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Vanish ing  res idue character iza t ion  
of the  s i n e - G o r d o n  hierarchy 

Franqois  Treves 

Abs t r ac t .  The sine(hyperbolic)-Gordon hierarchy is shown to be the extension of the modi- 
fied Kortewe~de Vries (MKdV) hierarchy in the integrodifferential algebra extending the standard 
differential algebra by means of one antiderivative. The characterization by vanishing residues of 
the MKdV hierarchy yields the same characterization of the sine(hyperbolic)-Gordon hierarchy in 
the integrodifferential algebra. 

1. I n t r o d u c t i o n  

This  ar t ic le  is concerned wi th  the  h ie rarchy  bui l t  upon  the  so-called sine- 
Gordon (SG) equation 

(1.1) OtOx*x = sin u. 

one of the  classical  sol i ton equat ions .  A n o t h e r  sol i ton equa t ion  i n t ima te ly  re la ted  to 

(1.1) is the  modif ied  K o r t e w e g - d e  Vries (MKdV)  equa t ion  which p lays  an  i m p o r t a n t  

role in the  present  work: 

(1.2) = 

Each  one of the  equat ions  (1.1) or (1.2) is the  s t a r t i ng  poin t  of a sequence (called 

a hierarchy, see below) of evolut ion  equa t ions  of increas ing order  m.  

Otu = P[el fu], (1.3) 

where  

is a differential polynomial. Here u is a s m o o t h  funct ion  of t va lued  in a different ial  

a lgebra  A ,  i.e., a c o m m u t a t i v e  a lgebra  equ ipped  wi th  a de r iva t ion  0 (also equ ipped  
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with a topology compatible with its differential algebra structure). In many ap- 
plications A = d ~ ( S  1) (the periodic case) or A = $ ( R t ) ,  the Schwartz space (the 
rapidly decaying case). Here. when we do make use of a differential algebra, it will 
be the algebra M[[x]] of formal meromorphic series in one indeterminate x. 

(1.4) 

with coefficients in C (NffZ  may vary with u), the derivation being the usual one, 
O~=d/dx. But mostly we shall reason at the symbolic level in the spirit of [GD1], 
the jth derivative OJu being replaced by the symbol ~j and P(u. Ou, ..., O"u) by the 
true polynomial P ( ~ ) =  P(~0, ~1, ..., ~,, ). 

We shall be primarily interested in the "conserved quantities" of the evolu- 
tion equation (1.3), by which we mean most often other polynomials Q(~0, ... ,~,)  
endowed with the following property: 

(1) there is a polynomial (P(~o,-... ~,.) (called a flux) such that 

(1.5) = 

for every solution uECI(R;  A) of (1.3). 
The effect of (1.5) is that.  when A=C:r  ~) or A=N(R1) ,  then 

t f *)] & 

is a constant ("of motion": the integration is carried out over S 1 or R1). 
The evolution equations (1.3) under consideration in this article have infinitely 

many (independent) conserved polynomials. The most famous of these equations is 
the Korteweg de Vries (abbreviated KdV) equation. The MKdV and SG equations 
also admit infinite sequences of conserved polynomials and so do a number of other 
equations. Much attention, on the part of analysts, geometers and algebraists, has 
focused on those relatively few that have soliton solutions. On this vast subject we 
refer to the texts [AC], [D] and [FT]. There are equations, such as the Airy equation 
Otu=Oax u, which admit infinitely many conserved polynomials [for Airy these are 
the solution u and the :'energies" 1 k 2 (0 x u) , k E Z+] but do not have soliton solutions. 

Two differences between (1.1) and (1.3) jump to the eye: the right-hand side 
is a transcendental series, not a polynomial, and c)t71 is replaced by OtOx.u. In the 
present work the first of those differences is dealt with by the routine extension 
from the algebra r ~1, ...] of polynomials in the (countable) infinity of inde- 
terminates ~,~ to its natural completion @, the algebra of formal power series in the 
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indeterminates ~n. The latter difference is handled by a subtler extension of @ to 
include the symbol ~-1 of an antiderivative O-lu. This allows us to reinterpret the 
SG equation (1.1) as the integrodifferential equation 

(1.6) 0tu = sin c9~ -~ u. 

Once this is correctly done one notices that the conserved polynomials of equation 
(1.6) or rather, more accurately, of the sine-hyperbolic-Gordon (SHG) equation 

(1.7) Otu = �89 sinh 2c9cl// 

are the same as those of the MKdV equation (passage from (1.6) to (1.7) is through 
the substitution uF-~2iu; for us the scalar field is C and (1.6) and (1.7) are equiv- 

l ( c o s h 2 ~ _ l _ l ) = l  f0 ~ 1 alent). Conversely a ~ sinh 2r dr is a conserved series of the 
MKdV equation; it gives rise to what is called a nonloeal constant of motion. 

The equations under consideration are all Hamiltonian. essentially in the sense 
of Lax ([L2] and [L3]). The Hamiltonian formalism associates to each conserved 
polynomial (or series) a differential polynonfial (or an integrodifferential series). For 
instance to the conserved series } (cosh 2~ -1 -1 )  it associates the integrodifferential 
series ~1 s inh20-1u  (see below). Thus "on top of" our initial equation, be it KdV. 
MKdV, SHG, etc., stands a tower of (evolution) differential equations of increasing 
order called a hierarchy. What was said earlier is that the SHG hierarchy is an 
extension (to a suitably augmented algebra akin to g3[[~_ 1]]) of the MKdV hierarchy. 

The following result was proved in {T2]. 

T h e o r e m  1. For Qc9t3 to be a conserved polynomial of the MKdV equation it 
is necessary and sufficient that 

'~ F 1 ,-% z"] (1.8) Res Q [-1 + E {,~ z~',~ ] +Res Q [ -7  + 2_ ,],, ~.1 ] : 0  
[X n=l n! J ~ 1  

for  all {=({1,~2,  .-.) and ~]=(~'I1,TI2 , ...). 

It is checked immediately (see end of Section 3) that (1.8) remains valid when 
we replace the polynomial Q by the series cosh2(_l .  We see thus that the SHG 
hierarchy is characterized by" the same vanishing residue property as the MKdV 
hierarchy but in an enlarged algebra. At the outset one could have thought that 
the transcendental nature of the right-hand side in (1.1) did not lend itself to an 
algebraic characterization of the kind of Theorem 1: but it does. At the end of 
this article we indicate why a similar characterization is likely to be valid for a 
hierarchy discovered by Ablowitz, Kaup, Newell and Segur [AKNS]. In a separate 



176 Frangois Treves 

article we prove (by very different methods but also relying on Theorem 1) that  
the nonlinear SchrSdinger hierarchy admits a similar characterization. All these 
examples suggest that  vanishing residue theorems might be common for soliton 
equations. An explanation for their recurrence remains to be found. 

2. T h e  a lgeb ra i c  f r a m e w o r k  

2.1.  Bas i c s  o f  d i f ferent ia l  a lgebra  

As we have said the starting framework is the algebra ~3=C[~0, ~1, ...] of poly- 
nomials in the (countable) infinity of indeterminates ~ (cf. [K]); we shall reason 
most often within the subalgebra g30 of polynomials without constant term, i.e., 
vanishing at ~=0. 

In the algebra g3 we define the weight of a monomial ~p=~go ...~v" to be 
/z 

w(p)=~y=oO+l)pj; the integer u will be referred to as the order of ~P (in view 
of the differential connotation). \ ~  define the weight w(P) of a polynomial P Eg l  
as the minimum weight of its (nonzero) monomials. A polynomial is said to be 
weight-homogeneous of weight k if all its monomials have weight k (kEZ+; the zero 
polynomial is assigned any weight). 

