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Analyticity of the density 
of electronic wavefunctions 

Soren Fournais, Maria Hoffmann-Ostenhof, Thomas Hoffmann-Ostenhof 
and Thomas Ostergaard Sorensen 

A b s t r a c t .  We prove t h a t  the  electronic densi t ies  of  a tomic  and  molecular  e igenfunc t ions  

are real ana ly t ic  in R 3 away from the  nuclei. 

1. I n t r o d u c t i o n  and  s t a t e m e n t  o f  t h e  resul t s  

We consider an N-electron molecule with L fixed nuclei. The non-relativistic 

Hamiltonian of the molecule is given by 

H = HN,L (R, Z) 
N L 

= lx0-n , I  + ~ Ix{-xjl ~ ~ IR , -RkI '  
- -  - -  l < _ i < j < _ N  l < l < k < _ L  

where R=(R1 ,R2 , . . .  , R L ) E R  3L, Rz7s for k r  denote the positions of the L 
nuclei whose positive charges are given by Z=(Z1,  Z2, ..., ZL). The positions of the 
N electrons are denoted by x =  (x z, x2, ..., x \ , )E  R 3x, where xj denotes the position 
of the j t h  electron in R 3. For shortness, we will sometimes write 

(1.2) H = --A + V(x).  

/~ N where --~j=l Aj is the 3N-dimensional Laplacian, and V is the Coulomb poten- 

tial. It is a standard fact that H with domain WZ2(R 3x) is selfadjoint. 
We consider eigenfunctions w of H. i.e.. solutions c, EL2(R 3x) to the equation 

(1.3) Hv: Ev,. 

with E E R .  Since we describe electronic wave functions, and the electrons are Fer- 
mions, ~p has to transform according to certain irreducible representations of the 
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symmetric group ~ N .  However. our results are independent of this condition and 
we do not impose it. 

Analyzing the spectrum of H and calculating (usually by some approximation 
scheme) the eigenvalues E and the corresponding eigenfunction(s) ~ is the central 
theme of most of the investigations done by quantum chemists and physicists. For 
the interpretation of these investigations the eigenflmction t) is much too complex 
being a function of 3N variables and hence the one-electron density s plays a 
prominent role. It is defined by 

N 

(1.4) O(x) = f 3, 3 t '(xJ)12 d~j, 
j = l  

where fcj = ( x l ,  ..., x j - 1 ,  x, X/+l .... , x x )  and dfr = d x l  ... d x j _ l d x j + l  ... d x x .  

The mathematical analysis of H has mainly centered around the operator the- 
oretical point of view, see for instance [7], [9] and references therein. The fact that  
(1.3) is an elliptic partial differential equation has not been exploited in such depth; 
so many questions which are natural from a partial differential equations point of 
view are not really understood. In particular, regularity questions concerning 
and ~ are natural and interesting. Note first that V is singular in 

= = 1<~<d< \ 

and real analytic in R3N\E .  Hence by standard methods of elliptic partial differ- 
ential equations, see for instance [5], v is real analytic in R a x \ E .  The first results 
concerning the regularity of ~5' on all of R 3x are due to Kato [6]. He showed that  ~' 
is Lipsehitz continuous and first formulated the well-known cusp conditions, which 
describe the behaviour of an eigenfunction near the points where two particles are 
close to each other [6, Theorems II and IIb]. See also the important paper by 
Simon [10] in which the Coulombie many-particle potential V is identified as a spe- 
cial member of the so called Kato class and some results concerning the regularity 
of solutions of Schr6dinger equations (equations of type (1.3) with general V) are 
given. 

Regularity results concerning the Coulombic case extending Kato's result have 
been obtained more recently in [4] and [3]; see also the more complete references 
therein to other results concerning regularity. 

There are now two related problems: 
(i) Describe in more detail how the specific structure of the singularities in E 

turn up in the non-analyticity of ~,. Partial results can be found in the references 
cited above. 
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(ii) Analyse the regularity properties of the one-electron density, defined in 
(1.4), an object which has an immediate physical interpretation (see any textbook 
on quantum mechanics, for instance [8]) and enters all approximation schemes in a 

crucial way (Hartree-Fock, Thomas-Fermi ,  density functional theories etc.). 
For the regularity questions concerning ~ defined in (1.4) it suffices to consider 

the (non-symmetrized) density t) defined by 

(1.6) O(X) = /R3N 3 I~ ' (X 'Xg '  "'"' X*V)t2 dx2 "'" dx]~'r" 

It  is not clear a priori that  0 is real analytic away from the nuclei since in (1.6) 
one integrates over subsets of E where ~;, is not analytic. In two recent papers ([1] 

and [2]) the present authors have shown that  ~o is smooth away from the positions of 
the nuclei (or in the case of an atom, away from the origin). The natural  question 

is now whether 0 is real analytic away from the nuclei. This will be answered 
affirmatively in this paper. Of course in the proof of this result new difficulties 
arise, in particular all the estimates have to be much more explicit. 

