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Projections in the space H ~ and the corona 
theorem for subdomains of coverings 
of finite bordered Riemann surfaces 

Alexander  Brudnyi(1) 

Abstract .  Let M be a non-compact connected Riemann surface of a finite type, and R~%I 
be a relatively compact domain such that H1 (M, Z)=HI(R. Z). Let /~--+R be a covering. We 
study the algebra Hm(U) of bounded holomorphic functions defined in certain subdomains UCR. 
Our main result is a Forelli type theorem on projections in H~C(D). 

1. I n t r o d u c t i o n  

1.1. Let  X be a connected complex manifold and H~(X) be the algebra of 

bounded  holomorphic functions on X with pointwise mult ipl ication and with norm 

Ilfll = sup If(x)l. 
x E X  

Let r:X--~X be the universal covering of X.  The  fundamenta l  group r q ( X )  acts  

discretely on ) (  by biholomorphic maps. By. r* ( H ~  ( X ) ) c H : ~  (X-) we denote  the  

Banach subspace of functions invariant with respect to the act ion of ~rl(X). 

In this paper  we describe a class of manifolds X for which there is a linear 
continuous projector  P :  H ~ (3~) -+ r* (H  ~ (X))  sat is~ ' ing 

(1.1) P(fg)=P(f)g for a n y f E H ~ ( 2 )  a n d g C r * ( H ~ C ( X ) ) .  

Forelli IF] was the first to  discover tha t  such projectors  P exist for X being a 

finite bordered Riemann surface. (In this case X is the open unit disk D c C . )  

Subsequently, existence of a project ion opera tor  sat is~' ing (1.1) for certain infin- 
itely connected Riemann surfaces was established by Carleson [Ca3] and Jones and 

Marshall  [JM]. In all these results the projector  can be const ructed  explicitly. 

(1) Research supported in part by NSERC. 
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In the present paper we prove existence of such projectors for a wide class 
of (not necessarily one-dimensional) complex manifolds. Our construction is more 
abstract and uses some techniques of the theory of coherent Banach sheaves over 
Stein manifolds. 

In order to formulate our results let us introduce some definitions. 
Let N ~ M  be a relatively compact domain (i.e. an open connected subset) in 

a connected Stein manifold Al such that 

(1.2) ~ (X) ~ ~, (~f). 

By 5C~(N) we denote the class of unbranched coverings of N. Any covering from 
J:~(N) corresponds to a subgroup of rrz(N). Assume that  the complex connected 
manifold U admits a holomorphic embedding i: U~-+R for some REU~(N). Let 
i,:rq(U)-+Trl(R) be the induced homomorphism of fundamental groups. We set 
K(U):=Keri ,  CTrl(U). Consider the regular covering Pc': U-+U of U corresponding 
to the group K(U), so that,  7 q ( U ) = K ( U )  and 7rl(U)/K(U) acts on U as the group 
of deck transformations. Further, by p[.(H ~ (U))C H ~ (U) we denote the subspace 
of holomorphic functions invariant with respect to the action of rq(U)/K(U) (i.e. 
the pullback by pu of H~(U) to U). L e t  f z : = - p u l ( z ) ,  zEU, and let l~(F~) be 
the Banach space of bounded complex-valued functions on F~ with the supremum 
norm. By c(Fz)Cl~(F~) we denote the subspace of constant functions. 

T h e o r e m  1.1. There is a linear continuous projector P: H ~ ( U ) -+ p *u ( H ~ ( U ) ) 
satisfying the following properties: 

(1) there exists a family of linear continuous projectors Pz:l~(F~)--+c(F~) 
holomorphically depending on zEV such that P[f]lp~(z):=P~(flpc~(~)] for any 

f e g ~ ( u ) ;  
(2) P ( f g ) = P ( f ) g  for any f E H ~ ( U )  and gep~-(H=~(U)); 
(3) /f f cH~ is such that flF: is constant, then P(f)IF~ =flF~; 
(4) each P~ is continuous in the weak* topology of l~(F~); 
(5) the norm I lp l l<_c<~ ,  where c=c(x)(~). 
Remark 1.2. From (1)-(5) it follows that  there exists an hEH~C([l) such that  

(a) ]~ (Z) : - - - -~F  ~ Ih(w)l is continuous on U. and sup U ]~<C<oc;  

(b) ~,,EF~ h ( w ) = l  for any z~U; 
(c) the projector P is defined as 

P(f) (y) := ~ f(w)h(w), yEF~. 
wEF~ 

(2) Here and below the  nota t ion C=-C(ct, 3, 2, ...) means tha t  the  constant  depends  only on 
the  parameters  c~,/3, 3., .... 
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Also, from (c) it follows that  P: H~(~7)--+p~(H~(U)) is weak* continuous. 

Let _~ be a covering of a finite bordered Riemann surface R. The fundamental 
group rq(R)  is a free group with a finite or countable fanfily of generators J .  Let 

U c R  be a domain such that  7rl(U) is generated by a subfamily of J .  Let r: D - + U  
be the universal covering map. Then Theorem 1.1 implies the following result. 

C o r o l l a r y  1.3. There exists a linear continuous p~v3ector P : H ~ ( D ) - +  
r*(H~(U) ) satisfying the properties of Theorem 1.1. 

Remark 1.4. The remarkable class of Riemann surfaces U for which the Forelli 
type theorem (like Corollary 1.3) is valid was introduced by Jones and Mar- 
shall [JM]. The definition is in terms of an interpolating property for the critical 
points of the Green function on U. We conjecture that  any REJ:c(N), where N is 
the Riemann surface satisfying (1.2), belongs to this class. 

Example 1.5. Let r : D - + X  be the universal covering of a compact complex 
Riemann surface of genus g > 2. Let K C D be the flmdamental  compact region with 
respect to the action of the deck transformation group 7c1(X). By definition, the 
boundary of K is the union of 2g analytic curves. Let D1 .... , Dk be a family of 
mutually disjoint closed disks situated in the interior of K.  We set 

k 

s : = U D i  , K ' : = K \ S  and R : :  U g(K'). 
i=1  gETty(X) 

Then R:=r(K')CX is a finite bordered Riemann surface, and r:/}--+R is a regular 

covering corresponding to the quotient group rq (X) of rq (R). Here rrl(_~) is gen- 

erated by the family of simple closed curves in R with the origin at a fixed point 
z 0 e R  so that  each such curve goes around only one of g(Di), gErq(X), i=1 ,  ..., k. 
Let. Y c D  be a simply connected domain with the property that  there is a subset 
L c r q ( X )  so tha t  

U gIs/)=Ug/s/ 
gCrrl(X) gcL 

Clearly U:=Y\UgeL g(S) satisfies the hypotheses of Corollary 1.3. Therefore the 
projector P, described above, exists for U. 

One of the possible applications of Forelli's theorem is to the solution of the 
corona problem (for results and references related to the corona problem we refer 
to Garnet t  [Ga2], Jones and Marshall [JM] and Slodkowski [S]). Let us recall the 
corresponding definitions. 
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Let X be a Riemann surface such that H ~ ( X )  separates points of X. By 
M ( H ~ ( X ) )  we denote the maximal ideal space of H ~ ( X ) ,  i.e. the set of non- 
trivial multiplicative linear functionals on H ~ (X) with the weak* topology (which 
is called the Gelfand topology). It is a compact Hausdorff space. Each point x E X  
corresponds in a natural way (point evaluation) to an element of M(H~:(X) ) .  So 
X is naturally embedded into M ( H ~ ( X ) ) .  Then the corona problem for H ~ ( X )  
asks: Is M ( H ~ ( X ) )  the closure (in the Gelfand topology) of X? (The complement 
of the closure of X in M ( H ~ ( X ) )  is called the coTvna.) 

For example, according to Carleson's celebrated corona theorem [Ca2] this is 
true for X being the open unit disk D. Also. there are non-planar Riemann surfaces 
for which the corona is non-trivial (see e.g. [G], [JM], [BD], [L] and references 
therein). The general problem for planar domains is still open, as is the problem in 

several variables for the ball and polydisk. 
It is well known that the corona problem has the following analytic reformula- 

tion. 
A collection f l , - . . ,  f~ of functions from H ~ (X) satisfies the corona condition 

if there exists ~>0 such that 

(1.3) I f~(x)l+lf2(z)l+.. .+lf~(x)l  >6 for all x E X .  

The corona problem being solvable means that the Bezout equation 

f l g l +  f2g2+...+ f,~9,~ ==- 1 

has a solution g l , - . - , g n E H ~ ( X )  for any f l ,  ..., f ,  satis~'ing the corona condition. 
We refer to maxj IIgjtl as a "bound on the corona solutions". Using Carleson's 
solution [Ca2] of the corona problem for H ~ ( D )  and property (2) for the projector 
P constructed in Theorem 1.1 we obtain the following corollary. 

