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Projections in the space H> and the corona
theorem for subdomains of coverings
of finite bordered Riemann surfaces

Alexander Brudnyi(?)

Abstract. Let M be a non-compact connected Riemann surface of a finite type, and Re M
be a relatively compact domain such that H,(M.Z)=H,(R.Z). Let R—R be a covering. We
study the algebra H>(U) of bounded holomorphic functions defined in certain subdomains U C R.
Our main result is a Forelli type theorem on projections in H> (D).

1. Introduction

1.1. Let X be a connected complex manifold and H>(X) be the algebra of
bounded holomorphic functions on X with pointwise multiplication and with norm

1£1l= sup {f(z)].
reX

Let 7: X — X be the universal covering of X. The fundamental group m1(X) acts
discretely on X by biholomorphic maps. By r*(H>(X ))CH>(X) we denote the
Banach subspace of functions invariant with respect to the action of 71 (X).

In this paper we describe a class of manifolds X for which there is a linear
continuous projector P: H”(f)—w*(Hx(X)) satisfying

(1.1) P(fg)=P(f)g for any fEHx()?) and ger*(H>(X)).

Forelli [F] was the first to discover that such projectors P exist for X being a
finite bordered Riemann surface. (In this case X is the open unit disk DCC.)
Subsequently, existence of a projection operator satisfving (1.1) for certain infin-
itely connected Riemann surfaces was established by Carleson [Ca3] and Jones and
Marshall [JM]. In all these results the projector can be constructed explicitly.

(1) Research supported in part by NSERC.
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In the present paper we prove existence of such projectors for a wide class
of (not necessarily one-dimensional) complex manifolds. Our construction is more
abstract and uses some techniques of the theory of coherent Banach sheaves over
Stein manifolds.

In order to formulate our results let us introduce some definitions.

Let N@M be a relatively compact domain (i.e. an open connected subset) in
a connected Stein manifold M such that

(1.2) mU(N) = (M),

By F.(N) we denote the class of unbranched coverings of N. Any covering from
Fo(N) corresponds to a subgroup of m1(N). Assume that the complex connected
manifold U admits a holomorphic embedding i: U~ R for some REF.(N). Let
tx:m (U)—m1(R) be the induced homomorphism of fundamental groups. We set
K(U):=Keri.Cm(U). Consider the regular covering pr': U —U of U corresponding
to the group K (U7), so that, 7,(U)=K(U) and 7 (U)/K(U) acts on U as the group
of deck transformations. Further, by p;-(H>(U))CH™ (U) we denote the subspace
of holomorphic functions invariant with respect to the action of = {U)/K(U) (i.e.
the pullback by py of H*(U) to U). Let F.:=p;'(2). z€U, and let I>(F.) be
the Banach space of bounded complex-valued functions on F, with the supremum
norm. By ¢(F,)CI°°(F,) we denote the subspace of constant functions.

Theorem 1.1. There is a linear continuous projector P: H>(U)—p{, (H>*(U))
satisfying the following properties:

(1) there exists a family of linear continuous projectors P,:1>*(F,)—c(F,)
holomorphically depending on z€U such that P[f]lp;1(2>::Pz[flpz_l(z)] for any

feH™(U);, ~
(2) P(fg)=P(f)g for any feH>*(U) and gep}-(H>(U)):
(3) if fFEH>=(U) is such that f|Fr. is constant. then P(f)r, =flF,:
(4) each P, is continuous in the weak® topology of I>°(F.):
(5) the norm ||P||<C<oc, where C=C(N)(?).
Remark 1.2. From (1)—(5) it follows that there exists an he H>(U) such that
(a) iz(z):zzwepz |h(w)] is continuous on U, and sup, h<C<oc;
(b) 3 wer, Mw)=1 for any 2€U:
(¢} the projector P is defined as

P(f)y)=Y_ flw)h(w). yeF..

weF,

(2) Here and below the notation C=C(c, 3.~....) means that the constant depends only on
the parameters a, 3,7, ....
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Also, from (c) it follows that P: H>(U)—pf, (H>(U)) is weak* continuous.

Let 1§~be a covering of a finite bordered Riemann surface R. The fundamental
group 1 (R) is a free group with a finite or countable family of generators J. Let
UCR be a domain such that m,(U) is generated by a subfamily of J. Let r:D—U
be the universal covering map. Then Theorem 1.1 implies the following result.

Corollary 1.3. There exists a linear continuous projector P: H>(D)—
r*(H>®(U)) satisfying the properties of Theorem 1.1.

Remark 1.4. The remarkable class of Riemann surfaces U for which the Forelli
type theorem (like Corollary 1.3) is valid was introduced by Jones and Mar-
shall [JM]. The definition is in terms of an interpolating property for the critical
points of the Green function on U. We conjecture that any R€F.(N), where N is
the Riemann surface satisfying (1.2), belongs to this class.

Example 1.5. Let r:D— X be the universal covering of a compact complex
Riemann surface of genus g>2. Let K CD be the fundamental compact region with
respect to the action of the deck transformation group m(X). By definition, the
boundary of K is the union of 2g analytic curves. Let Dj..... Dy be a family of
mutually disjoint closed disks situated in the interior of K. We set

S::UDi7 K/:K\S and EZ: U g(K/)
i=1 gem1(X)

Then R:=r(K’)CX is a finite bordered Riemann surface. and r: R— R is a regular
covering corresponding to the quotient group 71(X) of i (R). Here m1(R) is gen-
erated by the family of simple closed curves in R with the origin at a fixed point
2o € R so that each such curve goes around only one of g(D;). gem (X), i=1,... k.