T h e o r e m  1.1. Let ~OEL2(R 3N) satisfy the equation 

HW = Et:. 

with E c R  and H given by (1.1). Let the density o be defined as in (1.6). Then 0 

is a real analytic function in R3\{R1,  ..., RL}. 

Remark 1.2. (Atoms versus molecules) In order to keep notation simple, we 
will only give the proof of Theorem 1.1 in the case of an atom. In this case we only 
have one nucleus, which we place at the origin, so the potential V is given by 

N 
Z 1 (1.7) v:-~]77~+ ~ Ixj-x~l 

i=1 l<t<2< X 

The necessary modifications for the molecular case were indicated in the proof of 
the smoothness results in [1]. In the present proof of analyticity one has to make 
similar changes when working with molecules. 

Remark 1.3. (Density matrices) We get analogous results for the one-electron 
density matr ix  71(x, x ')  and the two-electron density ~o2(x, x ') ,  which we will define 
next. Let ( x , x ' ) E R  6. Let :~j and d~j be as defined after (1.4). and define 

^I I Xj = (Xl, . . . ,Zj__l,Z , X j + I , . . .  , X X ) ,  

54j, k = (Xl,... , x j - I , x , x j + I , . . . , x k -  1 .x t .xk+I , . . . rxN) ,  

dScj,k = dXl ... dxj-1 dXj+l ... dxk ldXk+l ... dxx .  
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Then "Y1 and Lo2 are defined by 

(1.8) 

(1.9) 

N 

~/1 (X, X/) ---- :~ \ - 3  'U (Xj)/.~ ( X j )  dJ(j. 

.v 

j..~=1 

In order to describe the regularity of ";,1 and ~o2 we introduce D ={ (x ,  x ) r  6} and 

s = ({n,, ..., nL} • R'~) u (I~ 3 • {nl, .... n~}) c R ~. 

Our method implies that  qq is real analytic on R(s\S and that g2 is real analytic 
on R 6 \ ( D U S ) .  

Remark 1.4. In the case of an atom. consider the density g in polar coordi- 
nates (x=ra3, r= lx l ,  a :=x/IxlES2) ,  and define 5(r )=fs~ g(ra:)du,'. An important 
question is for which kEN,  

(1.10) (dk~'~ 
\ drk ) (o) 

exists. An even more demanding question is whether 5(r) is real analytic for r_>0, 
i.e., whether ~ can be continued analytically beyond 0. The analysis of such ques- 
tions show the intimate relation between the problems (i) and (ii). In [3] it was 
shown that  the derivatives in (1.10) exist for k_<2. But the general problem re- 
mains open. 

Remark 1.5. (Generalisations) As will be seen from the proof, Theorem 1.1 
can easily be generalised to many other potentials. We do not use any of the 
special properties of Coulomb potentials, such as symmetry, homogeneity, etc. To 
be precise, let 

fir N 

V(x) = ~ ~ ( x j ) +  ~ n % ( x j - x ~ )  
j=l .i.k=l 

jr 
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satisfy the following conditions: 
(1) There exists C > 0  such that  for all ~t6| ' l/-1"2(R37':).  

(1.11) 

(2) There exists a constant L > 0  (depending on e) such that  for all a 6 N  3, we 
have 

(1.12) 
N N 

Z II~ + Z 
j = l  j , k=l  

jCk 

where the norms in (1.12) are in L~({xcRZllx I >e}). 
The first condition, (1.11), is a kind of relative boundedness assumption. The sec- 
ond condition, (1.12), means that  V is real analytic away from E (with a uniformity 
at infinity). Theorem 1.1 remains true for an)" V satisfying these two assumptions. 
For instance, replacing one or more of the Coulomb potentials in V by the Yukawa 
potential  e-~l~l/Ix I (with a > 0 ) ,  we still get Theorem 1.1. But here we concen- 
t ra te  on the physically important  case of Coulomb potentials and do not strive for 
generality. 