C o r o l l a r y  1.6. Let N G M ,  R E S t ( N )  and i: U~-+ R be open Riemann surfaces 
satisfying the hypotheses of Theorem 1.1. Assume that K(U) :=Ker i .  is trivial. Let 
f ] , ..., fn E H ~ ( U ) satisfy (1.3). Then the corona problem has a solution gl .... , g, e 
H ~ ( U )  with the bound maxj IIgj II 5 C ( N ,  n. d~ maxj tlfj II). 

Remark 1.7. (1) We cannot avoid the restriction that  N be an open bordered 
Riemann surface: It follows from the results of Lgrusson [L] and the author [Br2] 
that  for any integer n k 2  there are a compact Riemann surface S ,  and its regular 

covering Pn : Sn -+ Sn such that 
(a) Sn is a complex submanifold of an open Euclidean ball B n c C n ;  
(b) the embedding i: S~-+B, ,  induces an isometry i*: H ~ ( B n ) - - ~ H ~ ( S , ) .  
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In particular, (b) implies that  the maximal ideal spaces of H a ( S ~ )  and H a ( B , , )  

coincide. Thus the corona problem is not solvable for Ha(S,~). 
(2) In [Brl, Theorem 1.1] we proved the following matr ix  version of Corol- 

lary 1.6. 

T h e o r e m  1.8. Let U be a Riemann surface satisfying the conditions of Corol- 
lary 1.6. Let A=(aij)  be an n x k  matrix, k<n.  with entries in H~(U) .  Assume 
that the family of determinants of submatrices of A of order k satisfies the corona 
condition. Then there exists art n x n matrix A = (fiij), ~j  C H ~ (U), so that ~ j  =a~j 
for l<_j<_k, l<_i<_n, and d e t A = l .  

The proof of the theorem is based on Theorem 1.1 and a Grauert  type theorem 
for "holomorphic" vector bundles on maximal ideal spaces (which are not usual 
manifolds) of certain Banach algebras. 

1.2. Another application of Theorem 1.1 is related to the classification of 
interpolating sequences in U (eft [St] and [JM]). 

Recall that  a sequence {zj}~_~cU is interpolating for H ~ ( U )  if for every 

bounded sequence of complex numbers {aj}j~__l, there is an f E H a ( U )  so that  
f ( z j )=aj .  The constant of interpolation for {zj}~_ 1 is defined as 

sup inf{Nfl I : f E H a ( U ) ,  f ( z j ) = a j ,  j = 1 . 2  .... }. 
Ilajlho~<l 

T h e o r e m  1.9. Let N ~ M ,  REJ:c(N), i: U~-+R and U be complex manifolds 
satisfying the conditions of Theorem 1.1. A sequence {zj}~_lCU is interpolating 

i -1 a for H a ( U )  if and only ~r  ({zj}j=l) is interpolating for H~(U) .  

Example 1.10. (1) Let M c D  be a bounded domain, whose boundary B con- 

sists of k simple closed continuous curves B1,. . . ,  Bk, with B1 forming the outer 
boundary. Let D1 be the interior of B1, and D2, ..., Dk the exteriors of B2, ..., Bk, 
including the point at infinity. Then each Di is biholomorphic to D. Let {zji}jcJ be 
interpolating sequences for H a ( D i ) ,  i=1 ,  .... k. such that  the Euclidean distance 
between any two distinct sequences is bounded from below by a positive num- 
ber. Then for any covering p:R--+M, the sequence p-~({zji}j,i) is interpolating 
for Ha(n).  

(2) Let N c C  ~ be a strongly pseudoconvex domain. Then Theorem 1.9 is valid 

for any i: U~-+R, R E . ~ ( N ) ,  and U satisfying the hypotheses of Theorem 1.1. 

Let N c M ,  RCJZc(N) and i: U~--~R be complex manifolds satisfying the con- 

ditions of Theorem 1.1. Let r: U - + U  be the universal covering. The group ~I(U) 

acts discretely on U by biholomorphic maps. 
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A character of % (U) is a complex-valued flmction p: 7rl (U)-~C* satisfying 

L)(~bT)=~o(0)~)(7 ) and I p ( o ) l = l .  0, TETrl(U). 

A holomorphic function f EH ~ (U) is called character-autornorphie if 

(1.4) f(7(z))=Q(2,)f(z), "TE~I(U), z E U .  

By H~176 O) we denote the Banach space of bounded holomorphic flmc- 
tions satisfying (1.4). 

T h e o r e m  1.11. Under the above assumptions there is a (non-trivial) linear 
continuous operator H~c(~f)-+ H ~ (rrl (U). o) whose norm is bounded by a constant 
A=A(N) .  

Remark 1.12. Let us recall that  a non-parabolic Riemann surface X with a 

Green function Go is of Widom type if 

~o ~ b(t) x ,  dt < 

where b(t) is the first Betti number of the set {xEX:Go(x)>t}.  This means that  
the topology of X grows slowly as measured by the Green function. Widom type 
surfaces are the only infinitely connected ones for which Hardy theory has been 
developed to any extent. They have many bounded holomorphic functions. In 
particular, such functions separate points and directions. We refer to [Ha] for an 
exposition. 

Let U be a Riemann surface sat isf l ing the hypotheses of Theorem 1.11. Then 
this theorem and the remarkable results of Widom [W] imply that  U is of Widom 
type. In fact, it was first noted by Jones and Marshall [aM, p. 295] that  if the pro- 
jection operator P: H~C(D)--+r*(H~(U)) of the form constructed in Theorem 1.1 

exists then U must be of Widom type. 

1.a.  In this section we formulate some results on interpolating sequences in 

U for U being a Riemann surface satisfl ing the hypotheses of Corollary 1.6. Our 
results have much in common with similar properties of interpolating sequences for 

H ~ ( D ) .  
Let r: D--+U be the universal covering map. From Theorem 1.9 we know that  

for any zEU the sequence r - l ( z ) C D  is interpolating for H X ( D ) .  Then we can 
define a Blaschke product B ~ E H ~ ( D ) ,  zEU, with simple zeros at all points of 
r -Z(z) .  If B~ is another Blaschke product with the same property then we have 

B~z=aBz for some a E C ,  ] a ]= l .  In particular, the subharmonic function IBm] is 
invariant with respect to the action on D of the deck transformation group 7q(U). 
Thus there is a non-negative subharmonic function P~ on U with the only zero at 

z, such that  r*(P~)=lB~l. It  is also clear that  Pz(y)=Py(z) for any y, zEU, and 

SUPu P~ = 1. 
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P r o p o s i t i o n  1.13. A sequence { z ~ } ~ c U  is interpolating for H ~ ( U )  if and 
only if 

(1.5) in f (  I I  Pzk(ZJ)} =:~>0" 
2 I.k:kCj 

The number 6 is the characteristic of the interpolating s e q u e n c e  {Zj}j:)C=l. 
Using Proposition 1.13 we prove the following result. 

C o r o l l a r y  1.14. Let {Zj}?_ 1CU be an interpolating sequence with character- 
y :X2 istic 6. Let K be the constant of interpolation for {~j}j=l. Then there is a constant 

A = A ( N )  (depending on the Riemann surface N from Corollary 1.6) such that 

A 
K_< ~- ( l + l o g  ~ ) .  

Let 
Z--W 

O(z,w):= ~ ,  z. w E D .  

be the pseudohyperbolic metric on D. Let x, y E U and x0 E D be such that r(xo)=x.  
We define the distance Q*(x, y) by the formula 

~)* (x, y ) : =  inf o(x0, w). 
wGr-l(y) 

It is easy to see that this definition does not depend of the choice of x0 and deter- 
mines a metric on U compatible with its topology. 

The following result shows that interpolating sequences are stable under small 
perturbations. 

P r o p o s i t i o n  1.15. Let {Zj}?_ 1 c U  be an interpolating sequence with charac- 
teristic 5. Assume that 0 < A < 2 A / ( l + A 2 ) < 6 < l .  If {~j}?--I c U  satisfies O*(~j, Z j )~  
A, j = l ,  2, ..., then for any k, 

II 
j:j=/=k 

/~- 2)~/(1+)~ 2 ) 
Pr _> 1--2~6/(1+;~2)" 

Remark 1.16. This proposition is similar to [Gal, Chapter VII. Lemma 5.3] 
used in the proof of Earl's theorem on interpolation. We will show how to modify 
the proof of this lemma to obtain our result. 
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Propos i t ion  1.17. Let { i}i=1 and {Y~}i=l be interpolating sequences in U. 
Assume that there is a constant c>O such that for any i and j ,  

o* (zj, y~) >_ c. 