Let YCD be a simply connected domain with the property that there is a subset

LCm(X) so that
rO( U ) =Uats)

gEm(X) geL

Clearly U:=Y\U,, 9(S) satisfies the hypotheses of Corollary 1.3. Therefore the
projector P, described above, exists for U.

One of the possible applications of Forelli's theorem is to the solution of the
corona problem (for results and references related to the corona problem we refer
to Garnett {Ga2|, Jones and Marshall [JAI] and Slodkowski [S]). Let us recall the
corresponding definitions.
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Let X be a Riemann surface such that H>(X) separates points of X. By
M(H*(X)) we denote the maximal ideal space of H>(X). i.e. the set of non-
trivial multiplicative linear functionals on H>(X) with the weak* topology (which
is called the Gelfand topology). It is a compact Hausdorff space. Each point z€X
corresponds in a natural way (point evaluation) to an element of M(H>(X)). So
X is naturally embedded into M(H>*(X)). Then the corona problem for H>(X)
asks: Is M(H*(X)) the closure (in the Gelfand topology) of X? (The complement
of the closure of X in M(H>(X)) is called the corona.)

For example, according to Carleson’s celebrated corona theorem [Ca2] this is
true for X being the open unit disk D. Also. there are non-planar Riemann surfaces
for which the corona is non-trivial (see e.g. [G]. [JM]. [BD]. [L] and references
therein). The general problem for planar domains is still open, as is the problem in
several variables for the ball and polydisk.

It is well known that the corona problem has the following analytic reformula-
tion.

A collection fi, ..., fn of functions from H>(X) satisfies the corona condition
if there exists >0 such that

(1.3) @)+ fal@) |+ | fa(z)]| >0 forall ze X.

The corona problem being solvable means that the Bezout equation

flgl+f292+'“+fngn =1

has a solution g, ..., gn € H*<(X) for any f1,.... fn satisfying the corona condition.
We refer to max; ||g;|| as a “bound on the corona solutions”. Using Carleson’s
solution [Ca2] of the corona problem for H> (D) and property (2) for the projector
P constructed in Theorem 1.1 we obtain the following corollary.

Corollary 1.6. Let NeM, ReF.(N) and i:U— R be open Riemann surfaces
satisfying the hypotheses of Theorem 1.1. Assume that K(U):=Keri, is trivial. Let
f1ses fn €H®(U) satisfy (1.3). Then the corona problem has a solution g1....,gn €
H>(U) with the bound max; [|g;|| <C(N.n.d/ max; || f;|l).

Remark 1.7. (1) We cannot avoid the restriction that N be an open bordered
Riemann surface: It follows from the results of Larusson [L] and the author [Br2]
that for any integer n>2 there are a compact Riemann surface S, and its regular
covering py: S,—S, such that

(a) S, is a complex submanifold of an open Euclidean ball B, CC™;

(b) the embedding i: S, <> B,, induces an isometry i*: H>(Bn)—H>(S,).
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In particular, (b) implies that the maximal ideal spaces of H x(gn) and H>(B,,)
coincide. Thus the corona problem is not solvable for H>(Sy,).
(2) In [Brl, Theorem 1.1] we proved the following matrix version of Corol-

lary 1.6.

Theorem 1.8. Let U be a Riemann surface satisfying the conditions of Corol-
lary 1.6. Let A=(a;;) be an nxk matriz, k<n, with entries in H>*(U). Assume
that the family of determinants of submatrices of A of order k satisfies the corona
condition. Then there ezists an nxn matriz A=(a,;), a;; € H*(U), so that &;j=a;;
for 1<j<k, 1<i<n, and det A=1.

The proof of the theorem is based on Theorem 1.1 and a Grauert type theorem
for “holomorphic” vector bundles on maximal ideal spaces (which are not usual
manifolds) of certain Banach algebras.

1.2. Another application of Theorem 1.1 is related to the classification of
interpolating sequences in U (cf. [St] and [JM]).

Recall that a sequence {z;}%2,CU is interpolating for H>(U) if for every
bounded sequence of complex numbers {a;}7<,. there is an fe H>(U) so that
f(z;)=a;. The constant of interpolation for {z;}32, is defined as

sup inf{{|f||: fe H>*(U). f(z;)=a;. j=1.2....}.

[a]' 100 <1

Theorem 1.9. Let NeM, ReF.(N), i:U—R and U be complex manifolds
satisfying the conditions of Theorem 1.1. A sequence {z; }lecU s interpolating

for H>*(U) if and only if r=1({z;}52,) is interpolating for H>(U).

j=1

Example 1.10. (1) Let M CD be a bounded domain. whose boundary B con-
sists of k simple closed continuous curves B, ..., By. with B; forming the outer
boundary. Let D; be the interior of By, and Ds...., Dy the exteriors of B, ..., B,
including the point at infinity. Then each D; is biholomorphic to D. Let {z;;},es be
interpolating sequences for H>(D;), i=1,.... k. such that the Euclidean distance
between any two distinct sequences is bounded from below by a positive num-
ber. Then for any covering p: R— M, the sequence p~*({zji};) is interpolating
for H>*(R).

