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Pluricomplex Green and Lempert 
functions for equally weighted poles 

Pascal J. Thomas and Nguyen Van Trao 

1. I n t r o d u c t i o n  

The pluricomplex Green function is an important tool of several variable com- 
plex analysis; in particular it provides a fundamental solution for the complex 
Monge Ampere equation and information about the complex geometry of domains 
[8] (see [5] for an exposition of pluricomplex potential theory). For n_>2, the com- 
plex Monge Ampere equation is non-linear, so studying the several-pole analogue 
of the Green function (introduced in [6]) is ilo easy task, see [2], and [1] for some of 
the few cases where it can be explicitly computed. 

Let ft be a domain in C ~, and poles and weights be denoted by 

S ---- { ( a l , / / 1 ) ,  . . . ,  (aN,//N)} C ~'~ X R + ,  

where R+ = [0, +co). The pluricomplex Green function is defined by 

as(~)  := sup{~(~) : ~ < eSH_ (a) and 

u(x) ~//j log Ilx-aoll~-Cj, when x + a j ,  j = l , . . .  ,N}. 

Note that  if N = I  we might as well take//1=1,  in this case Gs is the pluricomplex 
Green function with one pole. 

We also recall the definition of Coman's Lempert function [2] 

N 

ls(z) : = i n f { ~ / / j  log I~jl:%~ = z ,  99(~j) = a j ,  j = 1 , . . . ,N,  
- j - - 1  

for some ~ C O(D, t2) }, 

where D is the unit disc in C. 
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It  is easy to see that  

Zs(z) >_ as(z) for  al l  z c ~ .  

A remarkable theorem of Lempert  [8] says that  equality holds in the case where 
is convex and N = I .  Later Cornan [2] proved with considerable effort that  this 

assertion also holds when t~ is the unit ball, N = 2 ,  and the weights are equal. At 
the same t ime he conjectured that  the equality might hold fbr any number of points 
and any convex domain in C"". Recently, Carlehed and Wiegerinck [1] proved that  

Coman's  conjecture fails for the bidisc, with two poles lying on a coordinate axis and 
distinct weights. The main goal of this paper  is to prove that  Coman's  conjecture 

does not even hold in the case when all weights are equal. 

Weights on the Green function are analogous to multiplicities for zeros. Since 
the work of Carlehed and Wiegerinck [1] uses weights greater than  1, we focus on the 
behavior of Coman 's  Lempert  function with many  poles when some group of poles 
tend to the same pole�9 Eventually, a counterexample is obtained in Section 5 of this 
paper  with the domain equal to the bidisc, and four poles at (a, 0), (b, 0), (b, s), (a, e), 
with e small enough (Theorem 5.1)�9 As in [1], one can deduce from this that  the 
Coman conjecture fails for strictly convex smoothly bounded domains which are 
close enough to the bidisc. 

Along the way', we need to introduce more general notions of Lempert  functions, 
coming from generalizations of the Green function. The reason is as follows: when 
we consider the pluricomplex Green function as a fundamental  solution for the 

complex Monge-Amp~re operator in several variables, the quanti ty which we expect 
to see being preserved under convergence of poles to a single point is the total  

�9 . X 7~  

Monge-Amp&e mass of the function, which is equal to Ej=I//)  for a Green function 
with weights uj. Thus, when a group of N simple poles, with N r  ~ for any 
integer a, clusters to a single point, we cannot hope to have a usual weighted Green 
function arise as limit value for the sequence of Green functions for the separate 
poles. Simple examples yield explicit non-isotropic functions, i.e. not equivalent to 
constant multiples of the logarithm of a norm (see Lemma 2.6). From this point of 
view, weighted Green functions (with integer weights) are a special case among the 
possible limit values of unweighted Green functions. 

Lelong and Rashkovskii [7] introduced a generalized pluricomplex Green func- 
tion with several poles (see the definition in Section 2), which allows for non-isotropic 

singularities. We then study the problem of producing an analogous generalization 
of the case uj = 1 for Coman's  Lempert  function (which may differ from Coman's  
definition for the case ~j EZ+, uj >1).  A motivation is that  we know that  Coman's  
Lempert  function is continuous with respect to z and to its poles when they stay 
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away from each other (see [10] for the case of the ball), and we would like to extend 
such results to singular situations arising from "collisions" of poles. 

Unfortunately, this was not fully successful, since our best candidate (see Def- 
inition 3.6) is not in general the limit of the Lempert  functions for the natural  
systems of points which tend to the given "multiple poles" (see [11, Theorem 6.3]). 
However, we gather enough information to prove that  in the four-point cases men- 
tioned above, equality does not hold between the Lempert  and Green functions. 

Along the way to our counterexample, we give partial answers. There is equality 
between Lelong and Rashkovskii 's Green function and our first generalization of 
Cornan's-Lempert  function in the case of one pole, in the polydisc, with a simple 
enough singularity (Lemma 2.6; some hypothesis about  integer multiplicities is of 
course necessary). We also prove equality between Lempert  and Green functions 
in the case of" the bidisc in C 2, when all poles are on the first coordinate disc and 
all multiplicities equal to one; also, our first generalization of the Lempert  function 
provides a natural  limit when poles collide along the first coordinate disc, producing 
"horizontal" non-isotropic singularities, and this is still equal to the appropriate  
generalized Green function (this is made precise in Theorem 4.1). 