We denote by @ the completion of gl for a metric associated to the weight: 
a fundamental system of neighborhoods of zero consists of the ideals g3k={PE~3; 

w(P)>_k+l}, kEZ+. A generic element of ~ is a formal series 

f(~) = ~ c p ~  p 
P 

with coefficients cp c C. The series f converges in ~ since to each positive integer 
N there are only finitely many multiindices p such that w(p)<_N. The weight w(f) 
of the series f is the minimum of the weights w(p) for p such that  %r  The 

A 

subalgebra G0 of the series without a constant term is the inaximal ideal of ~ (gl0 

is the closure of g30 in ~) .  
The most important operator in the algebra @ is the chain rule derivation 

{) = E ~ j + l  O~j" 
j=0 

The justification for its name is that 0(P[u])=(0P)[~]  for ever)' PE~3 and every 
element u of the commutative algebra A equipped with the derivation 0. Note that  

A A 
~ C ~ 3 0 ,  the subalgebra of formal power series without constant term. Restricted 
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to ~0 the chain rule derivation 0 is injective (but not surjective, see below). The 
following evident property is important: 

w ( O f ) = w ( f ) + l  for a l l f e ~ .  

As the sequel will show it is advantageous to quotient out 0~,  i.e., to deal 
with @0/0@ rather than with ~0 itself. Actually, it is preferable to deal with true 
series rather than with eosets in ~ ~ .  xA~ make use of the reduced polynomials 
originally introduced and called irreducible in [KMGZ]) as per Definition 1. 

Definition 1. A reduced polynomial (resp., series) is a polynomial (resp., series) 
m which each monomial is a constant multiple of one of the following monomials: 

(2.1) ~0 and ~P = (~o ... ~p~ with p = (P0 .... ,p . )  E Z~_ +1, p .  _> 2. 

The reduced series makes up a subring c43 0 of @0. The next statement is easy 
to prove. 

P r o p o s i t i o n  1. ([KMGZ]) The quotient map q3o-+q3o/O~ induces a bijection 

In other words, each coset in ~ 0 / ~  contains a unique reduced series. A 
restatement of Proposition 1 is the direct sum decomposition 

(2.2)  

A fact frequently used is that  0 is skew-symmetric mod ~@: 

(2.3) fOng-(-1)ngO'f  EO~3 for all f, gE@. 

The range ~ of ~ can be characterized by means of the following linear dif- 
ferential operator (of infinite order) on g3, 

(2.4)  Q ,  V Q  = . 
j=0 

The operator V will play a crucial role in what follows; it is the same as the varia- 
tional derivative of Gelfand and Dickey (see for instance [GD1], [GD2] and [GD3]). 
These authors denote it by 5/5u; we are not. using the natural notation 5/(f~ in order 
to avoid confusion with the partial derivatives 0/0~j.  Since V lowers the weight by 

one unit it extends straightforwardly to the completion ~ .  
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A A 

P r o p o s i t i o n  2. We have 0~3=~3oAker V. 

To characterize the range of V we introduce tile following differential operators 
i n ~  (or i n ~ )  

(2.5) v(j) F =  Z ( _ l ) k  0~,_ j OF k=j ~ . .  j = 0 , 1  ... . .  

with the understanding that V (~ =V.  

P r o p o s i t i o n  3. For a series Z E~3 to belong to V ~  it is necessary and suffi- 
cient that 

(2.6) Of _V( j )  f for all j E Z . .  

YVe are also going to need the following proposition. 

P r o p o s i t i o n  4. We have, for all f.  gC~3. 

2 X 2  

(2.7) V ( f  g) = ~-~.[(oJ f )v(J)  g+(OJ g)V(J) f]; 
j=0 

(2.8) V ( j ) 0 f = _ V ( j  1)f. j = 1 . 2  . . . . .  

The proofs of Propositions 2. 3 and 4 are straightforward and will be omitted 
here. 

We associate to any series fE@0 the formal vector field 

(2.9) Of = ~ ( 0 "  . 

Such formal vector fields are characterized by the fact that they commute with 
a=#r The evolution equation 

(2.10) Otu = f[u] 

has the symbolic equivalent 
dA = 
dt 

which is simply short-hand for the sequence of equations 

(2.11) d~,~ _= O.f(~), n = 0 . 1  ... . .  
dt 
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whose formal solution is (expt.Of)(~). All this can be rigorously interpreted in 
terms of the infinite-dimensional Lie group of Bficklund transformations and its Lie 
algebra. The latter is isomorphic to ~0 equipped with a Lie algebra structure by 
means of the Poisson bracket 

(2.12) {fl ,  f2} = 0 f l  f2 - 0f2 f l .  

The center of the Lie algebra r is spanned (over C) by the monomial ~1. 
Observe that,  given any 9C-~0 and any solution u of (2.10), 

oN2 ~C 

j=0 ~ j=0 

It is therefore natural to define the conserved series of the equation (2.10) as those 
series g such that  ~fgEb~3. Thanks to the "integration by parts" formula (2.3) 

we see that  this is equivalent to saying that fVg~O~3. Since gEO@ entails V 9 =0  
we can state: every series belonging to 0~3 is conserved for (2.10) whatever f E~3, 
which is one reason for modding out 0@. 

Translating within this formalism the notion introduced in [L2] we say that 
the evolution equation (or, equivalently, the series f )  is Hamiltonian if there is a 

series gEO such that  f=OVg. Then g is automatically conserved for (2.10) since 
(Vg)DVg=O 1 ~7g 2 )). 

If .fi=~Vgi, i=1,  2, are two Hamiltonian series then 

{fl ,  f2) = OV((V99)OVgl). 

This shows that  the Hamiltonian series form a Lie subalgebra ~ of the Lie algebra 
9~0. We also see that  the commutation relation {fl. f2} =0 is equivalent to the 
property 

(2.14) f lo--1f2 = (V92)i)~791 ~ i ) ~ .  

If (2.14) holds then 91 and 92 are conserved series for both fl  and f2. 

2.2. Evolution equations of  the s ine-Gordon type 

Henceforth we focus our attention on evolution equations quite different from 
(2.10), equations of the kind 

(2.15) uxt = f ( . )  
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in which f is a formal power series in a single indeterminate without constant term 
but with a nonzero term of order 1, i.e., such that f ( 0 ) = 0  and f ' ( 0 )#0 .  

The classical example of an equation (2.15) is the SG equation (1.1) or the 
SHG equation 

1 (2.16) 0t0zu = ~ sinh 2u. 

We shall be interested in the conserved series E[u] (with symbol E E ~ o )  of 
(2.15). They are defined by the property that 

(2.17) at (Eb]) = fi aE [ul~ut : a~[u] 
j=0 ~ 

for some "flux" (I)6~ and all solutions u of (2.15). The equation (2.17) is equivalent 
to 

OE ~ OE j 1 
Ot(E[u]) =Ut~o[U]+j__~ ~ ~ j  [u]O x- ( f(u))  

oE ( o E )  
j=0  

for some ~ @ .  In order to ensure that (2.17) be valid we require, first of all, 

(2.18) OE b ]  : 

for some constant I E C ;  by (2.15) this entails 

9 E  
U~oo  b] = ~ut (0~ut) = 0z (�89 

Note that  (2.18) entails 

(2.19) E[u] = .), f(T) dT+F(Oxu. O~u, ...) 

with F(~I, ~2, ...)E@o. We are therefore left with the requirement that 

(2.20) f (u)  Z ( - 1 ) J o  j [u] =O~O[u] 
j=O 

for some Oc@. 
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Example 1. It is a simple exercise in the applicatio,~ of (2.19) and (2.20) to 
show that  the following differential series and polynomials are conserved for the 
SHG equation: 

E 0  = � 8 9  2 . -  1), - ' 

1 (O~u)'~ + 5(0~,~)2 (0~ ~,)~ + (Oz~,) ~ . 