(2) Let N CC™ be a strongly pseudoconvex domain. Then Theorem 1.9 is valid
for any i:U<s R, Re€F.(N), and U satisfying the hypotheses of Theorem 1.1.

Let NeM, ReEF,(N) and i:U— R be complex manifolds satisfying the con-
ditions of Theorenl 1.1. Let 7:U—U be the universal covering. The group m(U)
acts discretely on U by biholomorphic maps.
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A character of m1(U) is a complex-valued function p: 11 (U)—C™ satisfying

0(¢y) = 0(9)o(7) and [o(0)|=1. o.vem(U).

A holomorphic function feH>(U) is called character-automorphic if

(1.4) F(2) =0 f(z). vem(U). z€U.
By H®{m(U), ¢) we denote the Banach space of bounded holomorphic func-
tions satisfying (1.4).

Theorem 1.11. Under the above assumptions there is a (non-trivial) linear
continuous operator H>(U)— H>(m(U). 0) whose norm is bounded by a constant
A=A(N).

Remark 1.12. Let us recall that a non-parabolic Riemann surface X with a
Green function G, is of Widom type if

/0ac b(t) dt < .

where b(t) is the first Betti number of the set {z€X:G,(x)>t}. This means that
the topology of X grows slowly as measured by the Green function. Widom type
surfaces are the only infinitely connected ones for which Hardy theory has been
developed to any extent. They have many bounded holomorphic functions. In
particular, such functions separate points and directions. We refer to [Ha] for an
exposition.

Let U be a Riemann surface satisfying the hypotheses of Theorem 1.11. Then
this theorem and the remarkable results of Widom [W] imply that U is of Widom
type. In fact, it was first noted by Jones and Marshall [JM. p. 295] that if the pro-
jection operator P: H>*(D)—r*(H>(U)) of the form constructed in Theorem 1.1
exists then U must be of Widom type.

1.3. In this section we formulate some results on interpolating sequences in
U for U being a Riemann surface satisfying the hypotheses of Corollary 1.6. Our
results have much in common with similar properties of interpolating sequences for
H>(D).

Let r:D—U be the universal covering map. From Theorem 1.9 we know that
for any z€U the sequence r~1(2)CD is interpolating for H>(D). Then we can
define a Blaschke product B,€ H>* (D). z€U, with simple zeros at all points of
r~1(z). If B is another Blaschke product with the same property then we have
B!/ =aB, for some a€C, |a|=1. In particular. the subharmonic function |B.| is
invariant with respect to the action on D of the deck transformation group m (U).
Thus there is a non-negative subharmonic function P, on U with the only zero at
z, such that 7*(P,)=|B,|. It is also clear that P,(y)=P,(z) for any y.2€U, and
supy; Pr=1.
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Proposition 1.13. A sequence {2;}3<, CU 1s interpolating for H>*(U) if and
only if

(1.5) ir];f{ 1T sz(zj)}=:5>o.

The number ¢ is the characteristic of the interpolating sequence {z; }szl
Using Proposition 1.13 we prove the following resuit.

Corollary 1.14. Let {z; 521 CU be an interpolating sequence with character-
istic 6. Let K be the constant of interpolation for {z;}3,. Then there is a constant
A=A(N) (depending on the Riemann surface N from Corollary 1.6) such that

A 1
K< g(l%—log 5)

Z—w

Let

o(z,w):=

— ’s zZ,we D',

1—Zw

be the pseudohyperbolic metric on D. Let z, y€U and 2o €D be such that r(zg)=z.
We define the distance ¢*(z,y) by the formula

o'(w.y)i= inf o(zo.w).
wer—1(y)

It is easy to see that this definition does not depend of the choice of 2y and deter-
mines a metric on U compatible with its topology.

The following result shows that interpolating sequences are stable under smail
perturbations.

Proposition 1.15. Let {z;}32, CU be an interpolating sequence with charac-
teristic 5. Assume that 0<A<2X/(1+A?)<d<1. If {€;}72, CU satisfies 0*(§;. 2;) <
A, 3=1,2,..., then for any k,

5—2)/(14+A2)
jnggj(&c) Z T one/(1+02)

Remark 1.16. This proposition is similar to [Gal. Chapter VII, Lemma 5.3]
used in the proof of Earl’s theorem on interpolation. We will show how to modify
the proof of this lemma to obtain our result.
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Proposition 1.17. Let {z;}35, and {y;}2, be interpolating sequences in U.
Assume that there is a constant ¢>0 such that for any i and j,

0" (z.y:) > ¢

Then the sequence {z; };2,U{y;}3, CU is interpolating.
Finally we formulate an analog of Corollary 1.6 from [Gal, Chapter X].

Proposition 1.18. Let {z;}32,CU be an interpolating sequence with charac-
teristic 8. Then {z;}32, can be represented as a disjoint union {z1;}52;U{z2;}52,
of two subsequences such that the characteristic of {zs;}3< s >V6, s=1.2.

Remark 1.19. Using the above properties of interpolating sequences in U it
is possible to define non-trivial analytic maps of D to the maximal ideal space
of H>(U) related to limit points of interpolating sequences. The construction is
similar to the classical one given in the case of H>(D) by Hoffman [H].

Acknowledgement. 1 would like to thank L. Carleson for some valuable remarks
on the original version of this paper and D. Marshall for useful discussions.

2. Construction of bundles

In this section we formulate and prove some preliminary results used in the
proofs of our main theorems.

