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James type results for polynomials 
and symmetric multilinear forms 

Maria D. Acosta, Julio Becerra Guerrero and Manuel Ruiz Galen(1) 

A b s t r a c t .  We prove versions of J a m e s '  weak compac tne s s  t heo rem for po lynomia l s  and  

s y m m e t r i c  mul t i l inear  forms of finite type. V~'e also show tha t  a Banach  space  X is reflexive if and  

only if it admi t s  an  equivalent  no rm such  t ha t  there  exis ts  x07~0 in X and  a weak-*-open subse t  

A of the  dua l  space,  sa t i s fy ing t h a t  x* @x0 a t t a i n s  its numer ica l  radius,  for each x* in A. 

1. I n t r o d u c t i o n  

The classical James '  theorem states that  a Banach space is reflexive if and only 
if each--bounded and l inear--functional  attains its norm [J]. On the other hand, 
there are results stat ing tha t  in the non-reflexive case. the set of norm attaining 

functionals is small. For instance, if the unit ball of a separable Banach space is not 
dentable, then the set of norm attaining functionals is of the first Baire category, 
a result due to Bourgin and Stegall (see [B, Theorem 3.5.5 and Problem 3.5.6]). 
Kenderov, Moors and Sciffer proved that  for any infinite compact  Hausdorff space 
K,  the space C(K) satisfies the same property [KMS]. 

By using the weak-* topology in the dual space. Debs, Godefroy and Saint 
Raymond showed that  a separable Banach space is reflexive provided that  the set 
of norm attaining functionals has a non-empty weak-* interior [DGS, Lemma 11]. 
This result was generalized by Jim6nez Sevilla and Moreno, who proved that  the 

same assertion holds for any Banach space not necessarily separable [JIM, Proposi- 
tion 3.2]. 

We shall use A(X) to denote the set of norm attaining functionals on a Banach 
space X. For the norm topology, it is known that  any Banach space is isomorphic 
to another one satisfying that  the interior of the set of norm attaining functionals 
is non-empty [AR1, Corollary 2]. 

(1) T h e  first and  th i rd  au t ho r  were suppor t ed  in par t  by D.G.E.S. ,  project  no. B F M  2000- 

1467. T h e  second au t ho r  was par t ia l ly  suppo r t ed  by J u n t a  de Anda lucfa  G r a n t  FQM0199.  
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However, in the non-reflexive case. if X satisfies that the set A(X) has a non- 

empty interior, then the norm of X does not satisfy strong differentiability con- 

ditions. For instance, Jimdnez Sevilla and Moreno proved that a Banach space 

X satisfying the Mazur intersection property and being such that A(X) has non- 

empty interior, must be reflexive [JIM]. The parallel assertion also holds if the space 

is very smooth or Hahn-Banach smooth [AR1], [AR2]. For other results along the 

same line, but assuming that the space does not contain (an isomorphic copy of) 

11, see [AB1] and [AB2]. 

Here we shall show that an abundance of certain other functions on the Banaeh 

space that attain their suprema also implies reflexivity. To be more precise, we 

shall use as functions the simplest finite-type homogeneous polynomials, symmetric 

multilinear forms and numerical radii of rank-one operators. 

In Section 2, we shall prove a characterization of reflexive spaces in terms of 

norm attaining ~t-homogeneous polynomials or norm attaining symmetric multilin- 

* ... z * z* in X*. consider the polvnomial given ear forms. For n + l  flmctionals x 1 . . . . . . .  

by 
n 

, 

i = 1  

We prove that a Banach space X is reflexive if and only if for n fixed non-zero 

functionals z~, ..., x n, the set of elements z* in X* such that the above polynomial 

attains its norm, contains a (non-empty) weak-*-open set. We also provide a parallel 

result by considering the symmetrization of the n-linear forms given by 

i = 1  

Section 3 is devoted to the numerical radius case. Here we show that a space X 

is reflexive as soon as, for some non-trivial a'0 in X. it holds that the set of elements 

z* in the dual of X satisfying that the operator x* ~z0 attains its numerical radius 

(see the definition below) has a non-empty weak-* interior. Moreover, we show that 
any reflexive space admits an equivalent norm such that in this new norm rank-one 

operators whose image is contained in a fixed one-dimensional subspace attain their 
numerical radii. Therefore, we get a characterization of reflexive spaces in these 

terms. A Banach space is known to have finite dimension if and only if for every 

equivalent norm, each rank-one operator attains its numerical radius [AR3], [AR4]. 