Then the sequence {z~ }~=l U {y~ }~=1 C U is interpolating. 

Finally we formulate an analog of Corollary 1.6 from [Gal, Chapter  X]. 

Propos i t ion  1.18. Let { z j } ~c= l c U be an interpolating sequence with charac- 
teristic 5. Then {zj}j~__] can be represented as a disjoint union {zu}~:_]W{z~j}j~=l 

of two subsequences such that the characteristic of {zsj}~c=l is >x/5,  s = l .  2. 

Remark 1.19. Using the above properties of interpolating sequences in U it 
is possible to define non-trivial analytic maps of D to the maximal ideal space 
of H ~ ( U )  related to limit points of interpolating sequences. The construction is 

similar to the classical one given in the case of H ~ (D) by Hoffman [HI. 

Acknowledgement. I would like to thank L. Carleson for some valuable remarks 

on the original version of this paper  and D. Marshall for useful discussions. 

2. Construct ion  of  bundles  

In this section we formulate and prove some preliminary results used in the 

proofs of our main theorems. 

2.1. Definit ions and examples  

(For standard facts about  bundles see e.g. Hirzebruch's book [Hi].) In what 
follows all topological spaces are allowed to be finite- or infinite-dimensional. 

Let X be a complex analytic space and S be a complex analytic Lie group 
with the unit eES. Consider an effective holomorphic action of S on a complex 
analytic space F.  Here holomorphic action means a holomorphic map  S x F - + F  
sending s x f E S x F  to s f c F  such that  s l ( s 2 f ) = ( s l s 2 ) f  and e f = f  for any f c F .  
Efficiency means that  the condition s f = f  for some s and any f implies that  s=e. 

Definition 2.1. A complex analytic space IV together with a holomorphic map 
(projection) 7r: W - + X  is a holomorphie bundle on X with the structure group S 
and the fibre F, if there exists a system of coordinate transformations, i.e., if 

(1) there is an open cover U={Ui}iEI of X and a family of biholomorphisms 
h~:Tc-Z(ui)-+UixF that  map "fibres" 7r-l(u) onto u x F :  
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(2) for any i, j E I there are elements sij E O(Ui A Uj, S) such that  

(h~h21)(uxf)=uxs~(u)f for any uEUiNUj and IEF .  

In particular, a holomorphic bundle 7r: W--+X whose fibre is a Banach space F and 
the structure group is GL(F)  (the group of linear invertible transformations of F)  
is a holomorphic Banach vector bundle. 

A holomorphic section of a holomorphic bundle ~: IV--+X is a holomorphic 
map s:X--+W satisfying 7ros=id. Let 7ci: Wi -+X,  i=1 ,  2. be holomorphic Banach 

vector bundles. A holomorphic map f :  I4~-+IV2 satisL, ing 
(a) f(Tcll(x))CTr21(x) for any xEX; 
(b) f]~i-l(~) is a linear continuous map of the corresponding Banach spaces, 

is a homomorphism. If, in addition, f is a homeomorphism, then f is an isomor- 
phism. 

We also use the following construction of holomorphie bundles (see, e.g. [Hi, 
Chapter  1]): 

Let S be a complex analytic Lie group and U =  {Ui}ici be an open cover of X. 
By Z~9(L/, S) we denote the set of holomorphic S-valued g/-cocycles. By defini- 

tion, s={s~j}EZ~(bl, S), where sijEO(UinUj,S) and SijSjk=S~k on UiNUjnUk. 
Consider the disjoint union [_]i~UixF and for any uEUiNUj identiL' the point 
ux fEUj  x F  with uxsij(u)fEUi xF.  We obtain a holomorphic bundle II~ on X 
whose projection is induced by the projection Ui x F-+Ui. Moreover, any holomor- 
phic bundle on X with the structure group S and the fibre F is isomorphic (in the 
category of holomorphic bundles) to a bundle Iu 

Example 2.2(a). Let M be a complex manifold. For any subgroup GCTrl(M) 
consider the unbranched covering 9: M G - + M  corresponding to G. We will describe 
M a  as a holomorphic bundle on M. 

First, assume that  GC~rl(M) is a normal subgroup. Then Sic  is a regular 
covering of M and the quotient group Q:=Tq(M)/G acts holomorphically on 2~Ia 

by deck transformations. It  is well known that  M a  in this case can be thought of 
as a principle fibre bundle on M with fibre Q (here Q is equipped with the discrete 
topology). Namely, let us consider the map RQ(9): Q-+Q defined by the formula 

RQ(g)(h)=hg -1, heQ.  

Then there is an open cover L/={U.i}iEI of ~I  by sets biholomorphic to open Eu- 
clidean balls in some C n and a locally constant cocycle c=  {cij } E Z~9 (bl, Q) such that  

M c  is biholomorphie to the quotient space of the disjoint union V=I_]iEI Ui x Q by 
the equivalence relation U~ x Q 9 x x RQ (cij)(h) ~ x x h E Uj x Q. The identification 
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space is a holomorphic bundle with projection p: MG--+M induced by the projec- 
tions Ui x Q--+Ui. In particular, when G=e we obtain the definition of the universal 

covering M~ of M. 
Assume now that  GC : r l (M)  is not necessarily normal. Let Xo=rcl(M)/G 

be the set of cosets with respect to the (left) action of G on 7q (M) defined by left 
multiplications. By [Gq] EXG we denote the coset containing qE:rl (M). Let H(Xo)  
be the group of all homeomorphisms of X c  (equipped with the discrete topology). 

We define the homomorphism T: 7cl(M)--+H(Xc) by 

T(9)([Gq] ) := [Gqg-1], qE zq(M). 

Set Q(G):=:r~(M)/Ker'r and let 9 be the image of getty(M) in Q(G). We de- 
note the unique homomorphism whose pullback to : h (M)  coincides with 7 by 

To.(c):Q(G)-+H(Xc ). Consider the action of G on V=ll~E I U~ x 771 (~I) induced by 
the left action of G on :r l(M) and let I@=l lie I b} x X a  be the corresponding quo- 
tient set. Define the equivalence relation U~ x X c  ~x  x ~-Q(a)(Oiy)(h) ~ x  x hEUj x Xo 
with the same {cij} as in the definition of M~. The corresponding quotient space 

is a holomorphic bundle with fibre Xa biholomorphic to 3 ic .  

Example 2.2(b). We retain the notation of Example 2.2(a). Let B be a com- 

plex Banach space with norm t" I. Let I s o ( B ) c G L ( B )  be the group of linear isome- 
trics of B. Consider a homomorphism o:Q--+Iso(B). Without  loss of generality 
we assume that  Ker L)=e, for otherwise we can pass to the corresponding quotient 
group. The holomorphic Banach vector bundle Eo-+ M associated with Q is defined 

as the quotient of I lies Ui x B by the equivalence relation Ui x B ~ x x  Q(cij)(w)~ 
x x w E Uj x B for any x E Ui A Uj. Further. we can define a function E e--+ R+ which 
will be called the norm on E o (and denoted by the same symbol I " I). The construc- 

tion is as follows. For any xxwEU~•  we set Ixxu, l==lwl. Since the image of ~) 
belongs to Iso(B),  the above definition is invariant with respect to the equivalence 
relation determining E o and so it determines a "norm" on E o. Let us consider some 

examples. 
Let ll (Q) be the Banach space of complex-valued sequences on Q wi th / l -norm.  

The action RQ from (a) induces the homomorphism ~: Q ~ I s o ( l l ( Q ) ) ,  

kO(g)(W)[X] :=W(/~Q(g)(x)), g, x e Q ,  WEll(Q).  

By E~(Q)  we denote the holomorphic Banach vector bundle associated with g. 
Let l~ (Q)  be the Banach space of bounded complex-valued sequences on Q 

with l~-norm.  The homomorphism g*: Q--+Iso(l:~(Q)), dual to g is defined as 

LO*(g)(V)[X] :=L'(Xg--1). g..'Ee(~, ~'el~c((~). 
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(It coincides with the homomorphism (ot ) - l :  ( (o t ) - - l (g ) [u] ) (W): :V(~O(g- -1 ) [W]) ,  

gEQ, vc l~(Q) ,  we l l  (Q).) The holomorphic Banach vector bundle associated with 
~* will be denoted by ~s E ~  (Q). By definition it is dual to Ei~(Q).  

2.2.  M a i n  c o n s t r u c t i o n  

Let B be a complex Banach space with norm ]. ] and let [[. ]] denote the 
corresponding norm on GL(B).  For a discrete set X, denote by B ~  (X) the Banaeh 
space of "sequences" b:={(x, b(x))}xEx, b(x)EB, with norm 

fbl  : =  snp  I6 (x ) l  
x E X  

By definition, for bi={(x,  b i(x))}xEX, a i E C ,  i=1 .2 ,  we have 

albl  +c~2b2 = {(x, olbl(x)+a2b2(x))}~:~x. 