Organisation of the paper. In Section 3 we present in Lemma 3.1 a result con- 
cerning 'part ial  analyticity '  of an eigenfunction t~' of H in the following sense: Upper 
bounds to the L2-norms of certain directional derivatives of t>' of arbi trary order 
]a] are given. They show the right behaviour in ]a] needed later on for the proof 
of the analyticity of L) away from the origin. (The proof of Lemma 3.1 is given in 
Appendix A.) We note that  this kind of directional derivatives correspond, roughly 
speaking, to ' taking derivatives along singularities of the potential ' ,  see Lemma A.3 
and its proof, and compare also with [1] and [2]. Corollary 3.2 is an immediate 
consequence of Lemma 3.1 and essential for the further steps in the proof of Theo- 
rem 1.1. 

In Section 4 we state and prove Proposition 4.1 which gives us the necessary 
control on t(O~O)(z)l for Izl>c>0 and arbi trary a. Therefl 'om the analyticity of o 

follows immediately. The key point of the proof of Proposition 4.1 is Lemma 4.3. 
For its proof we use a suitable parti t ion of unity of R :ix and then proceed by a 
similar construction as in [1] which together with Corollary 3.2 implies Lemma 4.3, 
in particular (4.10). Once Lemma 4.3 is proved, Proposition 4.1 follows by easy 
arguments. 
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2. Basic facts and n o ta t io n  

Remember  that  for multiindices a =  ( ( /1 ,  . - . .  c{35I )  E N 3 M ,  

351 

j = l  

Furtherlnore, we have the usual ordering on multiindices: For a = ( a l , . . . , a s M ) ,  

fl=(bl, ..., baM) we write a<_3 if and only if aj <_bj for all j .  
We will need one simple and standard combinatorical fact. We recall it here 

for the reader 's  convenience. 

P r o p o s i t i o n  2.1. Let a c N  TM be a multiindez. Then 

131=b 

Proposition 2.1 will be used as follows. Use Leibniz' rule to calculate 

3<_a 

Then the number of terms where exactly b differentiations fall on f is given by ([bl). 
In the following we shall work with certain directional derivatives. Let es for 

s~{1 ,2 ,3}  denote the standard basis for R 3. Let P be a (non-empty) subset of 
{1, ..., N}. We define the coordinate xp  by 

1 
x P -  ix/~l E xJ" 

jC_P 

We will now defne  Oe~f for a function fECI(R3X). For the given P and s let 

v = ( v l , . . . , v N ) E R  3N with v j=O for j~P ,  and vj=%/~x/~ for jEP.  Then we 
define 

O~ f(x) = V f . v .  

The definition of cO~p then follows by iteration for any a E N  3 (that is. for a =  

(c~1, c~2, c~a), cO~p = ( 0 ~ ) ~  (0~ )~  ( 0 ~ ) ~ ) .  One can clearly reformulate this defi- 
nition in terms of Fourier transforms (multiplication by ~ ~  for suitably defined ~p 
in Fourier space). In the previous paper  [1] we used a coordinate transformation to 
describe these derivatives. 
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3. Partial  analyt ic i ty  of  a tomic  e igenfunct ions  

We will need a result on partial analyticity of the eigenfunctions of H. 

L e m m a  3.1. Let ~EL2(R  3N) be an eigenfunction of H. Let the index sets 
P1, ... ,PMc{1 ,  ... ,N} satisfy P~7~O for all sE{1, ... ,AI}. Define for each s, Qs= 
{1 , . . . ,N} \Ps .  Define also, forE>O, 

(3.1) Up~(E)={x~RaNIIx j I>E a n d l x s - x k l > ~  f o r j ~ P ~ ,  a n d k E Q , } .  

Let 

(3.2) up, . . . . .  (E) = ue. 
s = l  

Then there exist C and L (depending on ~_) such that for all multiindices, o:= 
(o:1, ..., o~A~t) c N  3M, we have 

11c9~ 0~'~' ~ L:(U,, p,,(~)) <CLI~I( Ia[+I)  I~[ 

The proof of Lemma 3.1 is similar to the standard proof that solutions to elliptic 
equations with analytic coefficients are analytic (see [5, Section 7.5, pp. 177-180]) 
and will be given in Appendix A. 

