}-\psi_{n_{j}}\right)\left(x_{1}\right)+\operatorname{Re} \psi_{n_{j}}\left(x_{1}\right) \\
& \geq \operatorname{Re}\left(\psi_{m_{j}}-\psi_{n_{j}}\right)\left(x_{1}\right)-\left|\psi_{n_{j}}\left(x_{1}\right)\right| \geq 2\left(\delta-2 \varepsilon^{\prime}\right)-\left(\delta+\varepsilon^{\prime}\right)=\delta-5 \varepsilon^{\prime}
\end{aligned}
$$

and the other inequality is proved similarly. Thus we have found two disjoint infinite subsets N_{2} and N_{3} of N_{1} such that

$$
\begin{array}{ll}
\left|\psi_{n}\left(x_{1}\right)\right| \leq \delta+\varepsilon & \text { for every } n \in N_{2} \cup N_{3}, \\
\operatorname{Re} \psi_{n}\left(x_{1}\right) \geq \delta-\varepsilon & \text { for every } n \in N_{2}, \\
\operatorname{Re} \psi_{n}\left(x_{1}\right) \leq-\delta+\varepsilon & \text { for every } n \in N_{3} .
\end{array}
$$

Let $0<\varepsilon^{\prime \prime}<\frac{1}{11} \varepsilon$. Let $P=\left(p_{k}\right)_{k=1}^{\infty}, Q=\left(q_{k}\right)_{k=1}^{\infty}, R=\left(r_{k}\right)_{k=1}^{\infty}$ and $S=\left(s_{k}\right)_{k=1}^{\infty}$ be infinite subsets of \mathbf{N} such that $P \cup Q \subset N_{2}, R \cup S \subset N_{3}$ and $p_{k}<q_{k}<r_{k}<s_{k}<p_{k+1}$ for every k. Since $\frac{1}{4}\left(\psi_{p_{k}}-\psi_{q_{k}}+\psi_{r_{k}}-\psi_{s_{k}}\right)_{k=1}^{\infty} \prec\left(\psi_{n}\right)_{n=1}^{\infty}$, it follows that

$$
\delta\left(\frac{1}{4}\left(\psi_{p_{k}}-\psi_{q_{k}}+\psi_{r_{k}}-\psi_{s_{k}}\right)_{k=1}^{\infty}\right)=\delta\left(\left(\psi_{n}\right)_{n=1}^{\infty}\right)=\delta .
$$

Hence the preceding argument yields a point $x_{2} \in S_{E}$ and an infinite set $K \subset \mathbf{N}$ such that

$$
\frac{1}{4} \operatorname{Re}\left(\psi_{p_{k}}-\psi_{q_{k}}+\psi_{r_{k}}-\psi_{s_{k}}\right)\left(x_{2}\right) \geq \delta-2 \varepsilon^{\prime \prime} \quad \text { for every } k \in K
$$

The preceding argument yields also $k_{0} \in K$ such that

$$
\begin{array}{ll}
\left|\psi_{p_{k}}\left(x_{2}\right)\right| \leq \delta+\varepsilon^{\prime \prime}, & \quad\left|\psi_{q_{k}}\left(x_{2}\right)\right| \leq \delta+\varepsilon^{\prime \prime}, \\
\left|\psi_{r_{k}}\left(x_{2}\right)\right| \leq \delta+\varepsilon^{\prime \prime} & \text { and }
\end{array} \quad\left|\psi_{s_{k}}\left(x_{2}\right)\right| \leq \delta+\varepsilon^{\prime \prime},
$$

for every $k \in K, k \geq k_{0}$. As before we can prove that

$$
\begin{array}{ll}
\operatorname{Re} \psi_{p_{k}}\left(x_{2}\right) \geq \delta-11 \varepsilon^{\prime \prime}, & \operatorname{Re} \psi_{q_{k}}\left(x_{2}\right) \leq-\delta+\varepsilon^{\prime \prime} \\
\operatorname{Re} \psi_{r_{k}}\left(x_{2}\right) \geq \delta-11 \varepsilon^{\prime \prime} & \text { and } \quad \\
\operatorname{Re} \psi_{s_{k}}\left(x_{2}\right) \leq-\delta+11 \varepsilon^{\prime \prime}
\end{array}
$$

for every $k \in K, k \geq k_{0}$. Thus we have found two disjoint infinite subsets N_{4} and N_{5} of N_{2} and two disjoint infinite subsets N_{6} and N_{7} of N_{3} such that

$$
\begin{array}{ll}
\left|\psi_{n}\left(x_{2}\right)\right| \leq \delta+\varepsilon & \text { for every } n \in N_{4} \cup N_{5} \cup N_{6} \cup N_{7}, \\
\operatorname{Re} \psi_{n}\left(x_{2}\right) \geq \delta-\varepsilon & \text { for every } n \in N_{4} \cup N_{6}, \\
\operatorname{Re} \psi_{n}\left(x_{2}\right) \leq-\delta+\varepsilon & \text { for every } n \in N_{5} \cup N_{7} .
\end{array}
$$