2.1. Definitions and examples

(For standard facts about bundles see e.g. Hirzebruch’s book [Hi].) In what
follows all topological spaces are allowed to be finite- or infinite-dimensional.

Let X be a complex analytic space and S be a complex analytic Lie group
with the unit e€S. Consider an effective holomorphic action of S on a complex
analytic space F'. Here holomorphic action means a holomorphic map S§x F-—F
sending sx f€ES X F to sf€F such that s,(saf)=(s152)f and ef=f for any feF.
Efficiency means that the condition sf=f for some s and any f implies that s=e.

Definition 2.1. A complex analytic space W together with a holomorphic map
(projection) m: W — X is a holomorphic bundle on X with the structure group S
and the fibre F', if there exists a system of coordinate iransformations. i.e., if

(1) there is an open cover U={U,;};c; of X and a family of biholomorphisms
hi:w=Y(U;) = U; x F that map “fibres” 77 1(u) onto ux F;
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(2) for any i, j€I there are elements s;; € O(U;NU;, S) such that
(hihjfl)(uxf) =uxs;;(u)f forany ueU;NU; and fer.

In particular, a holomorphic bundle 7: W — X whose fibre is a Banach space F' and
the structure group is GL(F) (the group of linear invertible transformations of F')
is a holomorphic Banach vector bundle.

A holomorphic section of a holomorphic bundle 7: W —X is a holomorphic
map s: X =W satisfying mos=id. Let n;: W;— X, i=1,2. be holomorphic Banach
vector bundles. A holomorphic map f: Wi — W5 satisfving

(a) f(x7'(z))Cmy (z) for any zeX;

(b) f |7r1_1(1) is a linear continuous map of the corresponding Banach spaces,
is a homomorphism. If, in addition, f is a homeomorphism, then f is an isomor-
phism.

We also use the following construction of holomorphic bundles (see, e.g. [Hi,
Chapter 1]):

Let S be a complex analytic Lie group and U={U; };c1 be an open cover of X.
By Z5(U,S) we denote the set of holomorphic S-valued U-cocycles. By defini-
tion, S:{Sij}GZ(lg(u, S) where Si]‘EO(UiﬁU]‘, S) and $;;5jk=38;; on UiﬂUjﬂUk.
Consider the disjoint union | |,., U; x F' and for any u€U;NU; identify the point
ux feU; x F with uxs;;(u)feU; xF. We obtain a holomorphic bundle W on X
whose projection is induced by the projection U; x F—U,;. Moreover, any holomor-
phic bundle on X with the structure group S and the fibre F' is isomorphic (in the
category of holomorphic bundles) to a bundle W;.

Example 2.2(a). Let M be a complex manifold. For any subgroup GC (M)
consider the unbranched covering g: Mg — M corresponding to G. We will describe
M¢ as a holomorphic bundle on M.

First, assume that GCm (M) is a normal subgroup. Then Mg is a regular
covering of M and the quotient group Q:=m(M)/G acts holomorphically on Mg
by deck transformations. It is well known that M in this case can be thought of
as a principle fibre bundle on M with fibre @ (here Q is equipped with the discrete
topology). Namely, let us consider the map Rg(g): @ —Q defined by the formula

Ro(9)(h)=hg™". heQ.

Then there is an open cover U={U;};c; of M by sets biholomorphic to open Eu-
clidean balls in some C™ and a locally constant cocycle c={c;;}€ Z} (U, Q) such that
Mg is biholomorphic to the quotient space of the disjoint union V=| |, cr Uix Q by
the equivalence relation U; x @3z x Rg(ci;)(h)~xxhel;x Q. The identification
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space is a holomorphic bundle with projection p: Mg — M induced by the projec-
tions U; x @— U;. In particular, when G'=e we obtain the definition of the universal
covering M. of M.

Assume now that GCmy(M) is not necessarily normal. Let Xg=m1(M)/G
be the set of cosets with respect to the (left) action of G on w1 (M) defined by left
multiplications. By [Gg)€ X we denote the coset containing gemi(M). Let H(X¢)
be the group of all homeomorphisms of X¢ (equipped with the discrete topology).
We define the homomorphism 7: 7 (M)— H(X¢) by

m(9)([Gq) :=[Gag™']. gqem(M).

Set Q(G):=m1(M)/KerT and let § be the image of gem (M) in Q(G). We de-
note the unique homomorphism whose pullback to m (M) coincides with 7 by
To(e): Q(G)—~H(X¢). Consider the action of G on V=| |;c; U x w1 (M) induced by
the left action of G on 7, (M) and let Vg =| |,.; U; x X be the corresponding quo-
tient set. Define the equivalence relation U; x X 32 X To(a) (€i;)(R) ~a x heU; x X¢
with the same {cij} as in the definition of Af.. The corresponding quotient space
is a holomorphic bundle with fibre X biholomorphic to M¢.

Ezample 2.2(b). We retain the notation of Example 2.2(a). Let B be a com-
plex Banach space with norm | - |. Let Iso(B) CGL(B) be the group of linear isome-
tries of B. Consider a homomorphism ¢: Q—Iso(B). Without loss of generality
we assume that Ker p=e, for otherwise we can pass to the corresponding quotient
group. The holomorphic Banach vector bundle E,— M associated with g is defined
as the quotient of | |;.; U;x B by the equivalence relation U; x B3 x o(cij)(w)~
zxweU; x B for any z€U;NU;. Further, we can define a function E,—R, which
will be called the norm on E, (and denoted by the same symbol | - ). The construc-
tion is as follows. For any x xw€eU; x B we set |z xw|:=|w|. Since the image of ¢
belongs to Iso(B), the above definition is invariant with respect to the equivalence
relation determining F, and so it determines a “norm™ on E,. Let us consider some
examples.