2.3. The integrodifferential algebra ~o 

Returning to equation (2.15) we note that f(u)=O,-(Otu). In order to make 
sense of this at the symbolic level we shall introduce a new indeterminate r/0 to 
represent Otu. This is akin to re-interpreting equation (2.15) as the pair of equations 

(2.21) Otu=v, O~v = f(u). 

For a rigorous treatment we are going to quotient out a particular ideal in 

the differential algebra @(o 2) of formal power series, without constant term. in two 

sequences of indeterminates ~i, rb, i , j E Z . .  The chain rule derivation in r is 
given by b=b~ +b , ,  where 

0 ~ 0 

j=0 j=0 

As before fEC[[~0]] is a formal power series such that f ( 0 ) = 0  and f ' ( 0 ) r  

Definition 2. We shall denote by 3f  the smallest closed ideal in @(2) stable 

under the chain rule derivation ~ and containing rll-f(~o), and by ~ f  the quotient 

algebra, @(o 2)/Sf. 

A generic element of 5f is a series 

C,C 

(2.22) 9(~,rl) = E aj(~,rl)(r;j+l-oJ(f(~o))), aj E@(o 2). 
j=0 

We denote by ~2 the quotient map @(02/-+~(o2)/~/=~f. Since b'5/C~f, the chain 

rule derivation in @(o 2) induces a derivation in ~ f  which we shall also call the chain 

rule derivation and denote by b. If we continue to call G0 the ring of formal power 
series without constant term in the indeterminates ~ ,  jEZ+ ,  then g l0~2f={0}  
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and therefore ~ induces an isomorphism of @o onto a subalgebra of ~ f ;  henceforth 
~(@o) will be identified with @o itself and we shall talk of the natural injection of 
@o into ~ f .  With this identification we can write ~(HS)=Rv(S) if R(()E@o and 

s(~, ,7) ~@(o ~). 
Let @o[[r/o]] denote the ring of formal series in the (nonnegative) powers of 1/o 

with coefficients in @o (where the indeterminates are the ~j): @o[[r/o]] can be viewed 

as a subalgebra of @X~), not stable, however, under the chain rule derivation in @~). 
The map 

(2.23) @(o 2) ~ S(~o, rio, ..., ~j, r/j, ...), > S'(~o, 'lo, ~1, f(~o), ~2, D(f(~o)), ...) E @0[[,10]] 

induces a commutative algebra isomorphism of ~ f  onto @o[[r/o]] to which we shall 
refer as the canonical isomorphism of ~ /  onto ~30[[r]o~. It transforms the chain 

rule derivation 0 of ~ f  into the following derivation of ~0[[~10]]: 

0 
D / =  O~ + f(~o) Or]o. 

So long as we take f to be the basic series, when we speak of the differential algebra 
@o[[~o]] we a s s u m e  that its canonical derivation is D/. In a sense @o[[r/o]] is the 
concrete realization of ~ i .  We can say that in @o[[rlo]] there are the antiderivatives 
~j =DII~j+I and rlo=D/mI(~o). 

Composition of the natural injection of @o into ~ i  with the canonical isomor- 
phism (2.23) identifies @o with the subalgebra of @o[['lo]] consisting of the series 
that are independent of ~lo. 

2.4. The  operator  V f  and the  range of  Of 

Next we propose to characterize the subspaces D~t- and Df@[[~?0]]. For this we 

need the sequence of formal differential operators acting on gl (2/ [cf. (2.5)J 

k=j ~ k  and V ; k ' F = Z ( - 1 )  k' Dk_ j OF 
k=j  ~ " 

L e m m a  1. We have 
D C 

(2.24) Vi (PQ)  = Z((D~P)VISQ+(DIQ)V}I)P). 
/=0 

.for all pairs of polynomials P. Qcq3~ 2), i=l. 2. We also have 

(2.25) VIJ)D=-V(i  j - l ) .  j = 1 . 2  . . . . .  
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The proof of formulas (2.24) and (2.25) is straightforward and we leave it to 
the reader. 

We shall now exploit the property that f '(0)r this means that the series 
f'({0) is invertible in the commutative algebra C[[{0]]: we denote its reciprocal 

by f'({0) -1. 

L e m m a  2. The differential operator in q3~ 2), 

g ~-+ Dig = ~(f ' (~o)-ZVlg)-V2g.  

maps the ideal "~ I into itself. 

Pro@ According to formulas (2.24) and (2.25) we see that, for each jEZ+ and 

e ?(o 2> , 
:)C 

Vl ((r/j+ 1 -O j ( f  (~o)))a) = ( -  1) j+l f ' ( ( o ) ( o J a ) + E ( 0 '  (qj+l -oJ  ( f  ((o)))) V~ ')a. 
/=0 

V2 ((r]j+l -oJ  (f(~o)))a) = ( -1)  j+l (oJ+'a) +E(O I (rIj+l -oJ ( f  (~o))))V(20 a. 
1=0 

Therefore, if g is the series (2.22) then 

~ C  2<; 

7 ) (V l g )= f ' (~o )E( - -1 ) J+ l~Ja j  and ~ ( V 2 g ) = E ( - 1 ) J + l ~ J + l a j ,  
j - 0  j=0  

w h e n c e  

~(f ' (~o)-Z~tVz9))- / : (V2g) = 0. 

The claim then follows from the commutation relations ~ = ~  and f'(~o) zp= 
~f'(~0) -1. [] 

Lemma 2 tells us that  D/  induces, via ,:. an operator Df  of ~ f  into itself. 

The canonical isomorphism ~ f~o[ [ r /0 ] ]  transforms DI  into an operator Vf  on 
~0[[r/o]]. To find out the expression for VI we make use of the surjection (2.23). 

\u regard a given series SE@o[[~Tlo]] also as an element of @(o2); we form the series 
~(f ' ({o)-IvIS)-V2S which we send to @o[[r/o]] by the map (2.23). Keeping in 
mind that  S is independent of rlj, j>l ,  we see that  

(2.26) VfS=~f(f , (~o)_l  ~-~(_l),,,~,/( OS ) )  OS 
m =0 ~ Orlo " 

We see directly that  D f f = 0 ;  since f({0)=-Ofr]0 this is consistent with the next 
statement, which generalizes part of Proposition 2. 
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Propos i t ion  5. We have O~f Cker Df  and OlqJo[[T/o]] cker  D}. 

Proof. Since 

0 0 ( 0 S )  / O S ,  , .OS 
0~0 0~o 

0 ( O S )  O S ~  O~,,,_~ OCm~fS = ~f -~ if m > 1. 

0 0S 
& l o ~ : S = ~ f ( ~ o )  ' 

we get 

/ 1 0 S  0 S  

PC 

+~f(f'(~o'--l(m~l(--1)m~)7+l(~ ) 

(o,) 
~0. 

Then the claim a b o u t  ~ f  and Df  follows from the canonical differential isomor- 

phism ~/~0[[r /0]] .  [] 

The following consequence of Proposition 5 will be of use below. 

Propos i t ion  6. If a series SE~3o belongs to Oi(@0[[r/0]]) then there is a series 
g2Eq3o and a constant ~ such that S(~)=Af(~o)+~(I)(~). 