Let

$$
C=\{z \in \mathbf{C}:|z| \leq \delta+\varepsilon \text { and } \operatorname{Re} z \geq \delta-\varepsilon\}
$$

and

$$
D=\{w \in \mathbf{C}:|w| \leq \delta+\varepsilon \text { and } \operatorname{Re} w \leq-\delta+\varepsilon\} .
$$

Proceeding by induction we can find a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset S_{E}$, and a tree $\left(N_{j}\right)_{j=1}^{\infty}$ of subsets of \mathbf{N} such that

$$
\psi_{k}\left(x_{n}\right) \in C \quad \text { for } k \in N_{j}, 2^{n} \leq j<2^{n+1}, n \geq 1, j \text { even }
$$

and

$$
\psi_{k}\left(x_{n}\right) \in D \quad \text { for } k \in N_{j}, 2^{n} \leq j<2^{n+1}, n \geq 2, j \text { odd }
$$

Let

$$
A_{n}=\left\{\psi \in B_{E^{\prime}}: \psi\left(x_{n}\right) \in C\right\} \text { and } B_{n}=\left\{\psi \in B_{E^{\prime}}: \psi\left(x_{n}\right) \in D\right\} \quad \text { for every } n \in \mathbf{N}
$$

and let

$$
\Psi_{j}=\left\{\psi_{k}: k \in N_{j}\right\} \quad \text { for every } j \in \mathbf{N}
$$

Then $\left(\Psi_{j}\right)_{j=1}^{\infty}$ is a tree of subsets of $B_{E^{\prime}}$ such that

$$
\Psi_{j} \subset A_{n} \quad \text { for } 2^{n} \leq j<2^{n+1}, n \geq 1, j \text { even }
$$

and

$$
\Psi_{j} \subset B_{n} \quad \text { for } 2^{n} \leq j<2^{n+1}, n \geq 1, j \text { odd }
$$

By Lemma 2 the sequence $\left(A_{n}, B_{n}\right)_{n=1}^{\infty}$ is independent. By Lemma 3 the sets C and D verify the hypothesis of Lemma 1. Thus it follows from Lemma 1 that $\left(x_{n}\right)_{n=1}^{\infty}$ is a basic sequence in E which is equivalent to the canonical Schauder basis of l_{1}.

Theorem 5, together with the Rosenthal-Dor theorem (see [16], [4] or [3, Chapter XI]), yields the following corollary.

Corollary 6. Let E be a Banach space which contains no subspace isomorphic to l_{1}. Then
(a) each infinite dimensional subspace M of E contains a normalized sequence which converges to zero for $\sigma\left(E, E^{\prime}\right)$;
(b) each infinite dimensional subspace N of E^{\prime} contains a normalized sequence which converges to zero for $\sigma\left(E^{\prime}, E\right)$.

Proof. (a) By the Riesz lemma there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset S_{M}$ such that $\left\|x_{n}-x_{m}\right\| \geq \frac{1}{2}$ whenever $n \neq m$. By the Rosenthal-Dor theorem we may assume that $\left(x_{n}\right)_{n=1}^{\infty}$ is $\sigma\left(E, E^{\prime}\right)$-Cauchy. Hence $x_{n+1}-x_{n} \rightarrow 0$ for $\sigma\left(E, E^{\prime}\right)$ and $\left\|x_{n+1}-x_{n}\right\| \geq \frac{1}{2}$ for every n. Thus it suffices to normalize the sequence $\left(x_{n+1}-x_{n}\right)_{n=1}^{\infty}$.
(b) Let N be an infinite dimensional subspace of E^{\prime}, and let $\left(\phi_{n}\right)_{n=1}^{\infty}$ be a sequence in S_{N} such that $\left\|\phi_{n}-\phi_{m}\right\| \geq \frac{1}{2}$ whenever $n \neq m$. By the Rosenthal-Dor theorem we may assume that either $\left(\phi_{n}\right)_{n=1}^{\infty}$ is $\sigma\left(E^{\prime}, E^{\prime \prime}\right)$-Cauchy, or else $\left(\phi_{n}\right)_{n=1}^{\infty}$ is a basic sequence which is equivalent to the canonical Schauder basis of l_{1}.