Let 1;{Q) be the Banach space of complex-valued sequences on () with [;-norm.
The action R from (a) induces the homomorphism o: Q—Iso(l;(Q)).

e(g)(w)lz]:=w(Rq(g9)(x)). ¢9.7€Q. wel(Q).

By E{(Q) we denote the holomorphic Banach vector bundle associated with o.
Let [,.(Q) be the Banach space of bounded complex-valued sequences on Q
with l,,-norm. The homomorphism o*: Q —Iso(l (Q)), dual to g is defined as

" (9)W)a]=v(zg™"). g.2€Q. vel(Q).
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(It coincides with the homomorphism (0%)7': ((0*)71(g)[¢])(w):=v(e(g™)[w]).
9€Q, v€l1(Q), wel1(Q).) The holomorphic Banach vector bundle associated with
o* will be denoted by EX(Q). By definition it is dual to E(Q).

2.2. Main construction

Let B be a complex Banach space with norm |-| and let || || denote the
corresponding norm on GL(B). For a discrete set X, denote by B, (X) the Banach
space of “sequences” b:={(z,b(z))},ex. b(x)€ B, with norm

bloc 1= sup [b(2)]
z€X
By definition, for b;={(z,b;(2))},ex. a;€C, i=1.2, we have
a1b1 +oigby = {(.73 airh (.T)“FQQbQ(;l’))}mex.
Further, recall that a B-valued function f:U — B defined in an open set UCC" is
said to be holomorphic if f satisfies the B-valued Cauchy integral formula in any
polydisk contained in U. Equivalently, if locally f can be represented as the sum
of absolutely convergent holomorphic power series with coefficients in B. Now any
family {(z, fz)}zex, where f, is a B-valued function holomorphic on U satisfying
|fz(2)| <A for any zeU and z€ X, can be considered as a B~ (X)-valued holomor-
phic function on U. In fact, the local Taylor expansion in this case follows from the

Cauchy estimates of the coefficients in the Taylor expansion of each f,.
Let t: X — X be a bijection and h: X x X — GL(B) be such that

h(t(z),z) € GL(B) and max{sup 1A(t(z). 2)]. sup [[h~1(z. t(ac))||} < x.
z€X reXx

Then we can define a(h, t)€GL(B (X)) by the formula

a(h,t)[(z,b(x))]:= (t(z), h(t(z). 2)[b(z)]), b={(z.b(z))}eex € Bx(X).

We retain the notation of Example 2.2. For the acyclic cover U={U; }ier of M
we have 9_1(Ui):|_|sexc Vis CM¢ where g|v,.: Vis— U is biholomorphic. Consider
a holomorphic Banach vector bundle #: E— Mg with fibre B defined by coordinate
transformations subordinate to the cover {Vi,}icr se xo of A, i.e. by a holomorphic
cocycle h={his 5} €25(g™H{U), GL(B)). his ;5 €O(VisNVjr. GL(B)). such that E
is biholomorphic to the quotient space of the disjoint union | |, ; VisxB by the
equivalence relation Vi; x Box X i jr(x)[v]~r xv €V X B, s:=Tg()(€i;)(k). The
projection 7 is induced by the coordinate projections Vi; x B—V;s. Assume also
that for any =z,

(2.1) sup mase{ [ (2 07 (@) [} <4 < x.
1,78,

Further, define T:=gom: E— M.
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Proposition 2.3. The triple (E, M, %) determines a holomorphic Banach vec-
tor bundle on M with fibre By (X¢). (We denote this bundle by Eyy.)

Proof. Let ¢35: U; =V, be the map inverse to gly,,. We identify Vs x B with
UixsxB by ¢;s, and {sxB}.cx, with By (X¢). Further, for any zeU;NUj,
we set ﬁisyjk(l')::hisrjk((bis(l'))- Then E can be defined as the quotient space of
e Ui x B (Xg) by the equivalence relation U; x Bo (Xg) 3z x {(k,b(k)) }rexc ~
X {(70(6)(€ij) (k) hirg a) @) (k). i1 (@) [0(K)]) bre x 0 €Ui X B (Xa)-

Define

ilij(iL’)IXGXXG—)GL(B). IEUimUj,

and
dz‘j S O(UiﬁUj, GL(B;C(XG)))
by the formulas

hij (@) (s. k) = has i (2)

and
dij ()b == alhi;(z). 7o) (61;))B]. b€ Bx(Xa)-

Here holomorphy of d;; follows from (2.1). Clearly. d={d;;} is a holomorphic cocycle
with values in GL(B(X¢)), because {h;s jx} and {70 (€i;)} are cocycles. Now E
can be considered as a holomorphic Banach vector bundle on M with fibre B.(X¢)
obtained by identification in | |;.; U; x Boo(Xg) of 2 xd;;(2)[b]€U; x B (Xg) with
zxbelU; x Bo(Xg), z€U;NU;. Moreover, according to our construction the pro-
Jection E— M coincides with 7. []

Let W be a holomorphic Banach vector bundle on a complex analytic space X.
In what follows, by O(U, W) we denote the vector space of holomorphic sections of
W defined in an open set UCX.