Let us introduce the following practical notation. For a multiindex a =  
(O:1,-", aM)E N3M and given P1, ..., PM as in Lemma 3.1, we define 0~~ and Up(E) 
by 

O~ 0~ :~ I (3.3) 0~p = 0~1 ... 0~v.~ ' and Up(E)=Up1 . . . . .  p,t(E). 

We will need the result of Lemma 3.1 in a slightly different form for the proof 
of Theorem 1.1. For later convenience, we state and prove this reformulation here. 

Corollary 3.2. Let the notation and assumptions be as in Lemma 3.1 (using 
(3.3)). Then there exist constants C1 and L1 such that 

Jg  ]O~P ]v)I2(X)] dx<C~L~I(]~]+I) I~l . 
r,(~) 
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Proof. By Leibniz' rule. we have 

(3.4) Ox; 1~;']2 = E ~SJa~P~~ " 
3_<a 

Applying Cauehy Sehwarz's inequality and Lemma 3.1 to both 0 3xp tb and 0~,,~-2~' 
in (3.4), we find, using Proposition 2.1 for the equality below. 

~p(~)IO~pI~/12(x)Idx<_C2LI~I2~<_ ~ (o3)(131+1)131(la1-131+1)1~1-121 
i~1 

= Ci L '~l ~-~ ( 'b ' )  (b+ l )b(,~, - b+  i )l~l-b 
b=0 

< C2(2L)1'~1 (lal + 1)l~ 

Thus, Corollary 3.2 holds with C 1 - - C  2 and L1 =2L. [] 

4. Differentiating the density 

Fix an arbitrary ~>0. We will always stud)- o(xl) in the region {xl l]xl]>c}.  
We will prove the following estimate. 

P r o p o s i t i o n  4.1. Let c> 0  be given. Then there exist constants C, L>0,  such 
that for all ]x]>e and all c~CN 3, o satisfies 

(4.1) tO~Q(x)l < CLI~I(lal-F1)I~I 

Remark 4.2. It is clear that Proposition 4.1 implies Theorem 1.1. 

Pro@ Choose XI, )~2 E C ~ (R3), satisfying 

X I + X 2 = I ,  s  onB(O,e/4N) and suppxtCB(O;e/2N),  

and let further X1 and X2 be radially symmetric functions. Using this partition of 
unity and letting 

r = {(j ,k) E {1 , . . . ,N} 2 [j < k}, 



we can write 

(4.2) 
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@(Xl):s alv'(x) I ~ 1 ]  (Xl(Xj--Xk)+X~2(Xj--Xk))dx2... dxN 
l_<j<k<N 

= ,c~A.4/RaN_3 [1~12(X){~/(X)dx2"'" dXN ~ E ~~ 
Ic.t4 

Equation (4.2) defines Cz as 

(4.8) 

We will prove that ~)i(Xl) satisfies an estimate like (4.1) on {xl 
I C A4, namely 

(4.4) IO~" O,I <_ C L l~i (toj + 1 )  I ~ i .  

95 

Ixll>e} for all 

L eix-p 
o%(~)=(v0%)(~)=~ ~ ( l+~)~. , ( (1-A)~(~,0~ 

c 1 
1O%(x)l ~ (l+lPl2)U L 1 (l:t a ) 

II (1- A)~ (,'0('_o) II L,(R~). 

We can estimate II(1--A)2(W0~O)llLI(Ra) using (4.10) by, 

< ~ T I c ~ l + 4 , ,  , (4.6) II(1--A)2(vOaco)IILI(Ra) _ c lb  1 gCtl + 4 + 1 )  1<+4 <_ c2L~< ( l a l+ l )  I~1 , 

for some constants C1, L1, C 2 and L2. Combining (4.5) and (4.6) yields (4.4). 
Proving Lemma 4.3 therefore finishes the proof of Proposition 4.1. [] 

Therefore, 

(4.5) 

The estimate (4.1) follows from (4.4) (with a different C) since the sum in (4.2) 
is finite. 