The organization of the present paper  is as follows: in Section 2, we give nota- 
tion and definitions, introduce our generalization of the Lemper t  function and give 
Lemma 2.6 as a first motivation of this particular definition. In Section 3, we gen- 
eralize some of the results of [14] to this new Lernpert function; the proof~ we give 

are restricted to the particular cases which do occur in the examples below. Sec- 
tion 4 includes Theorem 4.1 and provides a few negative examples in the bidisc, the 
latter motivating Definition 3.6, which amends our first generalization of Coman's  
Lempert  function. Finally, the counterexarnple is proven in Section 5. 

A longer version of this paper, with the proof~ of some additional facts about  
our generalization of the Lempert  function, is available as a preprint [11] and forms 
part  of the second author 's  Ph.D. dissertation (Ha Noi, Viet Nam, November 2002). 
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2. D e f i n i t i o n s  

Definition 2.1 ([7]). We will say that  ~ E P S H  (D ~) is an indicator (centered 
at 0) if and only if 

~ ( Z I , . . .  , Z,,~) = g(1og IZl I, " " ,  l og  Iznl) ,  

where g is a convex continuous non-positive valued function defined on (R_) ~, in- 
creasing with respect to each single variable, and positively homogeneous of degree 1: 
g(Axl, ..., Ax~)=)~g(xl, ..., oc**) for any a>0 .  

This can be introduced in a less ad hoc way, see [71. 
By [7], if tp is an indicator, it is a multiple of a fundamental solution to the 

complex Monge Ampere equation, that  is, there exists r_>0 such that  

(ddr �9 -a))  '~ = rS(a),  

where 6(a) stands for the unit mass at the poim a E C  r'. 
Let us fix the system S :=  { (a s , 9 j )  : 1 _< j _< N }, where aj E f~ and xp j is an indi- 

cator, I <j<_N. 

Definition 2.2. The generalized Green function [7] is given by 

Gs(z) := sup{u (z ) :uEPSH_( t~ ) ,  u(x) < ~ j ( x - a j ) + C  j, l <_j <_N}, 

where the inequalities are required only for x belonging to a neighborhood of each aj. 

Remark 2.3. If f~ is a hyperconvex domain in C ' ,  then Lelong Rashkovskii [7] 
also showed that  the Green function is the unique solution of the following Dirichlet 
problem (for short we write G instead of Gs):  

(a) GCPSH (a)NC(f~); 
(b) O(z)->O, as z-->Ofh 

Z 'r~ (c) gc j (z )= l imn_+~R-1G[as+(exp(uk+i0~+Rlog}  kl))k 1], I<_j<_N, where 
the limit exists almost everywhere for X=(Uk+iOla))=l and does not depend on x; 

(d) (ddCG)~=Ey_ ~ wfi(a3). 

We now introduce a new generalization of the Lempert function. 

Definition 2.4. Let 

N 

fs(z) : :  inf{~-~ wj log 1<51: ~(0) : ~, % (~(r  < ~J log I< <jl+QJ for r C gj, 
" j - - 1  

for some neighborhood Uj of .(3., 1 _< j <_ N, and some ~ C O(D, a )  }. 
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Note that  for the non-trivial case where 7 j#0 ,  the conditions imposed on the 
map ~ force ~ ( ( j ) = a j .  In the basic case where g~j(z)=log Izl for each j ,  we will 
have Tj=I for each j ,  and we simply find the usual Lempert function ls with simple 
poles ( ~ j = l  for each j ) ,  since analytic maps are locally Lipschitz. But for N > I ,  
~2j (z) =p j  log Izl with some ~ j > l  (and Tj = ~ ) ,  this is not a priori the same as the ls 
given in the introduction (although we do not know of any example to exhibit this 
phenomenon, and do not know of any general inequality between the two functions). 

L e m m a  2.5. We have Gs(z)<_Ls(z) for any zE~.  

Pro@ If ~: D-+f~ is an analytic disc in f~, with p (0 )=z ,  ~ ( ( j ) = a j ,  I<_j<_N, 
and ~j  o~(() <Tj log I ( - ( j l + C j ,  1 <_j <_N, then Us o~ is a subharmonic function on 
D, Gso~ is negative and 

a s o ~ ( < ) _ < C j + ~ j o ~ ( r 1 6 2  I_<N<N.  

Thus Gso~ is a member in the defining family for the Green function on D with 
poles (j and weights ~-j, and hence 

N 
_< log ICj-(I 

It implies that 
N 

Gs (z) = Gso %o(0) < ~ Tj log I~Yl- 
j - 1  

Thus Gs(z)<Ls(z)  for all z ~ .  [] 

Recall (see e.g. [4], [9]) that  the involutive M6bius map of D which interchanges 
~ D  and 0 is given by the fbrmula 

4 - (  
(2.1) - 

Therefore it is no loss of generality, in the case of a single pole a, to reduce ourselves 
to a--O. 