Proof. By Proposition 5, SE~f@o[[r/o]] implies tlmt D ) S - 0 .  If OS/Orlo-O this 
means that ' --1 O(f ({0) V'x ( 1 / ' ~ "  Z-~m=0~-- e (OS/O~,,,))=O and therefore that there is a 
constant ~ c C such that 

f i  ( - 1 ) ' 0 "  ( 0 ~ )  = Af'(go), 
m=0 

i.e., V(E({)-kf({o))=0 where V has the meaning (2.4). It suffices then to apply 
Proposition 2. [] 

2.5. Index  shift 

Actually it is convenient to make the change of variables ~j+l~-+~j, jEZ+; ~0 
becomes a new indeterminate ~-1, standing for an "antiderivative". This means 
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that the symbolic equivalent of equation (2.15) is now 

(2.27) d~o = f(~_~). 
dt 

Henceforth we deal with the ring D[[~-I]] of formal power series in ~-1 with coef- 
ficients in the ring D in which the indeterminates are ~0, ~1,.... A generic element 
of D[[~-I]] is a series of the form 

3<2 

Ck,pq-- l q 

p k=0 

where ~P ={~o ... ~ , .  The role played by the algebra D0 in the preceding subsections 
will now be played by the ideal D[[~-l]]0 in @[~-1]] consisting of the series without 
constant terms (to be distinguished from the strictly smaller ideal D0[[~-l]] of the 
formal power series in ~-1 with coefficients in D0). The chain rule derivation in 
D[[~-I]] is given by 

0S 

j = - - I  

The derivation ~: D[[~_l]]0-+D[[~_z]]0 is injective; its restriction to D (the subalge- 
bra of series independent of ~-1) is equal to the usual derivation 0. The range of 0 
is equal to the kernel of the formal differential operator 

(2.30) S I ) E ( - -1 ) JDJ+I  a S  . 

j = - I  

The restriction of the operator (2.30) to D is equal to aV, where V is given by (2.4). 
The shift of indices leads us to identify the integrodifferential algebra ~0 with 

the differential algebra (D[[~-l]]0)[[q0]] of formal power series in q0 with coefficients 
in D[[~-l]]0. The derivation in (q3[[~-l]]0)[[q0]] is given by 

0 
(2.31) 01 = 0+ f (~ - l )  Oqo" 

We get the following expression for the operator D}: 

,232, 
j =- 1 ~j 0~o" 
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L e m m a  3. 
then 

2.6.  H a m i l t o n i a n  series  in ~[[~-11] 
We now describe the Hamiltonian approach to the conserved series of the equa- 

tion (2.27). Let q~=OVq~ be a Hamiltonian series in ~ .  We propose to give a 
meaning to the product q)VS for an arbitrary series S~[[~_~I] .  For this. we first 
extend the operator V defined in ~ to the linear subspace of ~[I~-~]] consisting of 
the series S such that 0S/0~_~S((~3[[ ~ 11]0)[[~10]]) by setting 

(2.33) v s = - ~ 2 1  ~ + (-~) ~ o-~- . 

Then The condition on S is very restrictive as shown by the 
following lemma. 

ZJ c a seizes S ~ o [ [ ~ - l ] ]  is such that OS/O~_, EOf((~[i~-~]io)i[rlo]]) 

(2.34) S(~) = A f(T) dv+W(~o,  ~] .... ) +Dr 

with W E ~ o ,  (I)E~[[~_I]] and AEC. 

Proof. If SE@0[[{_I]] then OS/O~_I e~[[~-l]]0. By Proposition 6, ifOS/O{-1E 
then OS/O{ l = A f ( g - ~ ) + ~ ( ~ )  for son-le ~E~[[~-l]]O. It fol- 

lows that 

/o S(~)-A f(T)dr--O kO(~-, ~o, ~1, ...) d~- 

is independent of ~-1. [] 

The operator ~IV, however, is defined in the ,,'hole of @[[{_~]] and maps it 
into itself; as a matter  of fact it coincides with the operator (2.30). 

Definition 3. We shall say that a series ~E@[[~-~]] is f-Hamiltonian if there 

is a series q/=A fo ~-~ f @ ) d r + W ( ( )  with IVE@o and AEC, such that (I)=0fV/I j. 

The series f itself is f -Hamihonian since f ( ~ - l ) = - 0 S V  ~o ~-~ f@) dr. In pass- 

ing, note that V(fo ~-~ f ( r )dT")=-r /o  and therefore does not belong to @[[~-1]]. 
Generally, if S(~) is given as in (2.34) then 

(2.35) ~svs =-xf(~-~)+~vw. 

To any f-Hamiltonian series (I) we associate the formal vector field 

0 
(2.36) ~ = (~f i(1)) ~ u-:~- +~'-'(OJ(I)) 
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When (P~@ this definition coincides with (2.9). In general, if O=~)fVt] ~ with ~(~)= 

A fo ~-1 f0-) dw+W(~), We@o, AEC, then 

0 
(2.37) "Oe=- (V~)  0 + Z ( ~ j o ) o ~  " 

j=O 

Since V ~ = - A r / o + V W e  (@[[{-1]])[['1o]], (2.37) implies that 0r is a derivation from 
@[ -111 into 

If ~ = f ( ~ - l )  we get 

(2.38) Cf =Ofl(f(~_l)) og--~--§ ~j 
~--1 j=O 

(keep in mind that 0fx(f((_l))=r]o).  If O=0~,V(Afo r f0-)d~-+W(~)) we get, 
by (2.35), 

~9~ = -A0f  +d~vw. (2.39) 

Note that 

(2.40) ~OVI~V = ( ~ J + l v l v )  ~ j .  

j = -  1 

This means that the change of variables ~j_l~+(j, j cZ+ ,  transforms the vector 
field d~vw in @[[~-1]] into the vector field dwv  in @. It follows right away that 
O~vw~=Oi)~vw. This property extends routinely, 

Proposit ion 7. /f  ~e@[[(-1]] is f-Hamiltonian and Se@[[~ 1]] then d~OS= 

O fr 
Next we define the Poisson bracket between two f-Hamiltonian series O1= 

0fV~x and O2=0fVr If r and ~2 belong to G0 the Poisson bracket {O1,O2} 
has been defined in (2.12). Vv'e shall adopt the same definition here but we must keep 
in mind that when an f-Hamiltonian series �9 depends effectively on ~_ 1 the associ- 
ated vector field '0~ depends on the choice of f ,  as is made clear by formula (2.39). 
Thus we set 

(2.41) {O1, O2 } = fl~ 02 - d ~  2 01. 

The bracket (2.41) induces the bracket (2.12) on G0. There is no claim here that 
{O1,02} is also f-Hamiltonian (see the proof of Proposition 8 below). \Ve can only 
claim that {01,02} E (?~[[~-1]])[[70]]. 
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We need to prove the analogue of formula (2.13). This would suggest that  we 
prove the formula 

{Ol,q52} = 0 V ( O 1 { ) / 1 0 2 )  

with the meaning (2.aa) for V. The trouble is t h a t  t)/102=~71~/2 might well de- 
pend on r/0 and V does not act on such a series. But we m%v avail ourselves of 
formula (2.32) which shows that 0 ; V = f ' ( { _ l ) 0 f l D }  when acting on series that 

belong to @[[{-1]]0. In view of this we can extend formula (2.13) as follows. 

P r o p o s i t i o n  8. /f  OiE~[[ ( - -1 ] ] :  i = 1 . 2 ,  are two f-Hamiltonian series then 

(2.42) D}(O102102 ) = 0/(f '(~_1)-1{O~, 02}). 

If moreover 02 =~VW2 with W2 Eq3o then 

(2.43) { O 1 , 0 2 }  = { ) f V ( 0 1 0 / 1 0 2 ) .  