The estimate (4.4) is a consequence of (4.10) (with o = o i )  in Lemma 4.3 below-, 
using a Sobolev imbedding theorem. Since we have not found an ideal reference we 
include the following easy argument: 

_ < ! ~  Let furthermore Let v E C ~ ( R  a) with v ( x ) = l  for Ix] >s  and v(x)=0 for Ix]_ 2~. 
)c denote the Fourier transform. We get for a E N  3 and ]xI_>s, 
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L e m m a  4,3. Let e>0 be given and let 

(4.7) 6 =  l--[ f j .k(Xj--xk),  
l < j < k < X  

where each fj,k is one of the functions XI, X2 and Oe.~)i2, with e~cN 3, lesl=l.  
(i) Let P1, ... ,PM be subsets of {1, . . . .N} satisfying that 1cPj  for j = l ,  ... , M  

and 

j = l  

Then there exist constants C; L > 0  (depending on ~) such that for all multiindices 
c~=(C~o, ctl, ..., a M ) E N  aM+3, we have 

(4.9) 
Ox { ...oM;;, IH, dxN 1 

j R S N _  3 1 L l ( { x l l l x l l > c }  ) 

< CLI~I(Ic~I+I)I~I 

(ii) There exist constants C, L > 0  (depending on ~) such that for all a c N  3 we 
have 

(4.10) 

Proof. To a function ~ as given in (4.7) we will associate P=P(O)C{1 ,  ..., N}  
satisfying 1EP and such that  

(4.11) 

We will now describe the map O~-~P(O). We note that the following construction 
is similar to the one from [1]. Define I = I ( o ) c A 4  by 

( j , k ) ~ I ( o )  i f a n d o n l y i f  fj.kE{XI,0~I?(2,0~2X2,0~aX~}. 

In other words, (j, k)EI(r  means precisely that fj,~-7~;~2. The set I(~) generates 
an equivalence relation on {1 .... , N} and we define P(o) to be the equivalence class 
of 1. Less abstractly, this means that 
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(1) 1EP(0) ;  
(2) for j>_2 we have jEP(O) if and only if there exists {ji , . . .  ,Js}C-{ 1,- . - ,N},  

s< N, satisfying 

(a) (1, j l )  EI(r  
(b) (jt,jt+~)CI(r or (jt+l,jt)eI(O) for l_<t<s; 
(e) (j~,j)EI(r or (j,j~)~I(O). 

Notice that,  since XI+X2=I ,  supp0eJ)t2Csuppx1,  j = 1 , 2 . 3 .  Therefore we get 
(4.11) by the same elementary geometrical considerations (the triangle inequality) 
as in [1]. 

In the proof we shall use P=P(o) in order to replace the derivative 0~' outside 
the integral in the left-hand side of (4.9) by the derivative c9~o inside the integral. 
That  will enable us to apply Corollary 3.2. 

Let P = P ( r  according to our construction. We will prove the lemma recur- 
sively in IPI . In the proof below we will freely interchange the order of differ- 
entiation (in the distributional sense) and integration. This is permitted, due to 
Corollary 3.2, which ensures that  the derivatives of the functions in question be- 
long to Ll({xillxll>S} xR3N-3) .  We will only prove part (i) of Lemma 4.3. The 
changes necessary for the case (ii) are obvious and therefore omitted. 

Step 1. The case IP[=N. In the case when P = { 1 ,  ..., N} we make the change 
of variables y j = x j - x l  for j=2,. . . ,N. Then we get xj--xk=yj--yk for j,k=/=l. 
The point is that  r only depends on the differences x j -xk ,  and therefore, after the 
change of variables, the only dependence on Xz will be in It~'l 2, where we can apply 
Corollary 3.2. Let us carry this out. 

Denote Y=(Y2, . - . ,  YN). Then we see that after the change of variables we ha~e 

r  

for some function r Explicitly, we see from (4.7) that 

l<j<k<_N s=2 

Therefore, 

(4.12) 
( o ~  1 . . . . . .  3N-3 0 x ~ l  1~12) (x )0 (x )  dx2 dx~ 

= fR3N-3 (0~Px ' 0 ~ ,  1~12)(Xl, XI +y2, ..., Xl+yN)~(y) dy. 
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From (4.12) we get by differentiation under the integral sign and change of coordi- 
nates back to x: 

JR O'kI 

(4.13) = [ (O~pOzp~O a~ ... Oa ,,a:,h ' [c[2)(x,, x,  +y2, ... , xl +yx ' )o (y )  d y .  
J R  3 N -- 3 

s oo o, a ~ Ic?)(x)o(x)d*~ dxx. 

Notice the support conditions (4.11) and (4.8). We can now apply Corollary 3.2 to 

get (4.9) in the case IPI=N. 