L e m m a  2.6. Let ~ be the polydisc D '~ in C ' .  [f S has only one pole at (0, 0), 
and the indicator tp is of the simple hind 

= m a x  l o g  1 sb, 
l<_j<n 

where the numbers cj are positive integers, then Ls(z)=Gs(z)=g~(z) for any zcD'% 
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Proof. By verifying the Dirichlet problem given by Lelong and Rashkovskii [7], 
we have 

c s , (~ )  : m a x  c j log 1~51. 
l<j<n 

We may assume that  max~_<j4~ cj log Iz~l=cjo log IZjo I for some l~<j0 _<n. With this 
assumption we have Gs(z)=Cjo log IZjol. To prove the lemma, it suffices to show 
that there exists a mapping ~E(9(D, D ~) and (0ED such that  

(1) ~(0)=z;  

(2) ~((o)=0; 
(3) ~o~(0 <~log I(-(ol+C for all ( ~ D ,  where rn:=I~}~ s cj is the total mass 

of (dd~)"~; 

(4) m~og [(ol=eUo log I~jo I. 
The condition (3) can be rewritten as 

(3') ~u.j-(a')((o)=0, l < k < m 0 - 1  , l<j<n,_  _ where m j : = m / e  0. 
We fulfill condition (4) by picking (o E D such that  

I ( 0 U  ~~ 1~5ol 

and put 

~a(O:=r162 (cD, 1<j<n, 

where hj:D-+D is such that hj(@)=zj/~o nJ, l<j~_n. 
Then the function g)=(F1, ..., g),~) and @ satisiy all the properties (1), (2), (3') 

and (4). [] 

3. E x i s t e n c e  o f  e x t r e m a l  discs  

We now extend to this new Lempert function some known properties of its 
usual counterpart. The following generalizes [14, Theorem 2.4, p. 10541, or in the 
case of the unit ball [10, Proposition 3, p. 338] (see also [13, Papers V arid VI]). 

P r o p o s i t i o n  3.1. Let ft be a convex" domain, S:={(aj,qj):I<_j<_N} and 
S ' : = { ( a j , f f Q ) : I < j < N - 1 } ,  where ajCt~ and ffJj are indicators centered at aj. 
Then 

L s ( z ) < L s , ( z )  for allzEt~. 

The proof of this proposition can be found in [11, Section 4]. Since the full 
proof is elementary and rather tedious, the one given below restricts itself to the 
special case where n = 2  and the indicators m'e of the type used in Lemma 2.6, with 
1<c j<2 .  
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Pro@ This proof adapts the ideas of [14], [10, Proposition 3], and [12, Theo- 
rem 2.7]. 

Given any ~>0, there exists a holomorphic map ~ from the disc to f~ and points 
4~ I<_j<_N-1, such that  qo(0)=z, 

N-1 

L~,(~) < Z ~ log Ir176 _< L~,(4+a 
j 1 

and ~jogz(4)<_rj loglC-~~ 1 5 j s x - 1 .  Let r < l ,  to be specified later. We 
set ~ ( s  If r > m a x  Ir176 I<j<_N-1, we have 4~ and 

qOr(~) =aj, I _ < j < N - 1 ,  

and more generally 

(3.1) ~ j ~  r j log r @ - ~ )  +Cj  r j log 49 <_ <_ @ ;3) +Cj, I<_j<_N-1. 

We will introduce a correcting term to ensure that the same property holds for 
j=N, without destroying it for j<_N-1. 

Let K denote the convex hull of ~"(D)U{aN}. Since ~ ' (D)U{(a ,0)}GfL we 
can find an e > 0 such that  the distance between K and 0f* is at least eM~, where 
M1 :=sup~ laN-~l. 

L e m m a  8.2. Given any m~N*,  there exists h, a holomorphic function on D, 
and some 4" E D satisfying 

(1) h(D)cU~::Uxe[0,1] D(z,e);  
(2) h(0)=0; 
(3) h(4~176 I<_j<N 1; 
(4) h(4")=1 and h'(4*)=0. 

Accepting this lemma temporarily, define 

~(4) = v~(0  +h(4)(~N-V~(r 

The definition of e and the first condition above show that  ~ ( D ) c f L  Clearly, 
~(0) :~ .  

We have h(i)=O((C-4~ 2) for I_<j_<N-1, so that  the conditions (3.1), 
which reduce under our restrictive hypotheses to the vanishing of the derivatives of 
certain coordinate functions of ~ ,  still hold for ~. 
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Finally, one also checks that  

~(() : aN + (h(()- l)(aN -p<(()) : aN +0(((- (*)2), 

which will imply 9N ~ ~(()_< TN log I(-- (* l+  CN. For the mapping ~, the logarithmic 
sum of the preimages yields 

N-1 log ~ N-1 1 
E +l~  1r -< ~ l~ I r 1 7 6  l ~  <_Ls,(z)+6+(N-1)log 1 
j 1 j=l 

Since this construction can be carried out for any r arbitrarily close to 1, we have 

Cs(~)<_fs,(z). [] 

Proof of Lemma 3.2. Let 0 be a Riemann map from D to U~ so that  g(0)=0. 
We look for h under the form h=Oohl, where hi is a hotomorphic map from D to 
itself such that  

(1) < ( 0 ) = 0 ;  
(2) hl((~162176 I < j _ < N - 1 ;  
(3) there exists ( * ~ D  such that  h l ( ( * ) = g - l ( 1 )  and hi(r  
Let B0 be the finite Blaschke product with a single zero at the origin and 

double zeroes at the points (~ I < j _ < N - 1 ,  and look for hi under the form 
hi=Bog, where g is holomorphie and bounded by 1 in modulus on the unit disc. 
For ease of notation, write ~/:=@-I(1)ED. 