Pwof. Let us write ~i(~)=Ai fo ~-~ f(r)dr+I,l',(~), IV/e~o, AieC,  i.e.. 0 i =  
-Aif(~-l)+OVWi. Making use of (2.39) shows that 

{Ol, ~2} =-~os(ovw2)+a2os(ovtv~)+,x2oow< f(r 
-;~Oow~ef(~_a)+{OVWx, ovw2}. 

Since the series OVWi is independent of ~-1 we have, according to (2.13), 

{0VW,, ~VW2} = ~V((0VWl)VI,~,~), 

where VW~i has its usual meaning. Going back to (2.37) we get 

as well as 

OoVW~ f (~ - l )  = - - f ' ( (_  1)V1u 

vgf(OVlsVi)=OO/(Vl~Vi)=OE(OJ(f(~_l))) . (VWi). 
j=O 

Concerning this last expression we apply Proposition 3, 

oc �84 :x: 

E ( o J ( f ( ( _ l ) ) )  ~7((VI'l'(i) = Z(oJ(f((_I)))v(J)(vWi).  
j=O 3 j=O 
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Comparing the right-hand side with formula (2.7) and taking into account the fact 
that  X7(J)(f(~_l))~0 for all jEZ+  we can write 

o~ 

j=0 

At this stage we have gotten 

= Z ( _ I ) r  j O (f(~_I)VIV/) V(f(~_I)VII '~) 
j=0 

-t-tl71 (f'(~_I)VIVi), 

o2} = ov((oVWx)VW2) 
~c +A2(-f'(~-I)VI'VI§ 

-)tl(-ft(~-l)VliV2-~(-')j~j4-1(~@j(f(~-l)~iV2))). 
Returning to (2.33) we see that  

0 

j=0 ", 3 

whence 

{O1, O2} =~V((OVW1)VW'2)+A2OfV(f(~_i)VIV1)-AlOfV(f(~_I)VI'V2). 

It is here that  we use the fact that 0 fV=f ' (~_ I )0} - ID}  when acting on series 

belonging to 9~[[~-1]]0. It enables us to derive from the preceding equation 

l --1 Of(f (~-1) { 'Ih,r  = D}((-A~f+OVW~)(-A2Oy~f+VI'I~))-A1A2D)(fDflf) . 

But Proposition 5 entails D~f(fOfl f)=e)(of( l(o;i f)2))=0.  [] 

C o r o l l a r y  1. If Oi~@[[(-1]], i=l. 2. are two f-Hamiltonian series then the 
proper~y (Dl ( ) ;102~0f ( (@[[~_ l ] ]0 ) [ [? ]o ] ] )  cntai~s {(~)1, ( I )2}=0-  

Proof. This follows immediately from (2.42) and Proposition 5. [] 

2.7. Conserved series in vD[[5-1]I 

In accordance with the discussion in Subsection 1.1 we are interested solely in 
the conserved series E of equation (2.27) such that OE/Orlo=O, i.e., E c ~ [ ~ - l ] 0 .  
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(2.45) 

hence 

\u shall also take E to be reduced, which simply means that the image of E under 
the map { j~{j+l  is reduced (see Definition 1). To say that K is cor~served for f is 
to say that 

(2.44) OrE C D/( (9 [ f -  1]]o)[['10]]). 

Note that Of~o=f((_l):-Ofrlo,  i.e, go is conserved for every f. 
To ensure (2.44) we require first that (2.18) he satisfied, that is to say, after 

the index shift, 

OE 
- ~ I ( ( - ~ )  : ~ i ( o j ~ f ( ~ - l ) ) ,  

and (cf. Lemma 3) 

1 2 

(2.46) E(~) =- ~ r./o~ -~ f (r)  dw + F(~o. ~1, ...). 

The series FE~0 must satisfy (cf. (2.19)) 

j OF 
OfF = ~ ~ (f(~_l)) j~ 7 E 0f((~[[~-l]]o)[[r/0]]) 

j=0  

or equivalently by (2.3), 

/ ( ~ _ I ) E ( _ I ) j D j  OF E0f((~[[~-l]]o)[[qo]])- 
j=0  

By Proposition 6 this last property amounts to the fact that f ( ~ _ I ) ( V F - # ) E  
D(~[[~-a]]) with V given by (2.4) and pEC. But since pf(~_l)=--pDfrlo we con- 
elude that 

(2.47) I(~_~)VF = -tt0f,lo +~ 

with ~ E~[[~-I]]. 
We can rephrase all this in the Hamiltonian terminology of the preceding sub- 

section: by (2.46) and Definition 3 the series DIVE is f-Hamiltonian. Combining 
(2.45) and (2.47) shows that 

f({-1 ) ErE = -(A - # ) f  ({-a )0} -1 (f  ({-1 ))+ f(~-1 )(VF - p )  

= �89 (A- #)Dr (~ )  + f ( g - 1 ) ( V F -  p) E Df ((~[f-1]]o)[[00]]). 

Corollary 1 allows us to conclude that {f. DIVE}=0. 
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The following result will be used in the next section. 

P r o p o s i t i o n  9. Let F c~3o be a reduced polynomial verifying (2.47). If F-p~o 
is homogeneous of weight x>_2 then y. must be even. 

Pro@ We inay as well assume p = 0 .  Let IT/1 be the order of F and let us write 

F = Po({'){~ +P1({'){~;}-1 + terms of degree less than r 1 - 1  with respect to ~ ...... 

where { '=({0,  ..., {,~,-1), r1>_2 and the polynomial Po does not vanish identically 
unless F - 0 .  Then 

7YZ 1 ). OF ~F= Z a(f(~_, ) ~  
j=--i 

( rnl 1 Op 0 . 
= "j=~--i b~J i)3(f(~--l)))~:nll 

=j_(rlroOr" l ( f ( :  l)).j_r)~-=~l OPl.oj(f(fi l,,'~firl--I 
.j = -  1 0 ~ j  . . . .  - " '  ] " " :  

+ terms of degree less than r 1 - 1  with respect to ~,-1. 

Since r l  >_ 2 and the order of D j ( f  ({_ 1 )) does not exceed m 1 - 2 i f  j < m 1 - 1 the series 

(m~-i bJ(f(~_l)) C;gP~ ~ E 

is reduced. If  0fFCD(@[[{_I]]) then necessarily 

17) 1 1 OPo 
(2.48) E bJ(f(~-l))-~j =--0. 

j=--i 

Suppose the order m2 of P0 is >_ 1 and let us write 

P 0 ( ~ ' )  P, ~ " ~ " ~  + = 0,1tq j~.,~,~ terms of degree less than  rl with respect to ~,~,, 

where ~ ' =  (~0, ..., ~-~1-1), r~ >_ 1 and the polynomial P0.1 does not vanish identically 
unless P 0 - 0 .  We see that  

rnl--1 P o(% m 2 - - 1 ~ j ( , c (  c ~OP0.1(~ I) 
E o -  =ca, E o , , , , - , , ,  

j= 1 ~J j = - i  

+ terms of degree less than r2 with respect to ~m2. 
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Therefore (2.48) implies 

' ~ -~  ))0P01(~') 
~J(f(~-i  - 0  

j = - -  1 0 ~ j  

We see that  

If 7" 2 ?'1 F =Po,l(g )(~'?Tr,2~'i, TZ 1 -~- terms of degree less than rl with respect to ( -u  

+terms of degree less than r2 with respect to ~-~2. 