Step 2. The ease {P[<N, Suppose that Lemma 4.3 holds under the additional 
assmnption IPI>K for some 0 < K < N .  We will prove the statement for JPt=K. 

Define Q={1,. . . ,N}\P. Since ]P]<N, Q#O. Note that i f j E P  and kEQ 
then, by the definition of I(O) and P=P(o) .  we have (j, k )~ I (0 )  and (k,j)~I(O). 
Therefore, i f j < k  we have fj, a.=X2 and if t "<j  we have fk,j=X~. So o contains the 
factor (remember that X2 is rotationally symmetric, and in particular even) 

OP.Q = I I  X2(xj-xk). 
jEP 
kEQ 

and can be written as 

0 = OpOQOp.Q, 

where 

~ P =  I-~ fj,~,(xj-x~,) and OQ= 1-I fLk(Xj--xk). 
j,kEP j,k~Q 
j<k j<k 

We do the following change of variables for j>2: 

37j--021 fo r  j e P \ { 1 } .  

YJ = Xj for j E Q. 

For convenience of notation we define Yl =0. We clearly get for j, kEP or j, kEQ, 
that Xj--xk=yj--yk (also when either j= l  or k = l - - r e m e m b e r  that I~P). Thus, 

as in the case (P(=N, we can write Op(X)=Op(y) and 0c0(x)=oQ(y).  
Write z = ( z l  z:, ..., z N ) E R  3x with 

xl,  j = l .  

zj= xl+yj, j E P \{1} ,  

zj, j ~Q. 
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Then 

(4.14) 
=/R:,N_ (0~;1 ... 0~;[, I v l 2 ) ( z ) o p ( y ) ( 1 - I  X2(.rl§ 

\jEP 
kEQ 

Differentiation under the integral sign yields 

(4.15) 

,~-EQ 

+~-~/a3~\,_ (02~ ... 0 ~ ,  lu'12)(z)op(y)oQ(y) 
jGP 
kEQ 

•  H X2(2gl-t-YJ'--~lk'))(~X2)(a'l-I-YJ -yk) dy" 
j'EP 
k'EQ 

(j',k')r 

Let us explain roughly how we will proceed for higher derivatives with respect to xl.  
For each consecutive differentiation we will get terms as in (4.15). The term where 
all differentiations fall on ~ can be differentiated again in a manner similar to (4.15). 
If one differentiation falls on )~2 we stop differentiating that term under the integral 
sign leaving the rest of the differentiations outside the integral. The result of this 
procedure is (4.16), the notation of which we will define below. The important  
point is that  when all derivatives fall on t~'. we can apply Corollary 3.2 to obtain 
our conclusion. On the other hand a differentiation of X2 will lead to a situation 
with a larger IPl--so these terms can be handled by the induction hypothesis. 

Let rj~EN 3, I ~ l = l ,  s = l . 2  . . . . .  S. Define for tE{1 , . . . .S}  

t s 
Ao=O, A t = E  rl~' Bt= ~ rl~ and Bs=O. 

s=l s=t+l 

Notice that  the definition of Bt depends on S. i.e.. Bt=Bt(S). We get the following 
formula (4.16) from (4.15), using the procedure described above, by induction with 
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respect to S: 

(4.16) 

( a a ~ m  ' ~." 1~,12)(x)o(x)dz2 d x x  \ - -X p --Xp1 " ' '  (~:l; p ,  l I I o 

3 ~%r-- 3 

+E Ox ' . 
t = l  3 . \ '  3 

kEQ 

j~CP 
k'EQ 

(f,k')T~(j,k) 

For S = I  the equation (4.16) reduces to (4.15). We will use (4.16) with S=laol and 
As=so.  Consider the function 

r = O. r  - x k )  1-I ~2(Xj'  --Xk')" 
j 'EP 
k' EQ 

(j'.k')#(j.k) 

By construction we have IP(oj.k)l>lP(o)l . Therefore, we get by the induction 
hypothesis on IPI that  

F 
c~Bt [ (r al o~i 

~ JR ' - ~  092"pl "'" Oxp~'~` I ~ t ) 1 2 ) ( x ) ~  d~")  . . .  dxx 
3N 3 Ll({x~llXll>~} ) 