For X=Ip ( l < p < o c ) ,  every compact operator satisfies the previous condition for 
the usual norm. 
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2. Vers ions  o f  James'  theorem for  

polynomia ls  and symmetr ic  multi l inear forms 

Hereafter, X will be a Banach space over the scalar field K (R or C) and X* 
its topological dual. By B x  and Sx  we will denote the closed unit ball and unit 

sphere, respectively. The usual norm of a bounded multilinear form A on X is given 
by 

IIAIl~sup{lA(/1,. . . ,x,~)l:l lxili_<l,  l < i < n } .  

If we fix n functionals x~ .... , x,, CX*, we consider the finite type n-linear form A 
given by 

Tt 

II" A ( x l , . . . , x , ) =  z i ( z i  ), x i c X ,  
i = 1  

and in this case, [[A[[ is just [ I i ' t  IIx~ll �9 It is also clear that if A is non-trivial, then 
A attains its norm, that  is, there are x iESx ,  l<i<_n, with 

x )l = IIAII, 

if and only if every functional x~ attains its norm. Therefore, if we assume that for 

n - 1  fixed functionals x~, ... , xn_ lEX* the n-linear form A attains the norm, for 

any x*~EX*, then, by using James' theorem, the space is reflexive. For this reason, 

we shall use n-homogeneous polynomials of the form 

77 

I-[ x:(x/ 
i = 1  

and symmetric multilinear forms deriving from A instead of n-linear forms, in or- 

der to obtain James-type results. We shall denote by Px~...~:~ the continuous n- 
homogeneous polynomial on X given by 

n 

i = 1  

Let us recall that  a continuous polynomial P on X attains the norm if the supremum 
defining the usual norm is a maximum, that is. 

IP(x0) l  = IIPII for some x0 E Bx.  

By Sx~...:~; we denote the symmetrization of the continuous multilinear form 

> e x ,  
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so, S~r .... �9 is the continuous symmetr ic  n-linear form given by 

1 ("ill 1 ) 
' n -- 

where An is the set of all permuta t ions  of n elements. 
Some key references on the denseness of norm at ta in ing polynomials  and multi-  

linear forms can be found in [AFW], [AAP], [CK], [Ch], [aP], [a2], [ACKP] and [PSI. 

Now we state  the James- type  result for polynomials.  

T h e o r e m  2.1.  A Banaeh space X is reflexive i f  and only i f  there are n>_l 

and non-zero functionals x~, ..., x~ E X *  so that the .weak- * interior of  the set 

{x* E X* : P ~  .... ;x ~ attains its norm} 

is non-empty.  

Proof. Since each polynomial  P ~  ..... ;,x* is weakly continuous,  on a reflexive 

space the finite type  polynomials  tha t  we consider a t ta in  the norm. 

On the other  hand, let us observe tha t  for an 5' x* � 9  

IlPzr * II = sup Ix~(x)... x* (x )x* (x ) l  = sup ]x*(b)l, 
Ilxll<_l bEB 

where B is given by 

B := {x~(x)...  x ;  (x):L" : x �9 Bx} .  

It  is also clear t ha t  the polynomial  P*~...*nx" a t ta ins  its norm if and only if the 
funct ion Ix*] a t ta ins  its supremum on B. Thus  we can reformulate the assumpt ion  

by s w i n g  tha t  the set 

A :=  {x* E X* : Ix*] a t ta ins  the supremum on B} 

has non-empty  weak-* interior. 

Since we shall prove tha t  X is reflexive, we can clearly assume tha t  X is 
infinite-dimensional. Now we shall give an equivalent norm on X such tha t  for this 

new norm A will be contained in the set of norm at ta in ing flmetionals. For this 

purpose,  let us note tha t  any element y E X  satisfying tha t  x*(y )#O,  l<i<_n, can 
be expressed as 

In (v)] I l Y l l n + l  X~ Y Y 

Y = I l L ,  x;(y) 17~ 
L i = I  

IlylI'~+I B. 
FI n x~(y) i = 1  
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In view of the continuity of the scalar-valued function f given by 

Ily]ln+l y E X and z~" 
I (Y)  - 1-i~'~ 1 x~ (y )  ' ' (y) # 0. 

in order to prove that the set 

D B = { A b : A E K ,  I A l < l a n d b E B }  

has a non-empty norm interior~ it suffices to find some y E X  satisfying I f (y ) l< l .  
To this end, let us fix x0 in Sx  such that  for all i=1  . . . . .  n. x~(xo)r  and a scalar 

satisfying 0 < a <  II]~_l x* (x0)l, and consider y=ax0.  Thus 

Ilyll~§ a~  
I f ( Y ) l -  I I I ~ : ( y ) l  - anll-[:~ ~x; (x0) l  < 1. 