Further, recall that a B-valued function f :  U--+B defined in an open set U c C  ~ is 
said to be holomovphic if f satisfies the B-valued Cauchy integral formula in any 
polydisk contained in U. Equivalently, if locally f can be represented as the sum 
of absolutely convergent holomorphic power series with coefficients in B. Now any 

family {(x, f~)}xEX, where fx is a B-valued function holomorphic on U satisfying 
If:dz)l<A for any zEU and xEX ,  can be considered as a B~(X)-va lued  holomor- 
phic function on U. In fact, the local Taylor expansion in this case follows from the 
Cauchy estimates of the coefficients in the Taylor expansion of each f~. 

Let t: X ~ X  be a bijection and h: X x X - ~ G L ( B )  be such that  

h(t(x),x) EGL(B)  and max~sup Ilh(t(x),z)ll, sup IIh-~(x,t(x))ll~ < DC. 

" x E X  x E X  ) 

Then we can define a(h, t )EGL(B~(X))  by the formula 

a(h, t)[(x, b(x))] := (t(x), h(t(x), x)[b(x)]), b = {(x, b(x))}x~x E B ~ ( X ) .  

We retain the notation of Example 2.2. For the acyclic cover b/={Ui}iEi of M 

we have g -  1 ( g i )  = Ws C X a  Vis C Ma where g lv,~ : ~ --~ Ui is biholomorphic. Consider 
a holomorphic Banach vector bundle 7c: E-+Ma with fibre B defined by coordinate 
transformations subordinate to the cover { ~ } i c I . , e x c  of fIG, i.e. by a holomorphic 
cocycle h={hi<jk}EZ~(g-l(bt) ,  EL(B)) ,  his4~. E O ( ~ ' ] , ~ - .  GL(B)) ,  such that  E 
is biholomorphic to the quotient space of the disjoint union l_]i.~ V/~ x B  by the 
equivalence relation V~, x B g x  x his,jk(x)[v] ~ x  x vE Vj~, x B, s:=rQ(a)(5ij)(k).  The 
projection 7r is induced by the coordinate projections I~, x B - - + ~ .  Assume also 
that  for any x, 

(2.1) sup max{llhi~.jk(x)ll, Ilh;ljk(x)ll} <_ A < ~c. 
i , j ,s,k 

Further, define #:=goTr: E--+M. 
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P r o p o s i t i o n  2.3. The triple (E, M, #) determines a holomorphic Banach vec- 
tor bundle on M with fibre B ~ ( X c ) .  (We denote this bundle by EM.) 

Proof. Let r Ui-+V~s be the map inverse to g}v~,. We identify V/~ x B  with 

U i x s x B  by r and {sxB}~EX a with B~=(Xa). Further, for any xEU, nUj, 
we set tti~,jk(x):=hi~,3k(Oi~(x)). Then E can be defined as the quotient space of 

[-]ie I Ui x Boc ( X c  ) by the equivalence relation Uj x B~= ( XG ) 9 x x {(k, b( k ) ) } ke xc ~" 
x • { (~Q(G) (~U)(k), ~ ~ (~,~)(~),~k (x)[b(k)]) } ~ x ~  e u~ • B~ (Xa). 

Define 
[ti](x):XGxXo--+GL(B), xEUiAUj,  

and 

by the formulas 

and 

dij E O(UinUj, G L ( B ~ ( X c ) ) )  

dij (x)[b] :: a(h{j (x), TO(G)(Cij ))[b]~ b E B~ (Xa). 

Here holomorphy of dij follows from (2.1). Clearly, d = { di j  } is a holomorphic cocycle 
with values in G L ( B ~ ( X a ) ) ,  because {his,jk} and {TQ(G)(cij)} are cocycles. Now E 

can be considered as a hol0morphic Banach vector bundle on M with fibre B ~  (Xa) 
obtained by identification in I l i c i  Ui x B ~  (Xa) of x x dij (x)[b] E Ui x B ~  (Xa) with 
xxbEUj x B ~ ( X c ) ,  zEUiAUj. Moreover, according to our construction the pro- 

jection E-+M coincides with ~. [] 

Let W be a holomorphic Banach vector bundle on a complex analytic space X. 
In what follows, by O(U, W) we denote the vector space of holomorphic sections of 

W defined in an open set U C X.  
We retain the notation of Proposition 2.3. By the construction of Proposi- 

tion 2.3, a fibre (~ ) - t ( z ) ,  zEUs, of EM can be identified with [ I s e x c  7r-l(r  
such that  if also zEUj then 

(2.2) ]1 =-~(o~(~))= ]1 =-~(o.-~(~j~)(~)(~))- 
sEXG sEXG 

We recall the following definitions. 

Let dq be the set of sequences (ioso, . . . ,  iqSq) with it ffI, s t6XG for t=0 ,  ..., q. 
A family 
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is a q-cochain on the cover g - l ( D / ) : = U i e i , ~ x  C V./~ of Mc  with coefficients in the 
sheaf of germs of holomorphic sections of E. These cochains generate a complex 
vector space cq(g-l(bt), E). In the trivialization which identifies rr -l(V/oso) with 

V/o, o x B  any fioso . . . . .  iqNq is represented by bioso, ..,iqsq~O(Viosof~...f~Viqsq,S). As-  

s u m e  that  for any (ioso, ... , iqSq)EJq and any compact KCUioO...C3U,~ there is a 
constant C=C(K)  such that  

(2.3) sup 
80,...~8q 

zEK 
I(bio~o ..... i ~ : O i o , o ) ( Z ) l  < C .  

The set of cochains f satisfying (2.3) is a vector subspace of cq(g-l(bt), E) which 
will be denoted by C~(g-~(Lt), E). Further, the formula 

(2.4) 
q + l  

q . . k Wk 
(5 f),o~o ...... ~+,~+, = Z ( - 1 )  rw (fio,o ..... i72~....~+,~+~), 

k=O 

where f E cq (g-1 (bl), E), determines a homomorphism 

(~q: Cq(g -1 (U), E)  ) cq+l  ( g - 1  ( U ) ,  ~ ) .  

Here ~ over a symbol means that  this symbol is omitted. Moreover, we set W =  
wk is the restriction V/o~ o A...AVi,+~,q+~, Wk:V/o~ o A...N~k~k A...nE~+~,+~ and r w 

map from W to Wk. Also, condition (2.1) implies that  6 q maps C q (9 -1 (/g), E)  into 
cq+I(g-I(lg),E). We will denote 6qlc~(g ~(u),E) by 6~. As usual, 6q+lo6q:o and 

6q+1o6q=0. Thus one can define cohomology groups on the cover g-~(/g) by 

Hq (g-1 (hi), E ) : :  Ker (5 q / Im 6 q-1 and H q (g-1 (U), E ) : :  Ker 6~ / Im 6~- 1. 

In what follows the cohomology group Hq(lg, EM) on the cover U of M with co- 
eflqcients in the sheaf of germs of holomorphic sections of EAr is defined similarly 
to Hq(g-1(Lt), E). Elements of Ker6 q and Ker6~ will be called q-cocycles and of 
Im 6 q-1 and Im ($~-1 q-coboundaries. 

P r o p o s i t i o n  2.4. There is a linear isomorphism 

�9 E) > H (U, 

Proof. Let f={f~oso ..... iqsq}EC~(g-l(bt),E) . Let furthermore bioso ..... iq,qE 
O(Vioso N...AViq~q, B) be the representation of fioso ..... ~q~q in the trivialization iden- 
tifying rc-l(V~o~o) with V~o~ o x B .  If ~o,oN. . .AV/q~#0 then Sk=TO(a)(a~k,o)(SO), 
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k=0, . . .  ,q, and UioN...NUiq 5~O. For otherwise, bioso ..... i,sq=O. Thus for So, ... , Sq 
satisfying the above identities we can define 

b*o ..... iq :={bio,o ..... ~qsq:Oio~o}~oEXa. 

For U~on...nu<=0 we set t)io ..... iq=O. Further, by (2,3). b*o ..... <~O(u~0n-.-ng<, 
Bo~ (Xc)) .  This implies that 

rio ..... iq := {fioso . . . . .  iqSq ":Oio,So },soEXG" 

defined similarly to Dio ..... 6,  belongs to O(U~on...NU,~,EM), because b~o ..... i~ is 

just another representation of f-/o ..... i~, under identification of rr -1 (Uio) with Uio x 

Bo~(Xc). For f = { f i o  ..... i~} we set ~ q ( f ) = f .  Then, clearly, ~q:cq(9-1(gt) ,E)-+ 
cq(lg, EM) is linear and injective. Now for a cochain fEcq(bt ,  EM) we can convert 

the construction for ~q to find a cochain f E c q ( g - I ( U ) . E )  such that  ~ q ( f ) = f .  