In the first case $\phi_{n+1}-\phi_{n} \rightarrow 0$ for $\sigma\left(E^{\prime}, E^{\prime \prime}\right)$ and $\left\|\phi_{n+1}-\phi_{n}\right\| \geq \frac{1}{2}$ for every n. Thus it suffices to normalize the sequence $\left(\phi_{n+1}-\phi_{n}\right)_{n=1}^{\infty}$.

In the second case, by Theorem 5 there exists a sequence $\left(\psi_{n}\right)_{n=1}^{\infty} \prec\left(\phi_{n}\right)_{n=1}^{\infty}$ which converges to zero for $\sigma\left(E^{\prime}, E\right)$. Since $\left(\phi_{n}\right)_{n=1}^{\infty}$ is equivalent to the canonical Schauder basis of l_{1}, so is $\left(\psi_{n}\right)_{n=1}^{\infty}$. Hence $\left\|\psi_{n}\right\|>a>0$ for every n, and it suffices to normalize the sequence $\left(\psi_{n}\right)_{n=1}^{\infty}$.

Corollary 7. Let E be a Banach space whose dual E^{\prime} contains no subspace isomorphic to l_{1}. Then
(a) each infinite dimensional subspace M of E contains a normalized sequence which converges to zero for $\sigma\left(E, E^{\prime}\right)$;
(b) each infinite dimensional subspace N of E^{\prime} contains a normalized sequence which converges to zero for $\sigma\left(E^{\prime}, E^{\prime \prime}\right)$.

Proof. By applying Corollary 6(b) to E^{\prime}, we obtain (a). By applying Corollary $6(\mathrm{a})$ to E^{\prime} we obtain (b).

Corollary 6(a) and Corollary 7(b) rely only on the Rosenthal-Dor theorem, and are probably known, but we have included them here for the sake of completeness.

Corollary 6(b) yields a very short proof of the Josefson-Nissenzweig theorem (see [9], [11] or [3, Chapter XII]).

Theorem 8. ([9], [11]) If E is an infinite dimensional Banach space, then E^{\prime} contains a normalized sequence which converges to zero for $\sigma\left(E^{\prime}, E\right)$.

Proof. If E contains no subspace isomorphic to l_{1}, then the conclusion is a direct consequence of Corollary 6(b). If E contains a subspace isomorphic to l_{1}, then
E admits a quotient isomorphic to l_{2}, by a result of Aron, Diestel and Rajappa [1] (when E is separable, this follows also from a result of Pelczyński [13]). Since l_{2} is separable, the desired conclusion follows at once.

We recall that a Banach space E is said to have the Schur property if weakly convergent sequences in E are norm convergent. From Corollary 6(a) and Corollary 7(a) we immediately get the following result.

Corollary 9. Let E be a Banach space which contains a closed, infinite dimensional subspace with the Schur property. Then both E and E^{\prime} contain subspaces isomorphic to l_{1}.

Since l_{1} has the Schur property, we immediately obtain the following corollary.
Corollary 10. If a Banach space E contains a subspace isomorphic to l_{1}, then E^{\prime} also contains a subspace isomorphic to l_{1}.

Pethe and Thakare [14] have shown that if E contains a subspace isomorphic to l_{1}, then E^{\prime} does not have the Schur property (the argument of the proof of Theorem 8 can be used also to prove this). Using this we obtain the following result.

Corollary 11. If E is an infinite dimensional Banach space with the Schur property, then none of the upper duals $E^{(n)}(n \geq 1)$ have the Schur property.

Proof. By Corollaries 9 and $10, E^{(n)}$ has a subspace isomorphic to l_{1} for each $n \geq 0$. By the aforementioned result of Pethe and Thakare, $E^{(n)}$ does not have the Schur property for each $n \geq 1$.

We recall that a Banach space E is said to have the Dunford-Pettis property if given weakly null sequences $\left(x_{n}\right)_{n=1}^{\infty} \subset E$ and $\left(\phi_{n}\right)_{n=1}^{\infty} \subset E^{\prime}$, one has that $\phi_{n}\left(x_{n}\right) \rightarrow 0$. It is known that if E has the Dunford-Pettis property, $\left(x_{n}\right)_{n=1}^{\infty} \subset E$ and $\left(\phi_{n}\right)_{n=1}^{\infty} \subset E^{\prime}$, then $\phi_{n}\left(x_{n}\right) \rightarrow 0$ whenever one of the two sequences is weakly null, and the other is weakly Cauchy.