Repeating this argument we come to the conclusion that 

where 

r ~ < . . . < r 2 < r l ,  (ml+l)rl+(m2+l)r2+(rn~+l)r~=~ 

and the polynomial R(~) is a sum of polynomials 
p ! / 

( 2 . 4 9 )  ~O(~o, . . . ,  ~m,~ -- 1 ) ~ r x x  "'" {~Y~2 {7"2  . . . . .  3"1 

where l_<a_<., "i-<'l, "i < ~ ,  ..-, ~i-1 _<~-1 and ~i <r~. Since 

(2.50) OfF = c r ~ i )  r n "  ( f ( ~ - 1  ))~, ;~,--1 . . .  ~r,~ 2 ~;~1 - F R 1  ( { )  

with RI({) being a sum of polynomials (2.49) where I_<A_<~. r~<rl. ' __ . r 2 _ ~ r 2 ~ - . - ;  

r l -  1 --~ rA- 1 and r~, < rx, with the proviso, now, that if 1 = ~ then r', <_ r .  - 2. It follows 

from (2.50) that  0fFEO(@[[{_I]]) implies that r ~ = 0  for all c t<u and r~=2: or else, 
that  c=0  in which case F ~ 0 .  If F ~ 0  the weight of F is equal to 2 ( rn ,+ l ) .  [] 

3. T h e  s i n h - G o r d o n  h i e r a r c h y  as an  e x t e n s i o n  of  t h e  M K d V  h i e r a r c h y  

Henceforth we use the notation introduced in the preceding subsection. We 
refer the reader to Example 1. The SHG equation corresponds to the formal dif- 
ferential equation (2.27) in which f ( ~ - l ) -  1 sinh 2{_1 The conserved series for the - - 2  
SHG equation in Example 1 have now the expressions 

H o = l ( c o s h 2 ~ - l - 1 ) ,  H1 1 2 _- 1 2 4 1 2 , = ~ 0 ,  H2 - E ( ~ l + ~ o ) ,  H a = ~ 2 + 5 ~ 0 2 ~ + ~ 0 6 .  

Inspection of the standard lists of low weight conserved polynomials of the MKdV 
equation (e.g. in [T2]) shows that  H1, /42 and //3 are the (normalized, weight- 
homogeneous of weight 2.4 and 6, respectively) conserved polynomials of the MKdV 
equation. This observation suggests tile following statement. 
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T h e o r e m  2. Every conserved series of the sinh-Gordon equation, i.e., of the 
1 sinh2~_], has the form series 

(3.1) E({) = �89 1-1)q-F(~0.~l, ..-), 

where F is a conserved series of the MKdV equation and AEC. 

Proof. We begin by proving that every conserved series of the MKdV equation 
is conserved for the sinh-Gordon equation. We know that the conserved polynomials 
of the MKdV equation of weight 2. 4 and 6 are conserved for the sinh-Gordon 
equation. We shall apply the recursion formula for the MKdV polynomials ~Im= 
(-1)'~0VH.~+I : 

A~,,,+ 1 = T0-13L, .  

i.e., 

(a.2) - ~ V H , , + I  = TVHm, 

where 

TVQ=~aVQ-4~(~VQ)+4~o~I VQ+4~IO I(~IVQ). 

[We are availing ourselves of the fact that 

a direct consequence of (2.3) and (2.4).] 
Using the notation g to mean congruent modulo Of@o[[rlo]] and keeping in 

mind that  ~ f=~  on @0 we have 

f (~ - l )VHm+l  ~ --(oflf(~_l))OVHm+l 
= (0 j l f (~  1))(OaVlgrn-40(~2VHm) 

+ 4{o{1VH,, +4{1~- 1 ({1VH,, )) 

+4~o{1 (O}q f (~-1))VH,, ,-4~o~)f((oflf({-1))O-l(~lVHm)) 

~{of'({-1)~VHm+4{of({-1)({oVU,,-~ * ({1VHm)) 

={of'({_])~VH,,, +4({oVHm-~-I(~I VH,,,))~(~ ~-1 f('r) d'r) 

~ ( f ' ( ~ - l )  - 4~oo ~-~ f(r) dr)~oOVHm. 
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When f({ 1) -1-~ sinh 2{_1 we have f ' (~- l )  --4f0 ~-1 f ( r ) d r = l ,  whence 

1 sinh(2{_ 1 ) VH,,, + 1 ~ --~1 VH,, 

It suffices to apply (3.3) to conclude that �89 sinh(2~_,)VH,,+l EOr 
Next we show that if a reduced series FEq3o satisfies (2.47) with f ( {_ l )=  

1 sinh2{ l, then F is a conserved series for the MKdV equation. It suffices to deal 

with a weight-homogeneous polynomial FE+0  of weight ~._>2, {0 being obviously 
conserved. According to Proposition 9 we need only consider the case of an even 
weight. We begin by proving the following claim. 

Claim. Let r be a reduced series belonging to ~o. For a series GENII{-1]]0 
to exist such that 

(3.4) sinh(2~_~ )VF = OG 

it is necessary and sufficient that there be two series A. BE@o such that 

(3.5) VF=OA+2~oB and 0B+2~oA=0.  

Proof of Claim. Suppose (3.4) holds. Letting 02/c9~2_ 1 act on both sides of the 
equation (3.4) leads to 

1 02G 
sinh(2~_l)VF = ~bj~2_ 1 . 

whence 02G/O~21=4G by comparing the last equation to (3.4). This means that 

G(~-I, ~0, ~1, .-.) = A(~) sinh 2~-1+B(~) cosh 2~_~ 

with AEg~ and BE@0. Putting this into (3.4) yields 

sinh(2~_l)VF = (bA+2~0B) sinh 2~-1 +(bB+2~0A) cosh 2~ 1 

and (3.5) follows. The implication (3.5) ~ (3.4) is proved by tracing back the 
preceding argument. [] 

From (3.5) we derive, for all uEZ_. 

( )'3.6-V 0~F O~A 2 0 u B  c)~-lB ~)uB O"A OU-IA 
0 ~  = 0 ~ +  ~ o ~ - + 2 -  0 ~ _  1 and 0 0 - ~ - + 2 ~ o ~ - + 2 v '  ~ =0. 
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The second equation requires the degree of A with respect to {o to be less than 
rn=deg~o B (if rn=0 this will mean A - 0 ) .  Indeed. for any, u>rn  we have 

0 [" c)UA O~-IA~ 
<o t?~ 

which in turn implies 0 ~A/o{~-0 .  Now suppose rn _>/1o = degeo F. Taking u = m + 1 
in the first equation of (3.6) yields O " B / O { ; " - O  which contradicts the definition 
of m. We must therefore have m</~o. Note that if/~0=0 this implies B=_A==-O and 
therefore V F ~ 0 ,  i.e., F_=0 since F is reduced. 

Suppose #o>0.  Then taking v'=ffo in the first equation of (3.6) and u=/~o-1  
in the second one implies 

V F o = 2 # o B o  and DBo+2( lao -1 )Ao- -O .  

where we have used the notation 

0 ~~ F g),,o- 1 B ?)s,o- 2 A 
F 0 -  0 ~ o  , B 0 -  0~o_1 and A o -  #)~,o-2 

These series are independent of{o; this means that 0 can be equated to the operator 

and 

j = l  J 

V U o = ~ ( _ l ) j b .  1 OF . 

j = l  

We can repeat the same argument with Fo, Ao and Bo in the place of F. A and/7,  
respectively, and with {1 in the place of {o, 

" O"B ~, O " A o  V cq~F~ = 2 # o ~  and - -  O~[ 0~1 0 0~[ ~ + 2 ( F , o - ~ ) ~ -  - 0 .  