The function hi will fulfill the above conditions if and only if 

g ( C ) -  B0(<*) and 
B~(r B;(<*) 

V'(r :-g((*)B0(r -~Bg(r 

By the Schwarz Pick 1emma, such a function can be found if and only if 19'(r 
(1-b(C)I2)/(1-ICI2), i.e. 

1B;((*)I 
(1-K*[ ~) fBo~(r -< 

1-tvI~IB0(C)p 2 

Since 171 is fixed, lira C_+ I IB0 (r = 1 and limr IB~ (r  IB~ (1)[ < oc, this is achieved 
for (* close enough to 1. [] 

We will use the shorthand S 'C  S to mean that  the sets of poles are included as 
noted, and that  the indicators remain the same for all points of the smaller set, as 
in Proposition 3.1. 
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P r o p o s i t i o n  3.3. Let ~t be a bounded taut domain and let S={ (a j ,  luwj): 
I < j < N } ,  N >  2. I f  L s ( z )  is not attained by any analytic disc, then 

L~(~) > n~in L~,(~) 
S'~S 

In particular, if g~ is convex and bounded, the conclusion becomes 

Ls  (z) = rain Ls, (z). 
S'~S 

Pro@ The proof of this proposition is adapted from that  of [14, Theorem 2.2, 
p. 1053]. 

Take a sequence of" analytic discs 7) k, where 

~k(0)=z and q, jo~k(r162162 for all r  k > l ,  I < j < N ,  

such that  E.N_I wj log Ir converges to Ls(z ) ,  as k tends to 0. 

By passing to a subsequence, using that  f~ is taut,  we may assume that  pk 
converges locally uniformly to some 7)CO(D, f~). Also (if necessary, by passing to 
a subsequence again), we may assume that  C ~ r  ED for each I<j<_N,  as k ~ o c .  

We need to see that  for each r  

(3.2) ~jo~(<) _< ~-j log Ir  for r in a neighborhood of %. 

Recall (from [7]) that  �9 being an indicator (centered at 0) means that  

�9 (z~, . . . ,  z,~) = g(log I~1, ... , log  I~, I), 

where g is a convex continuous non-positive function defined on (R_) ~, increas- 
ing with respect to each single variable, and positively homogeneous of degree 1: 

9(~Xl, ..., Axn)=Ag(xl ,  ..., x.~) for any A>0. 
We study the situation for a fixed pole aj. We must have for each k>_0, 

(r 4-h))z=l = (~k,zh "k'z §  

From the above expression, 

log I_~,,zl2_O(h)~ log Ihl 
%(~k(C~+h)) =g  -ink,z+ I log Ihll J ' 

so the conditions on ~k imply that  

(3.3) g ( - m  k) _< Tj, where m k := (ink,i, . . . ,  rnk,7~). 
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Passing to a subsequence if needed, we may assume that m k--+m=: (ml , . . . ,  rn,~) E 
(NU{oo}) '~. The uniform convergence of the sequence ~k on compacts implies the 

same convergence of all derivatives, and that  in the limit ~I q) (Q )=0  for q_<mz-1. 
This, together with (a.3), proves (3.2). 

If no Q EOD, then ~o is an analytic disc attaining the infimum in the definition 
of Ls(z) .  This is excluded by our hypothesis. Otherwise, assume after renumbering 
the coordinates that  Q E D ,  I<_j<M, and Q~OD for M+I<_j<_N. (Note that  
not every Q can be in 0D, as this would imply that  Ls(z)=O.) Then ~ is a 
member in the defining family for Ls,, where S':={(aj, ePO):I<_j<M }, and thus 

[] 

C o r o l l a r y  3.4. Let f~ be a bounded taut domain in C", and let S be as above. 
Then for evew zEf~ there exists art analytic disc ~, such that ~(0)=z ,  it passes 
through a (non-empty) SoCS such that p attains the infimum in the definition of 
Ls.0(z), and Ls0(z )=min0r  Ls,(z) .  

Proof. If S is a singleton, a normal family argument close to the one used in 
the previous proof will show that  the corollary is true for this case. 

Otherwise, by the previous proposition, either there is an analytic disc at- 
taining the infimum, or min0r c s  Ls,(z)=Lso (z) for some proper subset So C S, 
and Leo(Z) is attained by an analytic disc passing though z and the points in So 
(otherwise one could pass to a still smaller subset). [] 

As the consequence of Corollary 3.4 and Proposition 3.1 we have the following 
theorem. 