Thus ~q is an isomorphism. Moreover. a simple calculation based on (2.2) shows 
that  

( ~ . 5 )  (sqc@q @q+l ^(sq 
~ b "  

where 6q in the left-hand side is the operator for EM defined similarly to (2.4). 
Hence ~q determines a linear isomorphism ,lpq: H{(g-I(/ , /) ,  E)--+Hq(Lt, EM). [] 

We close this section by the following result. 

P r o p o s i t i o n  2.5. Let o: G-~Iso(B) be a homomorphism and E_o~ Mo be the 
holomorphic Banach vector bundle associated with, o. Then EQ satisfies the condi- 
tions of Proposition 2.3. 

Proof. Let Me-+Me be the universal covering (recall that G = r h  (3IG)). Since 
the open cover g-L(b/)={V/~}ici,.~exc of 116, is acyclic. :tie can be defined with re- 
spect to 9-1(5/). Namely. there is a cocvcle h={hi,,.ja.} Z 1 ~, . C o(g- l ( lg) ,G)  such that 
Me is biholomorphie to the quotient space of [_]<~ 14-, x G by the equivalence relation 

V~, x G ~ x  x Rc(hi~,jk)(f)"~x x fEVjk  x G, s = r o ( a  ) (~ij)(k); here R c ( q ) ( f ) : = f q - 1  
f ,  qEG. Now E o is biholomorphic to the quotient space of [_]i.sVisxB by the 
equivalence relation V i ~ x B ~ x x Q ( h i ~ . j k ) ( v ) ~ z x v E V j k x B .  Clearly, the family 
{~(h~,,jk)} satisfies the estimate (2.1). [] 
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3. P r o o f s  o f  T h e o r e m  1.1 and  Coro l lar ies  1.3 and  1.6 

P r o o f  o f  T h e o r e m  1.1 

Let us briefly describe the basic idea of the proof. 
First we construct the required projectors locally over simply connected sets. 

The differences of these local projectors form a holomorphic 1-cocycle with values in 
a certain holomorphic Banach vector bundle. Then we will prove that  this cocycle 
is a coboundary satisfying some boundedness condition. This will do the job. 

Let N c M  be an open connected subset of a connected Stein manifold M sat- 
isfying (1.2). Let GCTrl(M) be a subgroup. As before, by Ma  and NG we denote 
the covering spaces of M and N corresponding to G. Then by the covering ho- 
motopy theorem (see e.g. [Hu, Chapter III, Section 16]), there is a holomorphic 
embedding Ncc-~Mc. Without  loss of generality we regard :Va as an open subset 
of Me.  Denote also by gMC: MG-+M and gNG: :Va--+N the corresponding projec- 
tions such that  gMGINa =gNG- Let i: U~-+Nc he a holomorphic embedding of a 
complex connected manifold U. 

L e m m a  3.1. It suffices to prove the theorem under the assumption that the 
homomorphism i.: 7rl (U)--+ G(~Trl (NG)) is surjective. 

Pro@ Assume that  G ' : = I m i .  is a proper subgroup of G. By t:Na,--+Na 
we denote the covering of No corresponding to G'CG. By definition, gxG~t= 
gNc,:Nc,--+N is the covering of N corresponding to G'C~rl(N). Further, by the 
covering homotopy theorem there is a holomorphic embedding i': U~-+I\~, such 
that  toi'=i, K e r i ' . = K e r i . ,  and i'.:Tr~(U)~G'(=~rl(:\~,)) is surjective. Clearly, it 
suffices to prove the theorem for i~(U)CNo,. [] 

In what follows we assume that i .  is surjective. By Pu: ( ; ~ U  we denote the 
regular covering of U corresponding to K(U):=Ker i . ,  where 7rl ( U ) = K ( U ) .  Con- 
sider the holomorphic Banach vector bundle EiXIC(G)-43Ic associated with the 
homomorphism oc:G--+Iso(ll(a)), [~G(g)(v)](x):=u(xg-1), veil(G), x, geG (see 
Example 2.2(b)). Since i.  is surjective. E~ ~la (c)tc=E~'(c). 

Let K o  < ll (G) be the kernel of the linear functional 11 (G)~ {v~}~ea ~ g e a  vg. 
Then K a  is invariant with respect to any oo(g), gEG. In particular, 0c determines 
a homomorphism he: G ~ I s o ( K r  ha(g)=~oa(g)lt(r Here we consider K a  with 
the norm induced by the norm of ll(G). Let FG--+3Ir be the holomorphic Banach 
vector bundle associated with ha. Clearly, Fa  is a subbundle of Ei ~Ia (G). Further, 
the quotient bundle Ca:=E{~Ia(G)/Fa-+Ma is the trivial flat vector bundle of 
complex rank 1. Indeed, it is associated with the quotient homomorphism/to:  G--+ 
C*, [~a(g)(v+Ka):=oa(g)(v)+Ka, gEG: vElt(G); where w+Ka is the image of 
w Ell (G) in the factor space ll (G)/Ka =C.  This homomorphism is trivial because 
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oc(g)(v)-vEKc by definition. Thus we have the short exact sequence 

(3.1) 0 > Fc > Ei~'~C(G) ~2~Cc >0. 

-+EMc/G~ (linear the Our goal is to construct a holomorphic section Ic:  Ca 1 t J on 
fibres) such that  k c o l c = i d .  Then we obtain the bundle decomposition E~ Ic (G)=  
Ia(Cc)OFc. 

Let {ts}sec be a standard basis of unit vectors in ll(G), ts(g)=hsg, s, gEG. 
Define A: C ~ 11 (G) by A(c)= ct~, where e E G is the unit. Then A is a linear operator 
of norm 1. Now let us recall the construction of F,i ~Ia (G) given in Proposition 2.5. 

--1 Let M~-+MG be the universal covering. Consider the open cover gMa(U)= 
{Va#~}ief,~exG of Me,  where L/:={Ui}icI is an open cover of M by complex balls, 
and [-Jsexc Va,i~=g-l(Ui)" Then there is a cocycle CG={CG.is,jk}@Z~(g~;G(~), G) 
such that  E~Ia(G) is biholomorphic to the quotient space of [_Ji,~ Va,i~ X/l(G) 
by the equivalence relation Vc,i, xll(G)gxxoa(ca,i~dk)(v)~xxvEVa,jkxll(G). 
The construction of Fa  is similar, the only difference is that in the above for- 
mula we take hc  instead of 0a. These constructions restricted to Va.~ deter- 

.~4G mine isomorphisms of holomorphic Banach vector bundles: ec.z,: E1 (G)lv~,.--+ 
Vc,isXlt(G), fC#s:FcIvG,~-~Va.i~xKc and ca.i,~:Calva~--§ Then we 
define on as e5l, where A'(x•215 
xEVc#s, eEC. Clearly, kGoAc#~=id on Vc.i~. Thus 

is a homomorphism of bundles of norm _<2 on each fibre (here the norms on Fa,  
Ca and E Mc (G) are defined as in Example 2.2(b)). We also use the identification 

Horn(Ca, Fa)----Fa (this is because Ca is trivial and Horn(C, Ka)~-C*~Ka=Kc). 
Further, according to Proposition 2.5, the holomorphic Banach vector bundle 
Horn(Ca, -Pc) associated with the homomorphism h c  S h a :  G--+Iso(Hom(C, K c ) )  
satisfies the conditions of Proposition 2.3. Therefore. by definition, B c  = {Ba,is,jk} 

--1 is a holomorphic 1-cocycle with respect to 51 defined on the cover gMa(U). By 
Oa,i~: Ui--~Va,is we denote the map inverse to gMClVG.~. Next we will prove the 
following lemma. 