< CLP(p+ 1) p, 

where p=lBtl+lAt_ll+lall+...+lctM[=la]-l. Furthermore, using Corollary 3.2 
on the first term in the right-hand side of (4.16), we obtain 

a (~As,~oq ... o<~l Ll({xlllxll>~}) <CLP(p+I)p 

with p = l A s l + l ~ l I + . . . +  1<~1=1~]. 
Thus the desired estimate holds for the individual terms on the right-hand side 

in (4.16). Since the number of terms is bounded by cIa] this finishes the proof 
of (4.9). [] 



Analyticity of the density of electronic wavefunctions 101 

A p p e n d i x  A.  P r o o f  o f  L e m m a  3.1 

In this appendix we will prove Lemma 3.1. For convenience defne HE = H - E ,  
with E being the eigenvalue corresponding to the eigenfunction ~', i.e. ~ satisfies 
HEg)=0. Recall the notation given in (3.3). 

Let us start the proof by stating a well-known result explicitly. Since the 
domail~ of HE is known to be Wz,2(R3N), we get the following result. 

L e m m a  A.1. Let vEW1,2(R3N). Then vEWZ2(R 3\') if and only if HEvE 
L2(R3N). Furthermore, there exists a constant Ko>0 such that for all vE 
W2,2(R3N), 

Ilvllw~,~(R~ ~) _< KO(IIHEvlIL~(R~,)+IIvlIL~(R~')). 

This follows from the fact that  V is infinitesimally small (in the operator sense) 
with respect to - A .  

We now state and prove the estimate. 

L e m m a  A.2.  Let P1, ...,PA4be defined as in Lemma 3.1 and Up as in (3.3). 
Then there exists a constant Co such that for all ~, ql E (0, 1), all C~o c N 3N, a ~ C N 3A~ 
with [ao[+la'[_<2 and all vEW2,2(UP(�89 ) we have the estimate 

(A.1) <C0 ~ IIHEvll - -  L 2 (Up (~'/2-[-'Ol)) +E ) ~'] ~ l l L ~ ( U p ( e / 2 + r h ) )  . 
2EN aN 

121<2 

Furthermore, if  the ~ght-hand side of (A.1) is finite for all ~, 111 >0 then 

vcw~,~(Ul~@+~)) for all ~ >o .  

Pro@ Since 

1 U , 1  , 
Up (~e  +r /+?] l )  C p i c a + l / i ) ;  

the estimate is obviously true for lao l+la ' l<2 .  Let a o ~ N  3N and ct 'EN aM with 
1~01+1~'1=2. Choose O~C~ 0_<0_<1, with 0 - 1  on Up(le-[-r]~-/]l) and 
supp OCUp (�89 satisfying 110~11~ _<c~ ~-I~,1, with C~, independent ofq and qx- 
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We can now estimate, using Lemma A.1 in tile third inequality below 

lto~~ <_ IIO~176 (ov)llL~(R:,, ) 

< cllovllw~ ~(R3, / 

<_ C(l lHz(  ov)llL~<a:.. ) + llo~'llc~(R~. ) ) 
_< c( IIoHz dl c~<R~-) +/t (Ao)~, IIL~(R~' ) 

+211(VO)W'II c~(R~. )+ II0v I1~(~-./) 

C2 + ~ IlvllL~<.(~/2+,,,))) 

for some constants c, C, el and c2. Inequality (A.1) follows by multiplying with r/2. 
The last statement of the lemma follows easily from Lemma A.1. [] 

Finally, we state and prove the properties of l ;  that we need in the proof of 
Lemma 3.1. 

L e m m a  A.a .  Let V be the Coulomb potential defined in (1.7). 
(1) There exists Cv >O such that for all uEIVI'2(R 3x) we have 

(1.2) II(V--E)~'IIL~cR~-) ~ O~TI I [ ' I Iu ' I '2 (pL3X ) " 

(2) There exists a constant L v > 0  (depending oil-c) such that for all o : E N  3M 

with [a[_>l, we have 

(A.3) IIOLVll~(c,~(~/~)) <_ Lk2[+llal !. 

R e m a r k  A.4. These are the only properties of V that we need (together wi th 
Lemmas A.1 and A.2). They are easily seen to hold (see the arguments in the proof 
below) for potentials satis(ving the general conditions in Remark 1.5. 