We retain the notation of Proposition 2.3. By the construction of Proposi-
tion 2.3, a fibre (7)71(z). z€U;. of Eay can be identified with [] oy 7 (dis(2))
such that if also z€U; then

(2-2) H 7r¥1(¢is(z)): H 7r_1(C’]"’Q(G)(Eji)(s)(Z)>'

seEXc s€EXa

We recall the following definitions.
Let J, be the set of sequences (igso, ... . i484) With i;€I, s,€ X for t=0, ... . ¢.
A family

f = {fioso,....iqsq}(ioso,....iqsq)eJqs fio.so.....z,qsq € O(Viosoﬁ--ﬂViqsq ' E)
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is a g-cochain on the cover g“l(u):zuiehsexc Vis of Mg with coefficients in the
sheaf of germs of holomorphic sections of E. These cochains generate a complex
vector space C?(g~"(U), E). In the trivialization which identifies 7~!(V;,s,) with
Vigso X B any fis,.....i,s, is represented by bigs, .. iqsqe(’)(V}OsOﬂ...ﬂViqsq,B). As-
sume that for any (igso, ..., 4484)€J; and any compact KCU;,N..0U;, there is a
constant C=C{(K) such that

(2.3) SUP  |(bigso....igs, °Pinso)(2)] < C.

The set of cochains f satisfying (2.3) is a vector subspace of C4(g~! (i), F) which
will be denoted by C}(¢~* (), E). Further, the formula

q+1

(24) (5qf)iosoy---»iq+15q+1 :Z(—l)kr%}c (fi-oso oy )

k=0

where feC9(g~1(U), F), determines a homomorphism
§:C(g~H(U), E) — CT (g7 HU). E).

Here ™ over a symbol means that this symbol is omitted. Moreover, we set W=
VigsoM--NVi i 1ssns Wk:\/iosoﬂ...ﬂAikskﬂ...ﬂV};qquH and T&:k is the restriction
map from W to W. Also, condition (2.1) implies that 69 maps C¥(g=*(U), E) into
CiTH (g™ (U), E). We will denote 69|ca(y-1 () i) by 0f. As usual, 69+10§9=0 and

6§68 =0. Thus one can define cohomology groups on the cover g~!(U) by
b %
Hg ' (U),E):=Ker§?/Im§?! and HI(g *(U).E):=Kerdi/Imsi '

In what follows the cohomology group H(U. Esr) on the cover U of M with co-
efficients in the sheaf of germs of holomorphic sections of Ej, is defined similarly
to Hi(g~'(U), E). Elements of Ker6? and Ker 67 will be called g-cocycles and of
Im§9~* and Im 6§ " g-coboundaries.

Proposition 2.4. There is a linear isomorphism

% H (g~ (U), E) — HYU, Exy).

Proof. Let f={firso....1,5,} ECPH{g ' (U).E). Let furthermore b; s,
O(VigsoN...NVy s, B) be the representation of fi,s,
tifying 7 1(V;,s,) With V;

yeunlg Sq
igs, in the trivialization iden-

xB. If V;;Osoﬂ...ﬁviqsq #@ then sk:TQ(G)(éiklo)(SO)7

080
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k=0,...,q, and U;;N..NU;, #0. For otherwise. bj s,
satisfying the above identities we can define

=0. Thus for sg...., 54

C9U, Epy) is linear and injective. Now for a cochain feC4(U. Exr) we can convert
the construction for ®¢ to find a cochain feC{ (g~ (U). E) such that ®I(f)=f.
Thus ®9 is an isomorphism. Moreover, a simple calculation based on (2.2) shows
that

(2.5) 59-99 =PIt 5.

where 67 in the left-hand side is the operator for Ey defined similarly to (2.4).
Hence ®¢ determines a linear isomorphism ®4: H (g~ '(U). E)=>HIY(U. Err). O

We close this section by the following result.

Proposition 2.5. Let p: G—Iso(B) be a homomorphism and E,— Mg be the
holomorphic Banach vector bundle associated with o. Then E, satisfies the condi-
tions of Proposition 2.3.

Proof. Let M,— Mg be the universal covering (recall that G=m;(M¢)). Since
the open cover g7 (U)={Vis}ier sexe of M is acyclic. M, can be defined with re-
spect to g~1(U). Namely, there is a cocycle h={h; ;1 }€Z5(g7 1 (U).G) such that
M. is biholomorphic to the quotient space of ||, , Vis x G by the equivalence relation
VisxG3x X Rg(his_jk)(f)f\/l‘ X fE‘/jk x G, S=TQ(G) (61])(]?) here Rg(q)<f) ::fq—l,
f,q€G. Now E, is biholomorphic to the quotient space of | |,  VisxB by the
equivalence relation Viox B3z x o(hys jx)(v)~xxv€Vje x B, Clearly, the family
{o0(his ;x)} satisfies the estimate (2.1). O
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3. Proofs of Theorem 1.1 and Corollaries 1.3 and 1.6
Proof of Theorem 1.1

Let us briefly describe the basic idea of the proof.

First we construct the required projectors locally over simply connected sets.
The differences of these local projectors form a holomorphic 1-cocycle with values in
a certain holomorphic Banach vector bundle. Then we will prove that this cocycle
is a coboundary satisfying some boundedness condition. This will do the job.