T h e o r e m  3.5. Let ft be a bounded convex domain, then the infimum in the 
definition of the function Ls  is attained by an extremal disc that passes through a 
(non-empty) subset S ' C S  (possibly the whole system S). 

However, it would be natural to consider as well the more general case of the 
relationship between the Lempert  functions of two systems S :=  { (a j, g~3) : 1 < j <_ N} 
and S ' :=  { (aj, q/j): 1 <j_< N}, where ~y < vp} %r 1 < j  _< N (S' C S corresponds to the 
case where the ~} have rj =0 for ay outside the pole set of S'). Unfortunately, our 
generalized Lempert  function is not in general monotone when we compare two such 
generalized pole sets, see a connterexample below (Proposition 4.3). We therefore 
introduce a corrected Lempert function ],. 

Definition 3.6. Let S :={(a j ,  ~I'j):I<j_<N} and let S l :={ (a j ,  ol) : I_<j_<N},  
w h e r e  aj C~ and u)j and ~} are indicators. We define 

1)~Ij-LCj, I < j < N } .  Ls(z)  := inf{Ls~ (z): q~j _ _ _ 
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L e m m a  3.7. It is true that Gs(z)<_Ls(z)<_Ls(z). 

Proof. The fact that  [,s(z)<_Ls(z) follows from the definition. For any $1 
as in the definition, Ls~(z)>_Gs~(z)>_Gs(z), as follows from Lemma 2.5 and the 
definition of the pluricomplex Green function. [] 

In the situation related to the example in Proposition 4.3, where two fixed 
poles al and a2 lie on a coordinate axis, a3 lies on a line orthogonal to this axis at 
al,  and a3 tends to al,  then the limit of the ordinary Lempert  functions is given by 
an Ls, and not by the corresponding Ls. (The limit of the corresponding Green 
functions is not known in this case.) A precise statement and a proof can be found 
in [11, Theorem 5.5]. However, there are other examples where also L fails to be 
the limit of the Lempert  functions for single poles [11, Theorem 6.3]. 

4. E x a m p l e s  in t h e  bidisc  

First, we would like to give one case where the Green function with several 
poles and indicator singularities is equal to its generalized Lempert counterpart.  
This is analogous in spirit to the result of Carlehed and Wiegerinck about the 
Green function with several poles in the bidisc [1] (but easier). 

T h e o r e m  4.1. Let ~ .~ (z )=max{mlog  Izll,log Iz21} for any ,kEN*.  Let fur- 
ther al,a2, ... , aNED and 

S:= { ((al, 0), ~,,~ ), ..., ((aN, 0), ~,~N ) }. 
Then for any z E D  2, 

N ( 

Ls(z)  = G s ( z ) =  max~ E mj log 16~j (zl)I, log Iz21 ~. 
/ ) ~ j - -1  

As a consequence, if a(k)ED, I < j < N ,  l < i < m j ,  are distinct points which 
satisJy 

lira a(k) = ay 1 < i < my, 
k~oe  3~t 

and S (~) the pole system made up of all the (~) , (aj, i , O) with equal weight 1, then 

lim L s ( k ) ( z ) = L s ( z  ) and lira Gs(k ) ( z )=Gs(z  ) for any z C D  2. 
k --+ o o  k --+ o o  

Proof. First of all, the Green function has the formula given above. To prove 
this assertion it suffices to show that  the function defined by the right-hand side 
satisfies the Dirichlet problem in Remark 2.3. Indeed the conditions (a), (b) and 
(c) are trivially fulfilled. The last condition follows from the following theorem of 
Zeriahi [15], [161. 
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T h e o r e m  4.2. For i=1 ,2 ,  let fti be an open set  in C '~, and ui be a lo- 

cally bounded plurisubharmonic func t ion  in f~i such that (dd%~) ~ = 0  in fti .  Let 

v ( z l ,  z2) =max{u1 (Z 1), U 2 (Z2)}, 7t~--l?~ 1 q -n  2 . T h e n  (ddCv)  n = 0  i n  ~'~1 x ~ 2 .  

By our definition, 

N 

L,~(z) = i n f I E m  j log 14jl: ~ ( 0 ) = z ,  ~ ( 4 ~ ) = a u  and ~(2k)(Q) =0 ,  
~ j = l  

0 < k < m j - 1 ,  I<_ j<_N,  for s o m e p E O ( D ,  D2)} .  

I f  Z1 C { a l ,  ... , a n }, say  z 1 = a l ,  t h e n  p ick ing  ~ 1  __z2 a n d  (~(~) - - - -  ( a l ,  ~ml) ,  we 

see by Proposition 3.1 that 

log IZ2I =7/Z 1 log 1411-> L((~l,0),~,m~) (z) -> L s ( z )  >_ G s ( z )  =log  1~21, 

so there is equality throughout. 
If z l ~ { a l , . . . , a , n } ,  we may reduce ourselves to z = ( 0 , 7  ) and lall_>la21>...> 

laNl>0. Then 
Tr t  2 77~ N G s ( z )  = max{log [aT 1 a 2 ... a N I, log 13'1}. 

We will use induction on N. When N = I  the equality follows from Lemma 2.6. 
Suppose that  N > 1 and the theorem is proved for N - 1 .  We consider three cases. 