We write C for the closure of the convex hull of DB.  Therefore, C is bounded, 
closed, convex and balanced, with 0 belonging to the norm interior of it; and so, it 
is the unit ball of an equivalent norm on X. 

Because of the assumption, the set A is contained in the set of norm attain- 
ing functionals for this new norm, and A has non-empty weak-* interior. Since a 
functional x* attains its norm if and only if Rex* attains its norm, the previous 
assumption implies that  there is a weak-*-open set of (XR)* of norm attaining 
functionals oil XR. Hence, by using [JIM, Proposition 3.2]. X is reflexive. [] 

The analogous version for symmetric multilinear forms can be stated as follows. 

T h e o r e m  2.2. A Banaeh space X is reflexive i f  and only i f  there are n>_l 

and x~, ... ,x*~EX*\{0} so that the weak-* interior of the set 

{x* E X* : S ~  .... ;,x* attains its norm} 

is non-empty.  

Proof. One can proceed as in Theorem 2.1, if we note that  given a functional 
x*EX*,  the symmetric (n+l) - l inear  form S:~r .... ;,x* attains its norm if and only if 
the function Ix*l attains the supremum on B. where 

{ 1 ~-~, ( 1 2 I * )  } B : =  ( n + i ) !  ~(~(~) )  ~ ( '+~) :  ~'~ c B x  �9 
ere A,~+i \ i - - 1  

The set B clearly contains the subset given by 

n 
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Again, we assume that  X is infinite-dimensional. Now, it suffices to fix XoESx 
. rt . 

with x i (xo)r for all i and O < a < l H i = l x  i (xo)t. The element y=axo belongs to 
the norm interior of D B  since 

71 
a 1-I,=1 ~; (Y) a y =  ~ �9 y E  ,,. 

H,=I x~ (Xo) llytl n+l 1"Ii=1 x~(xo) 
B. 

We finish by using the argument in the proof of Theorem 2.1. [] 

There are simple examples of spaces and polynomials of the type we considered 

here, such that  the polynomial attains its norm but not all the functionals involved 
at ta in the norm (see, for instance [Ru, Example 4]). One can define analogous 
examples of symmetric multilinear forms [Ru]. Therefore, James '  theorem cannot 
be directly applied in the proofs of Theorems 2.1 and 2.2. Some parallel results on 
the reflexivity of the space of all homogeneous polynomials have been studied by 
several authors (see [R], [AAD], [MV] and [JM]). 

Remark. Following similar arguments as in Theorems 2.1 and 2.2. one can prove 
tha t  a Banach space X is reflexive provided that  there are n elements z~, ..., x~'~E 
X*\{0} and a bounded, closed and convex subset A C X  with non-empty norm 
interior satisfying that  

{x* E X* :[R~r I at tains its supremum on A} 

o r  

{x* E X* :lSx; .... ~x* I at tains the supremum on A} 

contains a (non-void) weak-*-open subset of X*. 

3. T h e  n u m e r i c a l  r a d i u s  t y p e  r e s u l t  

In order to state the third version of James '  theorem, let us recall that  the 
numerical range of an operator  T E L ( X )  (the Banach algebra of all bounded and 

linear operators on X)  is the bounded set of scalars 

v(:r) := {x*('r~): (x,**) ~ n(x)} ,  

where I I (X)  := { (x, x*) E S x  x S x .  :x* (x) = 1}, and the numerical radius of T is given 
by 

v(T) := sup{l~l :• e V(T)}  



James type results for polynomials and symmetric multilinear forms 

(see [BD]). The operator T is said to attain its numerical radius when the supremum 
defining v(T) actually is a maximum. For some known results about numerical 
radius attaining operators, one can see [BS], [C], [P], [A1] and [AP]. 

In the version of James '  theorem posed here, we shall use only rank-one op- 
erators. If  x E X  and x*EX*,  then x * ~ x  will denote the operator in X defined 
by 

(x*~x)(y) := x*(y)x, y e X .  

T h e o r e m  3.1. Let X be a Banach space and suppose that there exists xoE 
X\{0}  such that the subset 

{x* E X* : x* | attains its numerical radius} 

has a non-empty weak-* interior. Then X is reflexive. 