But if we put p>/zl~-deg~l ]470 we get ?_)"Bo/cg~'~=O and therefore the degree of 13o 
with respect to {] must be _<#2. Likewise the degree of Ao with respect to ~1 cannot 
exceed that of Bo by the second equation. Repeating this argument iteratively for 

O#k Fk_l  c~#~ 'Bk_ l  O~'~Ak_l  
F k -  a { ~  , B k -  a{~! k , A k -  a ~  ~ k . = 2 . 3  ... .  , 
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we obtain equations 

V OpkFk-1 - 2 # k  OpkBk-1 and 0 ~ }-2(pk-1) O~'kAk-~l - 0 .  

This can be pursued until k reaches its maximum value, which we call a:. such that  
O**k Fk_~/O{~ k ~0; we have O"~ F:_~/O{~ - =C and therefore 

0 G - 1  
{ ~ +  terms of degree less than/2~. 

with respect to a2. But since F~,_ 1 is weight-homogeneous and only depends on {~ 
we must have 

0"* ~ F..-2 C /~  . 

0{~,_1 

Recalling that  F is reduced we must have/2~: >_ 2. Then, if c~' >_ 1 the left-hand side 
in the equation 

V 0]*a;-- 1 F  a.__2 01/~' 1B~,, 2 

,~_~ -2/2~. 0{~_1 

has the form 

C 
{"~-2{2 . + terms of order less than 2a:. 

(~ ,  - 2 ) !  ~" 

But the right-hand side is of order <a.'. Vs conclude that  F0 is a constant cr 
Thus, considering what  are the re&~ced monomials of the kind ( p ( ~ - I  1 < / < 8  

and of weight ;r we must have 

F(~) = c{~+ terms of degree _< ;-:.-4 with respect to ~0. 

Take x=2r~; it follows easily from the recurrence fornmla (3.2) that  

( 2 m - 3 ) !  
H~(~) = m!(m_2)!~2~ '+  terms of degree < y . - 4  

with respect to {0. V~'e conclude that  the polynomial 

F1 = F -  m ! ( m - 2 ) !  cH,, 
(2~-3)! 

1 sinh2{_l and therefore the same argument as also satisfies (2.47) with f ( { _ l ) = ~  
above can be applied to it. Since/:1 cannot have any monomial of the form c{~ it 
must vanish identically. The proof of Theorem 2 is complete. [] 
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We can apply Corollary 1 to make the following observation. 

When f ( {_ l )= �89  for an f-Hamiltonian series ~VEE~[[{-1]]0 to 
satisfy the commutation relation {f,  ~VE} =0 it is necessary and sufficient that E 
be of the form (3.1) with F being a conserved series of the MKdV equation and 
AEC; and therefore that M ( { ) = ~ V E ( { ) - l A s i n h 2 { _ ~  belong to the closure in q3o 
of the span of the MKdV polynomials. 

The set of all the f-Hamiltonian series ~VE above is a kind of maximal abelian 
Lie algebra, since the MKdV series 211 commute among themselves. But the f -  
Hamiltonian series do not form a Lie algebra for the bracket (2.41). At any rate the 
inclusion among them of the series �89 A sinh 2{_ 1 determines that  abelian Lie algebra 
uniquely, precisely by Theorem 2. 

The commutation relation 

{ �89 sigh } -= 0 

means that  sinh2{_l is a conserved series of the MKdV equation. Viewed as a 
functional u~-~sinh2 fXu  it is what is called a nonlocal functional. On the other 
hand, any conserved polynomial P(~0, {1, ...) of the MKdV equation defines a local 
functional of the SHG equation, namely 

u ~-~ P(O~u. O~u, ...) 

(cf. Example 1). 

As announced in the introduction, the characterization of the conserved series of 
the MKdV equation provided by Theorem 1 extends to sinh 2~_ 1- Indeed. consider 
a meromorphic series 

1 ~c x" 

z~,:l 

We can define 
X ~C X7 l 

Ozlu= u(x) d x = + l o g x + E ~ . _ l - ~ . .  

The residues of the formal meromorphic series 

\ n ~ 2  

are equal to zero. 
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4. Other  equat ions  of s ine -Gordon  ty p e  

4.1. Pairs of  series and po lynomia l s  of s ine -Gordon  ty p e  

In this section we discuss briefly the existence of pairs consisting of a series f 
and of a reduced polynomial Ecq30 satisfying (2.44). which here means 

( 4 . 1 )  f (~ 1)VE C ~(@[[~-1]]). 

where V has its usual meaning. We assmne that f (0 )=0 ,  f ' ( 0 ) r  and that E is 
weight-homogeneous for a given weight. Thus E will be a conserved polynomial 
of equation (2.27) and OE/O~_I ~OE/Ot]o=-O (cf. (2.46); we limit ourselves to low 
weights). 

As before, ~ will stand for congruent rood 0(@Jig_all). We shall not distinguish 
between pairs (f,  E)  that can be transformed into one another by a transformation 

(4.2) (f(~),E(~)), ~ (clf(_o~).c2K(o~)) 

with cl,c2, t )cC and clc2gr 

4.1.1. Weight 4. Every polynomials homogeneous of weight 4 is a constant 
multiple of E2 (~) -- 1 c2 • 1 ~ 4  - -~sa .5 , .~ ,0 .  For E=E2 condition (4.1) reads 

= Af(~-~)~g-f(~_l)~2 ~ (Af(~_~) t 1i 3 

and requires f1 '=2Af.  Assuming A r  and f (0 )=0 ,  f / ( 0 ) r  leads to 

1 
f ( ~ - l )  = ~ sinh 2A~_1. 

All these pairs are equivalent to the SG hierarchy. 

4.1.2. Weight 6. Reduced polynomials that are weight-homogeneous of weight 6 
are constant multiples of 1 2 / 3 2 2 6 E 3 ( ~ )  ~- 2~2 -~- A~I  -~- ~ 0 ~ 1  -~- C~0  �9 

A brief calculation shows that condition (4.1). in which E=Ea, reads 

( 6 C f ( ~ - 1 ) -  ~Bfa ii (~-1)+~1 f( i~ ' ) (~- l ) )~ 

~ f  (~-1))~o~1 =0 .  +(2Bf (~- l )+3Af l (~  1) -5  Ii 2 

This requires 

f ( i~ ' )-2BfH+24Cf-:O and 5 ~i 1 5 f  - 3 A f  - 2 B  f = 0 .  
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We seek solutions of the kind f (z )=z(exp  Az-exp itz) with A. 11, z E C ,  Alt#O. and 
At;#. This demands that both A and/1 be solutions of the pair of equations 

r 4 - 2 B r 2 + 2 4 C = O  and ~ r 2 - 3 A r - 2 B = 0 .  

Note that A##0 implies Br and Ar implies 9A2+20B#0. 
The case A=0 is essentially that of the SG equation: A=-p=2VfB-/5. 
The cases Ar are very different. For the sake of simplicity we carry out a 

transformation (4.2) allowing us to take - 5 B - 5 .  The previous equations become 

r 4 - 5 r 2 + 2 4 C = O  and r 2 - ~ A r - 2 = 0 .  

1 and A=:t:~. If These two equations have two common roots if and only if C = g  
5 

A = - g  we get the pair of roots (1,-2); if A= 6 we get the pair of roots (-1,2); the 
corresponding pairs are obviously equivalent. We shall take 

(4.3) f(~-l) =exp~_l-exp(--2~_l) and E3(~) =t2~22 __ 6~,15r177 5~'2j:2-/- 1 ~ : 6 - -  ~S0Sl  6S0" 

With the choice (4.3) of f ,  the equation (2.15) becomes the Ablowitz Kaup Newell 
Segur (abbreviated AKNS) equation (see [AKNS]). 