Case 1. 17t-<1a1"~1 a2m2 ... aNmN I" 

Then G s ( z ) = l o g  [a~ la~  ~ ~r~N "'" a N  I" The map 

a I a2 ... a N .= 

satisfies all the requirements with Q =a j .  This implies that G(z)=L(z) .  

77Z N 
Case 2. ]'y]_> la~ '~ ... a N I. 
Then G(z)=log 17I. Moreover, G(z)  is also equal to tlle Green function Gl(z) 

for the system 

Sx := {((a2,0), g~-~2), ..., ((aN, 0), q2,~ N )} 

with N - 1  poles. By induction G1----L1, where L1 is the generalized Lempert func- 
tion with respect to $1. On the other hand, we always have Ls(z )<_Ll (Z)  by 
Proposition 3.1. Hence G s ( z ) = L s ( z ) .  
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Case 3. [a~nla2 ...a N ""aN I" 
We now show that  Gs (z )= log  171 is also equal to the new Lempert  function, 

and the infimum in the definition of the new Lempert  function is attained by an 
extremal disc ~ passing through all poles (al, 0), (a2,0), ..., (aN, O) and z. 

AJ  N Set : = ~ j = l  my and define rE(O, 1) by 

We have 

ta ..a N { 

lajlM<lajl "~1 _~lall  rnl < I  'M for any I<_j<_N, 

by the hypothesis on % So aj /r~D.  We introduce the map p : D - + D  2 given by 

where Q = a S r ,  I<<_j<_N, and 0 is chosen such that 

It is easy to verify that  p satisfies the conditions in the definition of Ls  and that 
/7~ 1 'rrt, 2 Ir 42 ... G?NI=I~I .  Hence, ~ is an extremal disc for the new Lempert function, 

and Gs(z)=Ls(z)  in this case. [] 

We will now give some negative results, mainly that  the generalized Green 
function can be different from the generalized Lempert  function as given in Defini- 
tion 2.4. 

We shall need some notation, to be used in this section and the next one. 
For z E D  2, we will use the following indicators: 

~o(z) := max{log Iz~ I, log Iz~l}, 

(4.1) ~H(z) := max{2 log Izll, log Izsl}, 

v (z):= max{log I~ I, 2 log I z~ I}. 

Here H stands for "horizontal" and V for "vertical", for the obvious reasons: for 
aED 2, q~j(g)(s log I( ' - r  translates to (w0=l, ~-H=rv =2): 

~(r = a ,  

~(r = a and 99;(@) = 0, 

9~(~0) a and ' = ~1(r  = 0 ,  

when j = 0, 

when j = H, 

when j = 1/-. 
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For a, bED, let 

Sao := {((~, 0), % ) }  = {(~, 0)}, 

Soob0 := {((a, 0), %) ,  ((b, 0), %)}  = {(~, 0), (V, 0)}, 
S ~  := {((~, 0), ~ ) ) ,  

SbV := {((~, 0), ~ ) } ,  

SaObV : z  {((a, 0), ~0) ,  ((b, 0), tI/v) }, 

s ~ b ~  := {((~, 0), ~ ) ,  ((b, 0), ~ ) } .  

We will denote the pertinent Green and Lempert functions with the corresponding 
subscripts; G~ObV, L~obv, [5~ObV, etc. A special case of Theorem 4.1 is for instance 
that LaHbO=G~HbO for any a and b in the disc. 

We start by giving an example of a situation where Ls(z)<Ls(z),  with S-- 

SaObV. 
P r o p o s i t i o n  4.3. For zl E D, L~obv (zl, 0) > L~ovo (Zl, 0), and therefore 

LaOOV(Z1, O) > LaObV(Z1, O) ~ OaObV(Z1, 0). 

Pro@ From tile above LaobO(Zl,O)=GaobO(Zl,0)=log [Oo~(zl)l+log I~b(~)l, 
where ~b~ and Ob are as in (2.1). We have 

LaObV (Zl, 0) = inf{log 1r @2 log IC~l: ~(0) = (Zl, 0), ~(r = (a, 0), (r162 = (b, 0) 

and :~(r  0 for some : �9 O(D, D2)}, 

L~o (Zl, 0) = ilff{log Ir I: ~(0) = (zl, 0) 

and ~(r = (a, 0) for some ~ �9 O(D, D2)}, 

Lbv (zl, 0) = inf{2 log ]r %o(0) = (z1,0), ~(r = (b, 0) 

and ~I(~2)=0 for some ~ r  O(D, D2)}. 

So L~obv (Zl, 0)_> L~o(Zl, 0)+Lbv (zl, 0), since each of the infima on the right-hand 
side is taken over a family of maps p which is wider than the one used in the 
definition of L~ovv. 