Let N€M be an open connected subset of a connected Stein manifold M sat-
istying (1.2). Let GCm (M) be a subgroup. As before, by Mg and N we denote
the covering spaces of M and N corresponding to G. Then by the covering ho-
motopy theorem (see e.g. [Hu, Chapter III, Section 16]). there is a holomorphic
embedding Ng— Mg. Without loss of generality we regard N as an open subset
of Mg. Denote also by gajg: Mg— M and gvg: Ng— N the corresponding projec-
tions such that gygln.=gnve. Let i: U< Ng be a holomorphic embedding of a
complex connected manifold U.

Lemma 3.1. It suffices to prove the theorem under the assumption that the
homomorphism i.: 7 (U)—G(=m(Ng)) is surjective.

Proof. Assume that G':=Imi, is a proper subgroup of G. By t: Ng:— Ng
we denote the covering of Ng corresponding to G'CG. By definition, gyget=
gng: Ngr— N is the covering of N corresponding to G'Cmi(N). Further, by the
covering homotopy theorem there is a holomorphic embedding i': U< Ng/ such
that toi'=i, Keri,=Keri,, and i\: 7 (U) =G (=m(Ng)) is surjective. Clearly, it
suffices to prove the theorem for ¢/(U)C Ng,. OO

In what follows we assume that i, is surjective. By py:U—U we denote the
regular covering of U corresponding to K(U):=Ker i., where m(ﬁ y=K(U). Con-
sider the holomorphic Banach vector bundle E¢(G)— Mg associated with the
homomorphism o6: G—+Tso(11(G)), [oc(9)(¢)](x):=r(xg ). veli(G), 7.9€C (see
Example 2.2(b)). Since i, is surjective. EX¢(G)|-=EY (G).

Let K¢ Cl1(G) be the kernel of the linear functional Iy (G) 3 {vg}gec 2 e Vo-
Then K¢ is invariant with respect to any og(g). g€G. In particular, oo determines
a homomorphism hg: G—Iso(Kg), ho(g)=0c(9)|ke- Here we consider K¢ with
the norm induced by the norm of 1;(G). Let Fz— Al be the holomorphic Banach
vector bundle associated with hg. Clearly, Fg is a subbundle of E;/¢(@). Further,
the quotient bundle Cq:=E}'¢(G)/Fg— Mg is the trivial flat vector bundle of
complex rank 1. Indeed, it is associated with the quotient homomorphism ha: G—
C*, ha(9)(v+Ke)=0c(9)(v)+ K¢, geG. v€l1(G), where w+ K¢ is the image of
wely (@) in the factor space [;(G)/Kg=C. This homomorphism is trivial because
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oc{g){(v)—v€e K¢ by definition. Thus we have the short exact sequence
(3.1) 0 — Fg — EMo(G) 2% g — 0.

Our goal is to construct a holomorphic section I: Co— EM¢(G) (linear on the
fibres) such that kgolg=id. Then we obtain the bundle decomposition EMs(q)=
I(;(CG)GBFg.

Let {ts}sec be a standard basis of unit vectors in I, (G), ts(g)=0s4. 5,9€G.
Define A: C—1;(G) by A(c)=cte, where e€G is the unit. Then A is a linear operator
of norm 1. Now let us recall the construction of E;¢(G) given in Proposition 2.5.

Let M.— Mg be the universal covering. Consider the open cover g;IIG(U)z
{Visbier.sexs Of Mg, where U:={U,};cs is an open cover of M by complex balls,
and UsEXG Vi.is=9~*(U;). Then there is a cocycle cG:{cc_is,jk}eZ}?(g]_v,lG(U), G)
such that E{wc (G) is biholomorphic to the quotient space of ||, Vig.is X11(G)
by the equivalence relation Vg ;s x11(G)2x X oG (ca.is.jr) (V) ~& xvEVg jk x 1 (G)-
The construction of Fg is similar, the only difference is that in the above for-
mula we take hg instead of pg. These constructions restricted to Vig,s deter-
mine isomorphisms of holomorphic Banach vector bundles: ec s: E{"IG(G)|VGJ.S—->
Vais xW(G), feisi Folve..—Ve.is xKg and cg.is: Calve ;. = Va.is xC. Then we
define AGJ'S:CG_>E{V[G(G) on Vigis as eg}iscA’:cG_is, where A'(zxc):=xx A(c),
T€Vg 5, c€C. Clearly, kgoAg is=id on Vg 4,. Thus

B is ik = Ac.is— A ik Calvi.anve n — Falve..nve s

is a homomorphism of bundles of norm <2 on each fibre (here the norms on Fyg,
Cc and E}M°(G) are defined as in Example 2.2(b)). We also use the identification
Hom(Cg, F)=2 Fg (this is because Cg is trivial and Hom(C, Kg)=C*®Kg=K¢)-
Further, according to Proposition 2.5. the holomorphic Banach vector bundle
Hom(Cyg, Fe) associated with the homomorphism hg 2hg: G—Iso(Hom(C, K¢))
satisfies the conditions of Proposition 2.3. Therefore. by definition, B¢={Bg.is,jk }
is a holomorphic 1-cocycle with respect to d} defined on the cover gy;5(U). By
$cis: U;—= Vi s we denote the map inverse to garelve,,- Next we will prove the
following lemma.