L e m m a  3.2. There is/?a={Bc.i~}EC~ Fa), Ba.~EO(Vi~, Fc), so 
that 5 ~  Moreover, for any iC I there is a continuous non-negative func- 
tion Fi: Ui--+R+ such that for any G, 

(3.2) sup I(Ba _<  z(z) 
s~XG 
zEU~ 

Here I" I denotes the norm on Ft.  
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Pro@ According to Proposition 2.3, we can construct the holomorphic Ba- 
nach vector bundle (Fo)M. It  is defined on the cover t4 of M by a cocycle do:= 
{da#i} EZ~(bt, I s o ( ( K a ) ~ ( X c ) ) ) ,  where da.ii EO(UiAUj, Iso((KG)~(Xc))). Let 

~5~: C~(gM1G(L/), FG)--+cq(Lt, (FG)M) be the isomorphism defined in the proof of 

Proposition 2.4. Then ~(BG):=bc={bG#j} is a holomorphic 1-cocycle with re- 
spect to 61 defined on///. Here bc,ijcO(U~nUj, (Fo)M), and 

s u p  IbG.ij(Z)l(Fc).~f <_ 2, 
i,jEI 
zEM 

where l" I(Fa)M stands for the norm on (Fc)M. 
Let G be the set of all subgroups GcTr l (M) .  We define the Banach space 

K=(~GeG(KG)~(XG ) such that  x={xG}aeG belongs to K if xce(Ka)~(Xa) 
and 

Ixl : =  s u p  lxal(g~)~(xG) < ~c, 
GC6 

where l" I(Kc)~(xa) is the norm on (KG)~(Xa). Further, let us define d:={d~j}E 
Z~9(b/, Iso(K))  as d:=(~ac6 de. Here 

GC6 

Clearly dijEO(UiAUj,Iso(K)). Now we define the holomorphic Banach vector 
bundle F on M by the identification Ui x K~x x dij (x)[v]~x • v EUj x K for any 

xEUiNUj. In fact, this bundle coincides with (~a~G(FG)M. A vector f of F over 
z~M can be identified with a family {fG}Ge6 so that  fGE(Fc)M is a vector over z. 
Moreover, the norm IflF:=SUpGeG IfGl(F~;),~f of f is finite. Now we can define a 
holomorphic 1-cocycle b={bij} of F on the cover b / a s  

b :=  {ba}ce~,  bij:={bG,~j}Ge6EO(UiAUj,F). 

Here holomorphy of bij follows from the uniform estimate of the norms of bG,ij. 
Next, we use the fact that  M is a Stein manifold. According to the theorem 

of Bungart  [B, Section 4] (i.e. the version of the classical Car tan  Theorem B for 
cohomology of sheaves of germs of holomorphic sections of holomorphic Banach 
vector bundles), a cocycle b represents 0 in the corresponding coholnology group 
Hi(M, F). Further, the cover {Ui}iei of M consists of Stein manifolds (and so it 
is acyclic). Therefore by the classical Leray theorem (on calculation of cohomology 
groups by acyclic covers), 

H 1 (M, F)  = H 1 (/.g, F).  
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Thus b represents 0 in H 1 (g/, F) ,  that  is. b is a coboundary. In particular, there are 

holomorphic sections bi�9 F) such that  

bi(z)-bj(z) =bij(z) for an)" z � 9  UiAUj. 

We also set 

rs(z) := Ib,(z)lr.  

Then Fi is a continuous non-negative function on Ui. Further, by definition each bi 
can be represented as a family {bc,i}Ge6, where ba.~�9 (Fa)M). The family 

Da={ba#}icr  belongs to C~ (Fa)M). Using the isomorphism ~ o  from Propo- 

sition 2.4 we obtain a cochain BC:=[dP~149176 Fc) .  Now if B a : =  

{/}c,i~}, Ba,i~�9 Fa), it follows from identity (2.5) that  

ha,~(z)-Ba.jk(~) = BG.~s.j~(~) for ~ny z �9 V,,nVS~.. 

Finally, inequality (3.2) is the consequence of the definitions of Fi and r [] 

Let us consider now the family {AG.i,- BG.i., } i.,. By definition, it determines a 
holomorphic linear section Ia :  Ca--+Ei ~Ic (G), ka t i e .  =id. Thus we have E~ ~fa ( G ) =  

Ir174 In the next result the norm [1 " II of I~; is defined with respect to the 

norms 1. Ica and 1. [E;,,~(a). 

L e m m a  3.a.  There is a constant C=C(N) such that for any G�9  

sup II/G(z)ll ~ c .  
z E X  

Proof. Let V={V/}~ei be a refinement of the cover/g of 31 such that  each 
is relatively compact  in some U~.(i). Then from Lemma 3.2 it follows that  

sup 
sCXG 
zCV~ 

I(hs,k(~>~Oa,k(~>)(z) _< sup F~.(~)(z)=C~ < ~ .  
zE~4 

Now for any zEg~a(Vi) we have 

IIfG(z)ll sup (ll(Ac.k(i>oOc,k(O~)(y)ll§ < l + C i .  
sEXG 
yE V~ 

Since N C M  is compact,  we can find a finite nmnber of sets ~1 , . . - ,  ~ which 
cover N. Then 

sup H/c(z)ll_< m a x { l + C i , }  : = C <  :x;. [] 
zEN l< t< l  
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Consider now the restriction of the exact sequence (3.1) to U. Using the iden- 
tification E1Ma (G)Iu ~ E ~  (G) we obtain 

o ~Falu ~ElC'(a)---+Calc ~o. 

Similarly, we have the dual sequence obtained by taken the dual bundles in the 
above sequence 

F, * 0 >Italy]* >E~(a)  >[ GI~-] --+0. 

Let c(G) be the space of constant functions in l~(G). By definition, [Cck~]* is a 
subbundle of EU(G) of complex rank 1 with fibre c(G) associated with the trivial 

I * homomorphism g~+ Iso( c( G) ). Let Pc-:=[ alc-] : Eu~(G)--+[CaIc] * be the homo- 
morphism of bundles dual to Iclu. Then for an3' zEU, Pu(z) projects the fibre of 
EV~(O) over z onto the fibre of [Cclu]* over z. Moreover. we have 

(3.3) sup IlPu(z)ll _< C. 
z E U  

where 1t" II is the dual norm defined with respect to I" IEg(a) and I" I[ccl~:l" The 
operator Pu induces also a linear map P~: O(U. EU(G))-+(9(U, [Cr 

[P[j(f)](z) :=[Pu(z)](f(z)), f EO(U,E~=(G)). 

Further, any fEH~(U) can be considered in a natural way as a bounded holo- 
morphic section of the trivial bundle U x C--+U. This bundle satisfies the assump- 
tions of Proposition 2.5 (for U instead of M). Furthernlore. it easy to see that 
in this case the bundle (U • C)u  defined in Proposition 2.3 coincides with EC~(G), 
Let (I)~ H ~ (g-1 (L/), U x C) --+ H ~ (L/, E ~  (G)) be the isomorphism of Proposition 2.4. 

(This is just the direct image map with respect to Pc: ~'--+U.) We define the Banaeh 
subspace So~(g)cH~ EU(G)) with norm I" lu by the formula 

fESoc(U) ~ Iflu:=suplf(z)lgc(G)<~c. 
z E U  

Clearly r maps H ~ ( U )  isomorphically onto S~(U) .  Moreover, 0 sU:=~SUIH~(/:) 
is a linear isometry of Banach spaces. By definition, the space su(p[.(H~ 
coincides with O(U, [CuIu]*)AS~(U). Then according to the definition of su 
and the inequality (3.3), the linear operator P:=sul:P[:=sc maps H ~ ( U )  onto 
pb(H ~ (U)). By our construction P is a bounded projector satis~qng (1). Here the 
required projector P~:l~(F~)--+c(F~) can be naturally identified with Pu(z). Let 

now fEH~(U) and 9Ep~(H~(U)). Then by definition we have 

P[f g] Ipg~(~) = P~ [(fg)Ipu~(~)] = P~ If ]pu ~ (~)]gIpg~(z) = ( P[f]g)tpc~(z ) . 
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Here we used tha t  glp~l(z) is a constant and Pz is a linear operator.  This implies (2). 

Proper ty  (3) follows from the fact that  Pz is a projector onto c(Fz). Further, (4) is a 
consequence of the fact that  Pu(z) is dual to (Ia)(z) and so P~ is continuous in the 

weak* topology of l~(Fz). Finally, the norm of P coincides with supze U IIPu(z)H. 
Thus IIPII<C for C as in (3.3). This completes the proof of (5). [] 

Proof of Corollary 1.3. First note that  any finite bordered Riemann surface N 
admits  an embedding to a Riemann surface 3 I  so that  the pair N�9 satisfies con- 
dition (1.2). Le t /~  be a covering of N and i: U~-~R be such that  7rl(U) is generated 

by a subfamily of generators of the free group 7r1(-~). Then the homomorphism 

i . :Th (U) -+~I (R)  is injective. In particular, K(U):=Keri.={1} and pu:U-+U is 

the universal covering. Since U is biholomorphic to D, the existence of the projector 

P:H~(D)--+pb(H~(U)) follows from Theorem 1.1. [] 

Proof of Corollary 1.6. Let NC~II. RC~r and i: U~-+R be open Rie- 
mann surfaces satisfying the hypotheses of Theorem 1.1. Assume also that  
K(U):=Keri.={1}. Let pu:D-~U be the universal covering map. Then there 
is a projector P:H~(D)-+p~(H~(U)) with properties (1) (5) of Theorem 1.1. 
Let fl,... ,fi~EH~(U) satisfy the corona condition (1.3) with 5>0.  Without  loss 
of generality we will assume also that  m a x /  I I f~l lH~c(u)~l .  For l < i < n  we set 

h * i:=pv(fi). Then hi,  ..., h n E H ~ ( D )  satish'  the corona condition in D (with the 
same 5). Also m a x i  IlhillH~(D)~1. Now according to the solution of the Carleson 

Corona theorem [Ca2], there are a constant C(n, 5) and gl, .-., g,~ E H  ~ (D) satisfy- 
ing maxi IlgillH~(D)<C(n, 5) such that  }- :~ l  gihi-1. Let us define dieH~(U) by 
the formula 

p~(di):=P[gi], l < i < n .  