Theorem 12. The dual E^{\prime} of a Banach space E contains a subspace isomorphic to l_{1} whenever E or E^{\prime} contains a closed, infinite dimensional subspace with the Dunford-Pettis property.

Proof. Suppose E^{\prime} contains no subspace isomorphic to l_{1}, and let M and N be closed, infinite dimensional subspaces of E and E^{\prime}, respectively. We will show that neither M nor N has the Dunford-Pettis property.

By Corollary 7 (a) there exists a sequence $\left(x_{n}\right)_{n=1}^{\infty} \subset S_{M}$ which converges to zero for $\sigma\left(E, E^{\prime}\right)$, and therefore for $\sigma\left(M, M^{\prime}\right)$. Let $\left(\phi_{n}\right)_{n=1}^{\infty} \subset S_{E^{\prime}}$ be such that $\phi_{n}\left(x_{n}\right)=1$ for every n. By the Rosenthal-Dor theorem we may assume that $\left(\phi_{n}\right)_{n=1}^{\infty}$
is $\sigma\left(E^{\prime}, E^{\prime \prime}\right)$-Cauchy, and therefore $\sigma\left(M^{\prime}, M^{\prime \prime}\right)$-Cauchy. Hence M does not have the Dunford-Pettis property.

By Corollary 7 (b) there exists a sequence $\left(\psi_{n}\right)_{n=1}^{\infty} \subset S_{N}$ which converges to zero for $\sigma\left(E^{\prime}, E^{\prime \prime}\right)$, and therefore for $\sigma\left(N, N^{\prime}\right)$. Let $\left(y_{n}\right)_{n=1}^{\infty} \subset S_{E}$ be such that $\psi_{n}\left(y_{n}\right) \geq \frac{1}{2}$ for every n. By Corollary 10, E contains no subspace isomorphic to l_{1}. By the Rosenthal-Dor theorem we may assume that $\left(y_{n}\right)_{n=1}^{\infty}$ is $\sigma\left(E, E^{\prime}\right)$-Cauchy. If $J: E \hookrightarrow E^{\prime \prime}$ denotes the canonical embedding, then $\left(J y_{n}\right)_{n=1}^{\infty}$ is $\sigma\left(E^{\prime \prime}, E^{\prime \prime \prime}\right)$-Cauchy, and therefore $\sigma\left(N^{\prime}, N^{\prime \prime}\right)$-Cauchy. Hence N does not have the Dunford-Pettis property.

Theorem 12 improves a result of Fakhoury [5, Corollary 12], which asserts that if E is an infinite dimensional Banach space with the Dunford-Pettis property, then E^{\prime} contains a subspace isomorphic to l_{1}. A closely related result of Rosenthal [17, Corollary 2] asserts that a Banach space E contains a subspace isomorphic to l_{1} whenever E^{\prime} contains a closed subspace N which has the Dunford-Pettis property, but does not have the Schur property.

To end this paper we show the connection between Theorem 5 and the separable quotient problem. The question of whether every infinite dimensional Banach space has an infinite dimensional quotient with a Schauder basis was raised by Pelczyński [12] in 1964. The question of whether every infinite dimensional Banach space has a separable, infinite dimensional quotient was raised by Rosenthal [15] in 1969. Since Johnson and Rosenthal [8, Theorem IV.1(i)] proved that every separable, infinite dimensional Banach space has an infinite dimensional quotient with a Schauder basis, it follows that Pelczyński's question and Rosenthal's question are equivalent. The following theorem completes results of Johnson and Rosenthal [8] and Hagler and Johnson [7].

Theorem 13. Let E be a Banach space.
(a) If E^{\prime} contains an infinite dimensional subspace with a separable dual, then E has an infinite dimensional quotient with a boundedly complete Schauder basis.
(b) If E^{\prime} contains a subspace isomorphic to l_{1}, then E has a quotient isomorphic to c_{0} or l_{2}. In particular, E has an infinite dimensional quotient with a shrinking Schauder basis.