By Lemma 2.6, Lao(zl, 0)=log I~b~(Zl)l and Lbv(Zl, 0)=log 1r 
Now suppose that  L~obv(z~, O)<_L~obO(Z~, 0). This means that  

LaObV(Zl, O) < GaObO(Zl, O) = Lao(Zl, O)+ Lbv(Zt, 0), 

so there is equality throughout. Since LaobV(Zl,0)<min{Lao(Zl,0),Lbv(Zl,O)}, 
Proposition 3.3 shows that  the infimum in the definition of LaObV is attained by 
a map ~. It follows from the Schwarz lemma applied to a and Zl that its first 
coordinate ~o 1 is a M6bius map of the disc. But we also had to have ~ ( @ ) = 0 .  
This is a contradiction. [] 
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The following example is similar, and will be useful in the final construction. 

P r o p o s i t i o n  4.4. If aChED and 1~12<labl, then 

G.Vbv(O,~/) < L.vbv(O, ~). 

Proof. First of all we can rewrite the generalized Lempert function as follows 

LaVbV (Z) = inf{2 log I(1 I+ 2 log 1(21: = z, ~(~1) : (a, 0), ~(~2) : (b, 0), 

~i (~1) = 0, and ~i (~2) = 0 for some F ~ O(D, D2)}. 

As in the proof of Proposition 4.3, by Lemma 2.6 we have 

L,~v (z) =- G~v (z) = max{log I~b~ (zl)l, 2 log ]z2 l} for all z E D 2, 

and similarly for Lbv (z) = Gbv (z). 
By using the Dirichlet problem given by Lelong and Rashkovskii [7], we can 

verify that  
c~.~.(~)  = max{log Ir ICb(~l)l, 2 log I~l}. 

Since ]7[ 2 < [ab], GaVbV (0, 7)=log [a[ +log [b]. 
From Lemma 2.5 we already know that  G(~VbV(Z)<<_L~vbV(Z) for any zED 2. 

Suppose equality holds at z0 := (0, 7). Then, by using Lemma 2.6 and the definition 
of La, vbV we have  

G,vbV (z0) = log la I +log I bl = G,v (zo) + GbV (zo) 

= L,v(zo)+Lbv(Zo) < L,vbu(zo) = Gavbv(Zo). 

Hence equality would hold throughout. Now, by Proposition 3.3, the infimum in 
the definition of LaVbV is attained by an extremal disc ~ that  passes through both 
(a, 0) and (b, 0). It follows that  p must be extremal for L ,v  and LbV. We will prove 
that  this is impossible. 

First of all we characterize all extremal discs for Lav. Let ~ = ( P l ,  qs2) be such 
a disc. By the definition there exists ( I ~ D  such that  p(0)=(0,7) ,  p((~)=(a,0) ,  
p i (~ l )=0  and 1(112=lal. 

Setting 9 : = r  o~1 o0(1, we have 

9(0)=0,  9 ' (0)=0,  g ( ( 1 ) = a  and 1r 

The Schwarz lemma now gives 9(()--e~~ 2, where 0ER. It implies that  

~O1(~) : r162162 ) for all  ~ D .  
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If the function p is an extremal disc for Lbv, then there is C2ED such that  

r ~ l ( ~ 2 ) = b ,  ~)~(~2)=0 and  1~212=1bl. 

Clearly ~ r since aCb. Since Pl only has one critical point, the condition p~ (@) = 
0 is not satisfied, so we have a contradiction. [] 

P r o p o s i t i o n  4.5. I f a r  ITl<la I and 1~/12<labl, then 

G~VbV (0, "7) < L~ovv (0, ~). 

Pro@ The arguments are similar to those in the proof of the above proposition, 
so we only indicate the differences. As in the proof of Proposition 4.3, L~obv(z)>_ 
Lao(z )+Lbv(Z)=G~o(z )+Gbv(z )  by Lemma 2.6; because of the value of 171, this is 
equal to G~vbV(~). So if the conclusion was not true, equality would have to hold 
throughout, but the extremal disc p in the definition of L~0(0,7) would have to 
have a M6bius map for its first coordinate Pl,  and since this has no critical point, 
it could not be extremal for Lvv (0, ~/). [] 

5. T h e  m a i n  c o u n t e r e x a m p l e  

T h e o r e m  5.1. Coman's question admits a negative answer in the bidisc for 
equal weights. More precisely, consider, for cEC,  

S ~ := {(a, 0), (b, 0), (b, e), (a, e)} with b = -a ,  

where the weights are all equal to 1. Denote by G ~ and L ~ the corresponding 
Green and generalized Lempert functions. Let z=(0 ,  ~/) with lal 3/2 < 17l < lal �9 Then, 
lira i n f ~ o  L ~ (z) > G~vbv (z) and therefore, for lel small enough, 

a ~(z) < L ~ (~). 

Pro@ Using the result of Edigarian about the product property of the Green 
function, [3], we have 

a~(0, 7) = max{log lal +~og Ibl, log ]71 +log c - 7  

Thus 

G~vbv (0, 7) = lim G ~ (0, 7) = log I a l+log I bl -- log l al 2. 
s--+0 
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By Propositions 4.4 and 4.5, and since L,050(z)=log I~yl>log lal2=G~Vbv(z), with 
z = (0, ~/), we have 

) 
lira G e = GaVbV (z) < Lavbv (z) 
~--+0 

= min{La0b0 (z), LaVbO (Z), LaObV (Z), LaVbV (Z) }. 