Then property (2) for P implies that  ~ i ' 1  difi--1. Moreover, m a x i  IldillH~(U)~ 
C(N)C(n,5), where C(N) is the constant from Lemma 3.3. [] 

4. P r o o f  o f  T h e o r e m  1.9 

Let N~M be a relatively compact domain of a connected Stein manifold 

M satisfying (1.2). For a subgroup GCTh(M)  we denote by gNa:NG--+N and 
9MG: IVIG-4M the covering spaces of M and N corresponding to the group G with 
NcCMc. Further, assume that  i: U~-+NG is a holomorphic embedding of a com- 

plex connected manifold U, K(U):=Keri. CTrl(U), and Pc-: U - + U  is the regular 
covering of U corresponding to K(U). As before, without loss of generality we may 
assume that  homomorphism i.:Trl(V)-+G(=Trl(~)) is surjective (see the argu- 
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ments of Lemma 3.1). Thus the deck transformation group of U is G. We begin 
the proof of the theorem with the following result. 

P r o p o s i t i o n  4.1. For any zEU, the sequence pul(z):={w~}seocU is inter- 
polating with respect to H~(U). Moreover, let 

M(z)= sup inf{llglIH~(O):gEH~(~), g(w~)=a~, j=l ,2 , . . . }  
Ila~lh~(a)<l 

be the constant of interpolation forpul(z). Then there is a constant C=C(N) such 
that 

sup M(z) <_ C. 
zEU 

Pro@ Consider the homomorphism O~: G--~Iso(/~(G)), 

[0b(g)(w)](x):=~(xg-1), ,L, el~(O), x , gea .  

Let EMa(G)-+Ma be the holomorphic Banach vector bundle associated with 06- 
Then Me _ g Eoo (G)Iu-E~(G) (see Example 2.2(b)). According to Proposition 2.5, 
we can define the holomorphic Banach vector bundle [E~c(G)]M-+M with the 
fibre [l~(G)]~(Xc). Let G be the set of all subgroups GCTrl(M). We define 
the Banach space L=(~aeG[lX(G)]~(Xc) such that x = { x c } a e G  belongs to L if 
XG �9 [l ~ (G)]~ (XG) and 

[X[L : =  s u p  [XG[[I~(G)I~(XG ) < ,PC, 
GE~ 

where [. [[z~(a)l~(xa) is the norm on [l~(G)]~(Xc). Then similarly to the con- 
struction of Lemma 3.2, we can define the holomorphic Banach vector bundle B on 
M with the fibre L by the formula 

rE M~- (G)]M, B : ~  ~ J -~c  

GEG 

Note that  the structure group of B is Iso(L). Therefore the norm [. ]L induces a 
norm [. ]B on B (see Example 2.2.(b)). Let O~M be a relatively compact domain 
containing IV. Denote by H~(O, B) the Banach space of bounded holomorphic 
sections from O(O, B), that  is, 

fEH~(O,B)  .'. ;. [[f[[:=sup[f(z)lU<VC. 
zEO 
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For any zEO consider the restriction operator r(z): H~(O,  B)--+L, 

r(z)[f]:=f(z),  fEH~C(O,B).  

Then r(z) is a continuous linear operator with the norm Hr(z)H-< 1. Moreover, by a 
theorem of Bungart  (see [B, Section 4]), for an 3- eEL there is a section fEO(.~l, t3) 
such that  f (z)=v.  Since O is relatively compact in M. the restriction fIo belongs 
to H~(O,B) .  This shows that  r(z) is surjective. For an), vEL we set K.~,(z):= 
r ( z ) - l ( v )CH~(O,  B). The constant 

h(z):= sup inf Iltll 
IrlL<l tEK,.(z) 

will be called the constant of interpolation for r(z). 
result. 

\Ve will prove the following 

L e m m a  4.2. It is true that 

sup h(z) < C < x .  

where C depends on N only. 

Proof. In fact it suffices to cover N by a finite number of open balls and prove 
the required inequality for z varying in each of these balls. Moreover, since N is 
compact,  for any wE/V it suffices to find an open neighbourhood U~,cO of w such 
that  {h(z)}~eu~ is bounded from above by an absolute constant. 

Let wEN. Without  loss of generality we may identify a small open neigh- 
bourhood of w in O with the open unit ball /3~(0 .1 )cC ~, n = d i m O ,  such that  
w corresponds to 0 in this identification. It is easy" to see that  r(z), zEB~(O, 1), 
is the family of linear continuous operators holomorphic in z. Let R:=l/4h(w). 
Since h(w)_>l, B~(0,1) contains B~(O.R). For a yEB~(O.R) consider the one- 
dimensional complex subspace/y  of C"  containing Y. \Vithout loss of generality we 
may identify lyMB~(O, 1) with the open unit disk D c C .  With this identification. 
let r ( z ) ' -  ~ i - - ~ i = 0  riz be the Taylor expansion of r(z)  in D. Here ri:H x (0, t3)-+ L is 
a linear operator  with the norm llrill _<1. The last est imate follows from the Cauchy 
estimates for derivatives of holomorphic flmctions. We also have ro :=r (0)  (recall 
that  w=0) .  Let v E s  IVlL<I. For z<R we will construct v ( z )EH~(O,B)  which 

depends holomorphically on z. such that  II~,(z)II <8h(w) and r(z)[v(z)] =v.  

Let v(z)=Y'~i= o viz . Then we have the formal decomposition 

o c  2(2 ~42 

i = 0  j = 0  k = 0  i+j=k 
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Let us define vi from the equations 

ro(vo)=v and ~ r i (v3 )=0  fork_>1. 
i+j=k 

Since the constant of interpolation for r(0) is h(w), we can find voEH~(O,B), 
I Iv0 ft < 2h(w), satisfying the first equation. Substituting this v0 into the second equa- 
tion we obtain r0 (v l )=  - r l  (v0). Here II ~ (v0)II-< 2h(~,) because I1~1 II-< 1. Thus again 
we can find vj EH~(O, B) satisfying the second equation such that Ilvl II-< (2h(w)) ~. 
Continuing step by step to solve the above equations we obtain v,, E H  ~ (O, B) sat- 
isfying the n th  equation such that  Ilvr, II <-~i~'=l(2h(u:)) i+1 <l~(2h(v)) r'+l (because 
h(w)_>l). Thus we have 

llv(z)ll <-- ~ n(2h(~l"))n+11~n < ( 1 - 2 h ( w ) / ~ )  2 

~=0 

The above arguments show that h(z)<8h(w) for any ZEBc(0, 1/4h(w)). [] 

Now let us prove Proposition 4.1. Consider the fibre p{Zl(z)CU for zEU. 
Using the isometric isomorphism between H ~ ( U )  and the space H~(U, E~(G)) 
of bounded holomorphie sections of E~(G) (which is defined by" taking the direct 
image of each function from H ~ ( U )  with respect to Pc': see the construction of 
Proposition 2.4), we can reformulate the required interpolation problem as follows: 

Given hEI~(G) find vEH~(U, E~(G)) of least norm Null such that v(z)=h. 

Let us consider y =gNa (z) E N and its preimage 9~-~ (Y) C No. Further, consider 
the bundle EMG(G)-+Ma. We define a new function ]zE[l~(G)]~(Xa) by the 
formula 

- 5  h ( z ) = h  and tz (x)=0 for any xEgxG(y), :r#z. 

Then Ihl[z~(a)l~(Xc)=lhlz~(c). Let us now consider the bundle [E'~/G (G)]M on M. 