4.1.3. Weight 8. It suffices to look at the reduced polynomials homogeneous of 
degree 8, 

E4 1 2  2 t 2 4 2 3  = 5~:~+( ( / (o+a6)~+b~l+C~Or  + ~1 <o.S 

As before we take f ( z ) = ~ ( e x p  Az-exp t~z) with AFt#0 and A#Ft. A straightforward 
calculation yields 

e r~ l y E 4  ~ ( 2 a + a ' r  - 7 r2)~o~22e,-~_ 1 _ ( - 2 c +  2 r ( a  - 2b) + ~ a ' r  2 - 7r 3) ~o~3e "~-1 

1 ((/1.4 _dr2+3e_  1 ~6 ]c7~r{ -a  + (4d+ 3or - 9at  2 - a ' r  3 + 7r 4)~3~2 e "~ ' + 5 5"  J,o ~ 

~ 0  

\u equate the coefficients to zero: 

2 a + a ' r - ~ r  2 = 0 .  

(4.4) - 2 c + 2 r ( a -  2b) + ~a ' r  2 - 7 r  3 : 0. 

4d+ 3 c r -  9or 2 - a t r 3 + 7r 4 = 0. 
1 6 3 e - d r 2  +ar  4 -  :~r =0.  

Note that A#•0 implies ar and ASp implies 28a+(a')2#0. 
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The case a ' = 0  gives the roots •  corresponding to cases equivalent to the 
SG equation. In this case we may take r = + 2 .  i.e.. a=7;  the remaining coefficients 
are then determined, 

E4= l 2 - ~(~ +35~o(~ + ~(o. 

This is the fourth (normalized) conserved quantity of the MKdV equation, //4 in 
the notation of the preceding subsection. 

When W#0 we get pairs of roots g, -20 ,  with g depending on the choice of the 
coefficient e. In other words we get pairs equivalent to those of the AKNS equation. 
We may as well select g= 1; then necessarily 

(4.5) E4 1 2 7 2 2 7 4  7 2 3  4 2  1 8 
5~3 + 5 ( ~ 0 - ~ ) 6 -  ~ -  

4.1.4. W e i g h t  10. The generic weight-homogeneous polynomial of weight 10 is 
a constant multiple of the polynomial 

E5  i 2 2 2 3 C 4 C 2 C 2 2 = ~4  + (aKo +a2(~)(3 + b(o6 + ( ~(o + 2(o(~ + 3(, )6  
5 2 4  4 3  6 2  +'n~ +'y2~o~z +~3~o~z +~'4~0~ + ~oe~ ~ 

Direct computation shows that  

oc 

e - r (  1 E ~j  (er~ l r  ~___ �89 ( 4 a l  _~ 2 a 2 r -  9r 2)~0~ + ( b - a 2 r  + 5r 2)~3 
j = 0  

+ terms of order _< 2. 

Since we want E5 to be a conserved polynomial of e x~-~-e  -"~-1 with A # #  and 
A##0 it follows that  the two quadratic equations 

9r 2 - 2 a 2 r - 4 a l  = 5r  2 - a 2 r + b  = 0 

must have the same roots. This demands a2=0 and therefore A = - # .  It means that 
through a transformation (4.2) brings us back to the SG situation. 

4.2. T h e  A K N S  h i e r a r c h y  

The polynomials E3 and E4 given by (4.3) and (4.5) provide us with the con- 
served polynomials of lowest weight (6 and 8, respectively) of the AKNS equation 

(4.6) OtOr~u = e " - e  - 2 "  . 
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Keep in mind that  the variable [ j  corresponds to the derivative 0az+lu; to u itself 
there corresponds the variable {-1. We have just seen that there is no conserved 
polynomial of (4.6) that  is weight-homogeneous of weight 10. 

The Hamiltonian polynomials 

P1 = 10VE3 = ~5 - 5 (~  - ~z)~a + 5 ~  - 20~0~142 - 5~ a + 5{~1, 

= @ - 7(~g -41)~5 - 21(2~041 - ~2)~4 -~- 14~ 2 - 704o42~3 - 14(4{~ _{4 +r ~g)~3 
28 6 2 3 28 4 2 

- ~-~0~1 +84~0~1 - ~-~1 + 5640 (2~0 -{1)4142 - 7(24g + 11~1)~ 2, 

constitute the start of the AKNS hierarchy, after the series e ~-~ - e  -2r They 
commute: {P~, P2}-0 ,  which is to say that  V E 4 ( ~ V E 3 ) ~ O ~ .  This can be proved 
by a straightforward (although lengthy) calculation. The AKNS hierarchy spans an 

abelian subalgebra of the Lie algebra q3[[4_1]]. 
The congruences mod ~q3, 

/~3 ~,~ 1 2 3 2 = g ( ~ 0 - ~ - ~ l )  "4- 1 

l~4 ~ 1(~2  1_~1)4 { _3  2 2 = ~ ~(~o+41)(2~041+42) + �89 2 

point to an interesting feature of the polynomials Ea and E4: after division by 4 
1 2 (see [M]) of they are the pullbacks under the Miura transformation r]0 = [((0 +41) 

the two polynomials 

~/]0-~-~'r/1 a n d  Q i ( / ] )  = 2  4 2 1 2 5qo+3ZlOql + ~712. 

The polynomials Q~ and Q~ can be compared to the normalized conserved polyno- 
mials of the KdV equation of the same order, Q3 and Q~: 

= + 1 

1 ' 6  24  4 18 2 1 2 4 2 1 2 ggQ4( ~1)= rl -k rlO~?l-i-~r12 7g Q4 = lOOo-k lOllor11+-~rl 2. 

After the change of variables r/~-+6r~ and multiplication by a constant, ~VQ~ becomes 
the KdV polynomial Rx=r13-12r~or h. However, the same change of variables does 
not transform ~VQ~ into a constant multiple of the second KdV polynomial R2 = 
~5--20~0~3-40~1~2+120~2~. It follows that 0VQ~ and oVQ~4 do not commute, 
otherwise the change of variables rp-+6r~ would bring VQ4 into the centralizer of 
R~ which it does not. And indeed, 

/ t 4 3 2 (5 % - 3rh - 6qo rD - r/o q~ _ O4(0VOa) = +q4)(rl3 ~ 3 13 ) = qO r]l ~- T~11~2.  

Another interesting feature of the AKNS hierarchy is the following residue 
vanishing result, which is proved by direct calculation. 
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P r o p o s i t i o n  10. Let E3 and E4 be given by (4.3) and (4.5), and let F ( ~ - I ) =  

1 - 2 ~ _ ,  :~ I f  ./0~-~ (e~- e-2~) d~=e~-' + ~e - ~ .  

(4.7) 
"" t~=l 

with k = l  or k = - 2  and arbitrary coefficients h,~ EC. then 

ires F ( O - l u )  = Res E3[u] = Res E4[u] = 0. 

where 
DC 

o _ l u = k l o g x +  E 1 ~ r,~+l 
,~:~ (7~+1)-~' " " 

Moreover, any weight-homogeneous poly~wmial P of weight 2j such that Res P[u] = 0  

for the series (4.7) is a constant multiple of El ,  j = 3 . 4 .  

This leads natural ly  to the following conjecture. 

C o n j e c t u r e  1. For" a series gE@[[~-l]]  to be a cow, served series of the A K N S  

equation (4.6) it is necessary and sufficient that R e s g [ u ] = 0  for the formal series 
(4.7) with k = l  or k = - 2 .  

For further information on the AKNS hierarchy we refer to [AKNS]. 
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