Pro@ The first property (A.2) is a consequence of Hardy's inequality (see for 
instance [9, Vol. II, p. 169]). To prove the second property (A.3) let Ps be one of 
the index sets defined in Lemma 3.1. Notice that 

1 [ 0 for j r _P~, 

02po fzjl- i IP'l-'~l/~~ -i ~ a,,Ixl I.,.:.,.~ for jERk. 

and 

c0 ~ 1_ _ ~ 0 for j , k ~ P ~  or j, kEP~, 

xP~txj-xkl [ iP~l-1Ol/2a~lzl-i I ...... ~-:,:~- f o r j E P ~ ,  k ~ P s .  
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Therefore, (A.3) follows from the structure of V. the real analyticity of x~-+ix1-1 
away from 0 and the definitions of UP(�89 and O~p. [] 

Proof of Lemma 3.1. Notice that (A.3) trivially implies that  for j, r]>0, jrl<l 
and Ic~l_>l we have 

(A.4) rll~ VllL~(C~p(~/2+j,~l) ) <_ Ll~l+llctl!j-I~l. 
We will prove that  there exists L~.>0, such that for all r/E(0, 1) and all j E N  

with j r / < l  we have, for all a c N  3M, a o E N  ax, IOo]_<2 and Ictl+lc~0l<2+j, 

(1.5) r/I~l+l~~176 < L Ic~l+l~'~ - -  L' 

Before proving (A.5), let us note that Lemma 3.1 follows easily from it. In fact, let 
d E N  3Af, loci_>1, and choose I~01--0, ~--~/(21~l) and j= l a [ .  Then (A.5) becomes 

IIO~llL~tC~pl~//_< lal i~ 

w h i c h  is  t h e  s t a t e m e n t  o f  L e m m a  3 . 1 .  

We now prove (A.5) by induction in j.  For j = 0 ,  1, there is nothing to prove 
since we know that  ~pEWZ2(RaX). Let L.~, be sufficiently large for (A.5) to be true 
for j = 0 ,  1 and satisfying furthermore, 

(A.6) L~>_rnax{2Lv. Co(l+u~l<21)}. 

Here the sum is over all ~ E N  3x with 131<2, Co is the constant from Lemma A.2. 
and Lv is the constant from (A.3). 

Suppose that  we have proved (A.5) for all j<_jo and all r/E(0, 1) with j r /< l .  
We will prove that  (A.5) holds for j = j o + l  and all ~]E(0.1) with ( j0+ l ) r /< l .  

Let I~l+lc~o]<2+j0. Then clearly UP(�89189 There- 
fore, 

and the result holds by the induction hypothesis. So we only have to consider the 
case Ic~t+l(~ol=2+j0. Choose a decomposition a=a'+a", with la'l=2-1aol, i.e., 
with Icr Using Lemma A.2 with I11 =jorl and c=0~:~p'v we find 

2+jo cto a ( IiO Ox,.~llL2(c~(~/~+Uo+~>,~l> <_Co ,72§176 
\ 

(1.7) + ~  ' J~ 0 J ~ v ~ - - �9 ~7 I] 0,~ IlL (cp(~/2+:jo,7)) / 
I,.t[<2 
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Since HE~=O, w e  get 

(A.8) 

2 + j 0  a" ' 2 IIH g2p ~IIL (Up(e/2+joq)) 

=r/2+J~ . ~ ,  (aq',') (OdP(V-E))O~pv 
L 2 ( U p  ( z / 2 q - j o , / ) )  

f l+-- /=c~" 

We now use (A.4), the combinatorical result from Proposition 2.1 together with the 
induction hypothesis, to estimate (A.8) as 

(A.9) 

I~HI /lo/llN ii 
2 " c~" . [ll~Lk+lkl4-kLIC~ l-k+ 1 
+3~ L2(Up(~/2+3o,,)) <-- ~ \ k ) v "Jo ~. 

k = l  

I~"1 
_ rk+lLl~"l-k+l  

k = l  

[~"1 ,~k+l 
-<Lla"i+2k~i = k ~ ]  

Ic,'[+2 < L  

Here we used the assumption Le >_2Lv from (A.6) in the last estimate. 
Due to the induction hypothesis we can also estimate the other term in (A.7), 

(A.10) 
. cr ! , 

I~I<2 131<2 

So using (A.9) and (A.10), we can estimate (A.7) as 

,o~l+,aol+ 1 /Co(I+EI,~I< 2 1) "~ 
f]2+J~ IlOa~176 <~ Lb' Le J " 

The last factor is <1, by the choice of L~: (see (A.6)). This finishes the proof of 
(A.5) and therefore of Lemma 3.1. [] 
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