Taking the direct image with respect to gMa, we can identiB" h with a section of 
[lvlc(G M Since [E~c(G)]M is a component of the bundle B. we can E ~  , )] over y. 

extend /z by 0 to obtain a section h' of B over g whose norm equals Ihl~(c,). 
Therefore according to Lemma 4.2, there is a holomorphic section v'EH~(O, B) 
such that supwEN Iv'(w)lB<_Clhl~(a) and v'(y)=h'. Now consider the natural 
projection rc of B onto the component [EMc(G)]M in the direct decomposition 
of B. Then ~):=rc(v') satisfies 

sup I�9 ' ~Clh]z~(c)  and ~7'(y)=tz. 
wEN 
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Using identification of @IN with a bounded holomorphic section v of EN~c(G) (see 
the construction of Proposition 2.4), we obtain that  v(z) =h and suPwEU IViENc (C) < 
Clhlz~(a). It remains to note that  E~c(G)Iu=EU(G) and so vluEH~(U, EU(G)). 
In particular, SUpzcu M(z)<_C. [] 

Proof of Theorem 1.9. Assume that {zj}~_~cU is an interpolating sequence 
with the constant of interpolation 

M =  sup inf{llgll: gEH~(U), 9(zj)=aj, j = l, 2, ...}. 
Ilajll~_<l 

We will prove t ha t  p u  1 ( { z j  }?-1)C U is also interpolating. According to [Gal, Chap- 
ter VII, Theorem 2.2], there are functions f ,  EH~:(U) such that  

f i~ (z~)=l ,  f,,(zk)=O: k=fln, and ~lf~(z)[<_M 2. 

Further, according to Proposition 4.1. for any xEU, pgl(X) is an interpolating 
--1 sequence with the constant of interpolation _<C. Let Pu (Zn)={z,~9}gEa. Then 

[Gal, Chapter VII, Theorem 2.2] implies that  there are functions f ,~ E H ~c (U) such 
that  for any n, 

fng(Zn9)=l, f,~g(Z~,)=O,s#g , and 
9 

Define now b,~g E H ~ ( U )  by" the formula 

b,~9(z ) := f,~g(z)(p~.(f,~))(z). 

Then we have 

bng(Z,~g)=l, b,~g(zk~)=O, kCnor gCs, 

E [b~(z)t = E [(pb(fi~))(z)[ f ,g(z)I  -< (MC)2" 
n,g n=l  g 

Now we have the linear interpolation operator S: l ~ -+ H :~ (U) defined by S({a= 9 })-- 
~n,g angbng(z) for any {a,~g}El ~. This shows that {pul(zn)} is interpolating. 

Conversely, assume that  {z,~}~__lCU is such that  {pul(z,)} is interpolating 

for H a ( 0 ) .  Let {an}~_~lEl ~, and consider the function tEl~({pul(z,J}) defined 

by tlv~l(z~)=an for n = l , 2 ,  .... Then there is fEH~(~/) such that fl{v~l(z,)}=t. 
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Applying the projector P constructed in Theorem 1.1 to f ,  we obtain a function 
kEH~(U) with pb(k)=P(f)  which solves the required interpolation problem. [] 

Proof of Theorem 1.11. Let r: U-+U be the universal covering and h E H ~ ( U )  
be the function defining the projector P: H~(U)--+r*(H~(U)), see Remark 1.2. 
For a character ~ we define the map L o by the formula 

Lo[g](z):= ~_, h(~/(z))g(~(z))co(~/-1), g E H ~ ( U ) ,  z E U .  
"yETr~(U) 

It is readily seen that  L o maps H ~ ( U )  in H~(Tr~(U), O) and its norm is bounded by 
the norm of P (i.e. it depends on N only). Moreover, from Theorem 1.9 it follows 

that  for any oEU there is a function f E H ~ ( U )  such that 

f('7(o))=~(~/), ~ C 71"1 (U) . 

Thus Lo[f](o)=l showing that Lo is non-trivial. [] 

5. I n t e r p o l a t i n g  s e q u e n c e s  on  R i e m a n n  surfaces  

In this section we prove Propositions 1.13, 1.15, 1.17. 1.18 and Corollary 1.14. 

Proof of Proposition 1.13. Assmne that {zj}~C_lCU is an interpolating se- 
quence. Then by Theorem 1.9, r-l({zj}?_l) is  interpolating for H ~ ( D ) .  Let 
r--l(zj)-={Zjg}gETrl(U). Then by the Carleson theorem [Ca1] on the characteriza- 
tion of interpolating sequences we have (for any j and 9) 

( "~kCk. j 'Bzk(ZJg)l) ( g 1--ZjhZjgZjb--ZJg ) >c>O._ 

Further, since 
-I Zjh-- Zjg ~ 1. 

h:h~g 1--zyhzjg -- " 

from the above inequality it follows that  for any j ,  

I-[ Pz~(Zj):= H IB~-(z" ) l ->c>0"  
k:k=~j k:k•j 

Conversely, assume that  for any j we have 

k:k~j 
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From the proof of Theorem 1.9 we know that the constant of interpolation for 
r-~(z) with an arbitrary zEU is bounded from above by some C=C(N)<oc. Thus 
according to the inequality which connects the constant of interpolation with the 
characteristic of an interpolating sequence (see [Call) we obtain for any j and any 

(U), 
H Zjh -- Zjg ~ 1 

h:hr 1--ZjhZj9 -- -~ >0.  

Combining these two inequalities we have (for any j and g) 

(k..~kr P~k (Zj ) ) (h..~h~g lZJhzj;~Z;; ) =  (k..~kr ]B~. (Zjg ) l ) (h~h#g lZJhj--lZ;; ) 
c 

> - - > 0 .  
- C  

This inequality implies that  the sequence r -1 ({z;}~=l) is interpolating (see [Cal]). 
Hence by Theorem 1.9, {zj}j'~=~ is interpolating for H ~(U) .  [] 

Proof of Corollary 1.14. From the proof of Proposition 1.13 and Theorem 1.9 it 
follows that  the characteristic 5 ~ of the int erpolat ing sequence r -  1 ({ zj }~_ 1 ) is _> d/C, 
where C > 1  depends on N only. Then according to the Carleson theorem [Call, the 

constant of interpolation K '  of r - l ({z j}~=l )  is 

cC l+ log  < 1+log . -<T -?- 

Here c is an absolute constant and CI=CI(N). Thus applying the projector P 
of Theorem 1.1 to functions f E H ~ ( D )  which are constant on each fibre r - l ( z j ) ,  
j = 1, 2,. . . ,  and using that  II Pll < C2 =C2 (N) < ~c we obtain that 

K <- Cz K' < C1C2 ( I + I~ ~ ) " O- 

Proof of Proposition 1.15. We start by letting r-l(z j)={Zjg}gErrx(U) and  

r -1  (~j)= {(j~ }ge-~(v'). By the definition of t)* and because 7rl (U) acts discretely on 
D, we can choose the above indices such that  o(~jg,Z/,q)_<A for any g. Let us fix 
some hETrl(U). Then by the definition, tbr jCk we have 

gE~r~(U) 
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Using an inequality from the proof of Lemma 5.3 in [Gal, Chapter VIII gives 

-- 1--a@(zjg, Zk-h) 

for C~:=21/(1+A2). According to our assumption we have 

H H l-I 
j : jCk j: jCk gET:I(U) 

Therefore P(zkh, Zjg)>(~ for any jh/:k and any gCTrl(U). Hence we can apply the 
inequality of [Gal, Chapter VII, Lemma 5.2] to obtain 

I1 
j : jCk 

o(zr zkh)--a 
P{0 ({k):= H H P({Jg'~kh)>-- H H 1--ao(Zjg. Zkh) 

j : j#k  gErri (U) j:j~kk ge rq (U ) 

> - -  
- 1-o~IIj:jr Zk,) 1-al-[j:jr - 1-ct6 

This gives the required inequality. [] 

Proof of Proposition 1.17. From the condition of the proposition it follows that 
the distance in the pseudohyperbolic metric on D between interpolating sequences 
r - l ({z i}~ l )  and r-l({yi}~=l) is 2c. This implies that r-l({zi}~l)Ur-l({yi}~=l) 
is interpolating for H~ (see e.g. [Ca1, Chapter VII. Problem 2]). Therefore by 

Z" ac oc Theorem 1.9 { ,}~=lU{y~}i=lCU is interpolating for Hx(U). [] 

Proof of Proposition 1.18. Consider the function F(z):=l-[j P~, (z). Then we 
have a decomposition F(z)=Fl(Z)F2(z) with F,(z):=l-Ij P ~  (z), s = l .  2. It suffices 
to choose the required decomposition such that 

H PzlJ (z'~)>-F2(z'j' ifF~(z,~)=0, 
j : j r  

II ifr ( n)=0. 
j : jCn 

The proof of the above inequalities repeats word-by-word the combinatorial proof 
of Lemma 1.5 in [Gal, Chapter X] given by Mills. where we must define the matrix 
[akin] by the formula 

akn=logPzk(z~), k#n, a,,,~=0. 
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We leave the details to the reader. Now fl'om the above inequalities for F l ( z ~ ) = 0  

we have 

j:jCn "j:jCn \ j : jCn  

which gives the required est imate of the characterist ic for {Zl/}~-1. The same is 

valid for {z2j}j~=l . [] 
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