We consider I:=liminfc~oL~(z). We want to prove that  I>G~VbV(Z). In 
many cases this will follow from I>_fbaVbV(Z). 

Recall that  L ~ is a Lempert  function with simple poles, and thus the usual 
definition (the Is, in the introduction) coincides here with our generalization given 
in Definition 2.4. For each c, pick an analytic disc p~EO(D,  D u) such that  

4 and such that  Y~j=I log I~1 converges to I,  as e--+0. 
By passing to a subsequence, we may assume that  pe converges locally uni- 

formly to some ~ C (9 (D, D2). Also (if necessary, by passing to a subsequence again), 
we may assume that  ~ - + ~ j  c D  for each j ,  as e--+0. 

Let K = {k E { 1, 2, 3, 4} : ~k E D }. It is easy to see that  D C~ {(1, ~4 } N {~2, Ca } = ~. 
If K = 0  then I = 0 ,  and hence we have I>_[~wv(z)>G~vbv(z), by (5.1). So 

now we only consider the cases where Kr 

If ( j e r k  for all jCkEK,  then I = E k c K  log I~kl, p2EO(D,  D), p2(0)=~y and 
~2(~k)=0, kcK.  It implies that  

kcK 

where hr D) and h(O)=7/[Ik6K r Thus we have 

L 0b0( ) =log log =I,  
kEK 

and hence, I>_L,,vvv(z) >G~Vbv(z). 
If K = {2, 3} and (2 = ~a, then, since ~ - +  s C~ ~ ~u and I C~ - ~ I -> I c I, 

0 
~i (~-2) = lira --0. 

Thus I>_Lbv (z) > LaobV (z) by Proposition 3.1. So that  I>_ L~VbV (z) >GaVbV (z). 
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Similarly, if K = { 1 , 4 )  and (1 =(4, then ~,I((1)=0. Thus 

I > L~v (~) >_ L~vbo(~) >_ L ~ b v  (~) > C~w~ (~). 

If K = { 1 ,  5, ~} and (2=(3,  then ~I((2)=0.  Thus 

~r = log 1(11+ 2 log 1(21 -> C~obv (~) _>/,~vbv (~) > G~VbV (~). 

The same reasoning holds if K = { 4 ,  2, 3}, ~2=~'3 . 

Similarly, if either K = { 1, 2, 4}, ~1 = ~4 or K = { 1,3, 4}, ~1 = s then qo~ (~,) = 0. 
This implies that I > L~vbo(z) k Lavbv(z) >Cavbv (z). 

If 52={1,2,3,4},  ~1=~4 and ~2=(3, then ~ (~1)=qo~(5 )=0 .  It implies that 
I = 2  log 1(11+2 log l~21>_LaVbV(Z)>_ZaVbV(Z)>Gavbv(Z). 

Suppose now that K = { 1 ,  2, 3, 4}, (1 r  and @ = G .  This is the final and most 
delicate case (the proof of [11, Theorem 6.3] suggests that it does occur). Both 
previous types of argument now break down, because we only get 

I < rain{log I~1 }, log 1~4)} +2  log ]~2] _> Laobv(z); 

or, from the fact that  ~2(~1)=~p2((~4)=~2((2)=0 and ~2(0)=% 

I < log 1411+1og 1(41 +log 1421 _> log I~l-> L~ob0 (~). 

By using a rotation in the first coordinate we can assume that a>0.  We will 
prove that I>G~vbV(Z). If not, we would have 

(a. 2) log I(~ I + log 1(4 + 2 log 1(21 = I = c ~ v v v  (~) = 2 log ~. 

Then the function ~l satisfies 

(5.3) Vh(0)=0,  ~x( (1 )=@l( r  p l ( ( 2 ) = - a  and toi(r  

Setting f:=~_aOpaO6r with 6~ defined as in (5.1), we have f (0 )=0 ,  f ' ( 0 ) = 0  
and f ( ~ 2 ) = - a .  The Schwarz lemma shows that I@[2>_a, and hence 

(5.4) 2 log I@l >~ log a. 

Setting g:=6~op~, we have 9((1)=9(.44)=0 and 9(0)=a.  Thus the function g must 
have the ibrrn 

a 
9(( )=6(~(( )64~(( )h1(( )  for a l l ( E D ,  w h e r e h ~ G O ( D , D )  a n d h l ( 0 ) -  

(1C4' 
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hence 

(5.5) log I(~l+log IC~I-> l o ~ .  

The assumption (5.2) implies that  all the inequalities in (5.4) and (5.5) become 

equalities. Now, since ~a2(0)=q' and ~2( (1 )=P2( (2 )=~2( (4 )=0 ,  

4 
( p 2 ( ~ ) = . l - ! ( ~ ) h 2 ( ~ ) ,  w h e r e h 2 E O ( D , D ) a n d h 2 ( 0 ) -  7 

_ r162 
jr 

This implies that  bl<l(~GGl=a3/=, which contradicts the hypothesis I~l>a 3/2, 
and the inequality I>G,~ubV(Z) is proved. 

If  K - { 1 ,  2, 3, 4}, ~1 =~4 and GCG, the proof is similar. [] 
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