Proof. (a) is due to Johnson and Rosenthal [8, Theorem IV.1(iii)].
(b) We distinguish two cases.
(i) Suppose that E^{\prime} contains a basic sequence $\left(\phi_{n}\right)_{n=1}^{\infty}$, which is equivalent to the canonical Schauder basis of l_{1}, and which converges to zero for $\sigma\left(E^{\prime}, E\right)$. Then E has a quotient isomorphic to c_{0}, by a result of Johnson and Rosenthal [8, Remark III.1].
(ii) Suppose that E^{\prime} contains a subspace isomorphic to l_{1}, but $\psi_{n} \nrightarrow 0$ for $\sigma\left(E^{\prime}, E\right)$ for each sequence $\left(\psi_{n}\right)_{n=1}^{\infty}$ which is equivalent to the canonical Schauder basis of l_{1}. Hence there is a basic sequence $\left(\phi_{n}\right)_{n=1}^{\infty}$ in E^{\prime} which is equivalent to the canonical Schauder basis of l_{1}, but $\psi_{n} \nrightarrow 0$ for $\sigma\left(E^{\prime}, E\right)$ for each sequence $\left(\psi_{n}\right)_{n=1}^{\infty} \prec\left(\phi_{n}\right)_{n=1}^{\infty}$. Then E has a subspace isomorphic to l_{1}, by Theorem 5. Thus E has a quotient isomorphic to l_{2}, by the aforementioned result of Aron, Diestel and Rajappa [1].

Case (ii) is due to Hagler and Johnson [7] in the case of real Banach spaces.
Not every Banach space verifies the hypotheses in Theorem 13. Indeed Gowers [6] has constructed an infinite dimensional Banach space E whose dual contains no infinite dimensional subspace with a separable dual, and no subspace isomorphic to l_{1}. In particular, E^{\prime} contains no infinite dimensional subspace which is either reflexive or isomorphic to c_{0} or l_{1}. This answered negatively a question raised by Rosenthal [17].

From Theorem 12 and Theorem 13(b) we immediately obtain the following corollary.

Corollary 14. If E or E^{\prime} contains a closed, infinite dimensional subspace with the Dunford-Pettis property, then E has a quotient isomorphic to c_{0} or l_{2}. In particular, E has an infinite dimensional quotient with a shrinking Schauder basis.

References

1. Aron, R., Diestel, J. and Rajappa, A., Weakly continuous functions on Banach spaces containing l_{1}, in Banach Spaces (Columbia, Mo., 1984) (Kalton, N. and Saab, E., eds.), Lecture Notes in Math. 1166, pp. 1-3, Springer-Verlag, Berlin-Heidelberg, 1985.
2. Diestel, J., A survey of results related to the Dunford-Pettis property, in Integration, Topology and Geometry in Linear Spaces (Chapel Hill, N. C., 1979) (Graves, W., ed.), Contemporary Math. 2, pp. 15-60, Amer. Math. Soc., Providence, R. I., 1980.
3. Diestel, J., Sequences and Series in Banach Spaces, Springer-Verlag, New York, 1984.
4. Dor, L., On sequences spanning a complex l_{1} space, Proc. Amer. Math. Soc. 47 (1975), 461-465.
5. Fakhoury, H., Sur les espaces de Banach ne contenant pas l^{1} (N), Math. Scand. 41 (1977), 277-289.
6. Gowers, W., A Banach space not containing c_{0}, l_{1} or a reflexive subspace, Trans. Amer. Math. Soc. 344 (1994), 407-420.
7. Hagler, J. and Johnson, W., On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math. 28 (1977), 325-330.
8. Johnson, W. and Rosenthal, H., On w^{*}-basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77-92.
9. Josefson, B., Weak sequential convergence in the dual of a Banach space does not imply norm convergence, Ark. Mat. 13 (1975), 79-89.
10. Mujica, J., Separable quotients of Banach spaces, Rev. Mat. Univ. Complut. Madrid 10 (1997), 299-330.
11. Nissenzweig, A., w* sequential convergence, Israel J. Math. 22 (1975), 266-272.
12. Pelczyński, A., Some problems on bases in Banach and Fréchet spaces, Israel J. Math. 2 (1964), 132-138.
13. Pelczyński, A., On Banach spaces containing $L_{1}(\mu)$, Studia Math. 30 (1968), 231246.
14. Pethe, P. and Thakare, N., Note on Dunford-Pettis property and Schur property, Indiana Univ. Math. J. 27 (1978), 91-92.
15. Rosenthal, H., On quasi-complemented subspaces of Banach spaces, with an appendix on compactness of operators from $L^{p}(\mu)$ to $L^{r}(\nu)$, J. Funct. Anal. 4 (1969), 176-214.
16. Rosenthal, H., A characterization of Banach spaces containing l_{1}, Proc. Nat. Acad. Sci. U.S.A. 71 (1974), 2411-2413.
17. Rosenthal, H., Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Amer. Math. Soc. 84 (1978), 803-831.

Received June 18, 2002

Jorge Mujica
Universidade Estadual de Campinas
Instituto de Matemática, Estatística
e Computação Científica
Caixa Postal 6065
13083-970 Campinas, SP
Brazil
email: mujica@ime.unicamp.br