Proof. If one writes B for the set 

B := {~*(x0)y: (y, y*) e n ( x ) } ,  

then for all x* EX* we have that  

v(z*@xO) = sup Ix*(y)y*(zo)I = sup Iz*(b)l 
(y~y*)en(X) bEB 

and the rank-one operator  x* | at tains its nmnerical radius if and only if the 
function ]x*] at tains the supremum on B. According to the assumption, the set 

{x* EX*  : Ix* ] at tains the supremum on B} 

has a non-empty weak-* interior. 
We shall prove that  the set D B  contains an open ball. If  this condition holds, 

then the closed convex hull of DB.  let us say C. is closed, convex, bounded and 
contains a ball centered at zero. Hence, C is the closed unit ball of an equivalent 
norm on X. For this new norm, by using the assumption, the set of norm attaining 
functionals contains a weak-*-open set, and so, by using again that  this condition 
implies the corresponding assumption for XR, it follows from [JIM, Proposition 3.2 l 
that  X is reflexive. 

For 0 < r <  ~ let us check that  

� 89  C D B .  

Each element y E �89 Xo + r B x satisfies 

1 l+r" (1) 0 < ~ - r  < IlYll -< 
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Let us choose y*EX*  so that  (y/llyll,y*)eII(X). Then 

y*(z0) i1@11 E B. 

Furthermore, as a result of the choice of y, r and (1), we have the inequality 

(2) Ly*(xo)l >_ 2(llylt-r) >_ 1--4r > 0. 

The element y can be trivially decomposed in the form 

Ilyll �9 ~!Iy l l  B 
(3) y _  y . ( x 0 ) ~ * ( ~ 0 ) ~  o 

Finally, by using (1) and (2) it holds that  

[[Y[[ < �89  < 1  
ly*(xo)l- 1-4r 

and so, in view of (3), y belongs to D B .  [] 

Let us finally observe that  the previous result generalizes, see JAR3, Theorem 1] 
where it was proven that  a Banach space is reflexive if every rank-one operator 
at tains its numerical radius. Moreover. the proof given here is much simpler. 

We shall now obtain a partial  converse of the previous result, which is sharp, 
as we will observe later. 

P r o p o s i t i o n  3.2. Let X be a reflexive Banach space and x0EX\{0} .  Then 
there is an equivalent norm on X such that, for  any element x* in X*,  the operator 

x* | attains its numerical radius. 

Proof. We can clearly assmne that  d i m X > 2 .  Hence, we can decompose X =  
K x o |  for some closed linear subspace M e { 0 }  of X. Let us consider the space 
Y isomorphic to X given by 

Y ---- K32o @1 +~I 

whose dual can be identified as 

Y* = K x ~ G ~ 3 I * .  

where x~ E X* satisfies x~ (x0)= 1. We shall check that  for any x*E X*, the operator 
x* | at tains its numerical radius on Y. 

Let us consider the set 

B := {Y*(xo)y: (y, y*) E II(Y)} 
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and assume that  x0 is in the unit sphere of Y. ARv element; y in the unit sphere of 
Y can be writ ten as 

y = sxo + m  

for some scalar s and some element r n E M  satisfying }s}+ }}mll=l. The element 

y* = ~x 8 +m*, 

where AEK, m * E M * ,  

I~xi=ll~*ll=t, xs=lsl and m*(~)=llmll, 

satisfies that  (y, y*) GII(Y) and ]y* (x0)J= i, so y E D B .  
We have checked tha t  S y c D B  and so B y = D B .  Therefore, 

~( x * |  ) = sup  [~* (b )l = IIx* II 
b~B 

and x*| at tains its numerical radius if and only if x* attains its norm. Since 
Y is reflexive, it follows tha t  any operator  of the form x* Ex0 attains its numerical 
radius. [] 

By using Theorem 3.1 and Proposition 3.2. we arrive, in fact, at the following 
characterization. 

C o r o l l a r y  3.3. A Banach space is reflexive if  and only if  for  some O r  
there is an equivalent norm on X such that x* •xo attains its numerical radius fo'P 

any element x* in the dual space of X .  

Let us note that  in any infinite-dimensional Banach space there is an equivalent 
norm such that  at least one rank-one operator does not at tain its numerical radius 
(see Theorem 3.1, JAR3, Example] and JAR4. Theorem 3]). Therefore, if the Banach 
space is reflexive but not finite-dimensional, renorming may be necessary in order 
to obtain the s tatement  in Proposition 8.2. 

[A2] 

[AAP] 
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