Lemma 3.2. There is gg:{écvis}ng(g;}G(Z/{),FG), Bg.is€O(Vis, F), s0
that 68(Bc;)=Bg. Moreover, for any i€l there is a continuous non-negative func-
tion F;:U;— R, such that for any G,

(3.2) sup |(Bg.is=0c.is)(2)] < Fi(2).
sé)éc
zel;

Here | - | denotes the norm on Fg.
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Proof. According to Proposition 2.3, we can construct the holomorphic Ba-
nach vector bundle (Fg)as. It is defined on the cover U of M by a cocycle dg:=
’{VdGﬂ']‘}GZ(lg(u,ISO((Kg)oo(Xg))), where dG.ijEO(UiﬁUj,ISO((KG):,C(XG))). Let
@g:Cg(g;lla(U),Fg)—)gq(u, (Fe)um) be the isomorphism defined in the proof of
Proposition 2.4. Then ®{(Bg):=bg={bg ;;} is a holomorphic 1-cocycle with re-
spect to 0 defined on U. Here bg ;; €O(U;NU;. (Fg)ar). and

sup 1bG.i;(2)l(Fo)a < 2.
i.jel
zeEM

where | - |(p.),, stands for the norm on (Fg)asr.

Let G be the set of all subgroups GCmi(M). We define the Banach space
K= eg(Kc)oo(Xa) such that z={zc}geg belongs to K if z¢€(Kg)x(Xe)
and

|$| = sup |$G|(KG):><:(XG) < oC,
GeG

where | - |(k4)..(xo) 18 the norm on (Kg)x(X¢). Further, let us define d:={d;;} €
Z6 U, Iso(K)) as d:=@geg de- Here

diji= P daijr [dij(2)[({vatoeg) = {lde.i;(2)|(va) }aeg: 2 €UNU;.
Geg

Clearly d;;€O(U;NU;,Iso(K)). Now we define the holomorphic Banach vector
bundle F' on M by the identification U; x Koz xd;;(x){v]~zxvelU; x K for any
zelU;NU;. In fact, this bundle coincides with @Geg(FG)J\J~ A vector f of F over
2€ M can be identified with a family {fg}ceg so that fg€(Fg)a is a vector over 2.
Moreover, the norm |f|r:=supgcg |fel(Fo),, of f is finite. Now we can define a
holomorphic 1-cocycle b={b;;} of F on the cover U as

bi={bc}ceg, bi;:={bc.ij}ceg€OU;NU; F).

Here holomorphy of b;; follows from the uniform estimate of the norms of bg 4;.

Next, we use the fact that M is a Stein manifold. According to the theorem
of Bungart [B, Section 4] (i.e. the version of the classical Cartan Theorem B for
cohomology of sheaves of germs of holomorphic sections of holomorphic Banach
vector bundles), a cocycle b represents 0 in the corresponding cohomology group
HY(M, F). Further, the cover {U;};c; of M consists of Stein manifolds (and so it
is acyclic). Therefore by the classical Leray theorem (on calculation of cohomology
groups by acyclic covers),

HYM,F)=H'(U,F).
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Thus b represents 0 in H* (U, F), that is. b is a coboundary. In particular, there are
holomorphic sections b;€ O(U;, F) such that

bi(z)—b;(z) =b;;(z) for any z € U;NU;.

We also set
FI(Z) = |b,(Z>|F

Then F; is a continuous non-negative function on U;. Further, by definition each b;
can be represented as a family {bg;}geg. where bg ;€ O(U;, (Fg)ar). The family
be={bc i }icr belongs to COU, (Fg)yy). Using the isomorphism &% from Propo-
sition 2.4 we obtain a cochain Bg:=[®%]" (bs)eC{grieU), Fc). Now if Bg:=
{EG’Z’S}, EG,BEO(VQS,F(;), it follows from identity (2.5) that

Be.is(2) = Ba jr(2) = Bg.isjr(z) for any z € VisNVj.

Finally, inequality (3.2) is the consequence of the definitions of F; and 5% a

Let us consider now the family {Ag ;s —Bg.is }is. By definition, it determines a
holomorphic linear section Io: Cqg—FE i”c (G), kg=Ig=id. Thus we have Ei”G (G)y=
I(Ce)® Fi. In the next result the norm || - || of I is defined with respect to the

norms | - |¢, and | - |Ei”G(G)'

Lemma 3.3. There is a constant C=C{N) such that for any G€G,

sup [[I(2)| <C.
zZEN

Proof. Let V={V;},cr be a refinement of the cover U of M such that each V;
is relatively compact in some Uy(;y. Then from Lemma 3.2 it follows that

sup [(Bg.k(i)s°0c.k(i)s)(2)] < sup Fii)(2) =Ci <.
SG)%’/G zZ€V;
zeV;

Now for any z€g;,(Vi) we have

I la(2)l| < SL;P (“(AG,k(i)SCOGAk(i)s)(y)”+”(EG.A’(i)SCOG,k(i)s)(y)”) <1+Ci.
seXag
yeV;

Since NCM is compact. we can find a finite number of sets V; .....V;, which
cover N. Then

25161}\) He(2)] < 1122({{1+C,-1} =C<x. O
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Consider now the restriction of the exact sequence (3.1) to U. Using the iden-
tification £17¢(G)|y 2EY (@) we obtain

0— Fgly — EY(G) — Celp — 0.

Similarly, we have the dual sequence obtained by taken the dual bundles in the
above sequence
0— [Celu]* — EYL(G) — [Felu]” — 0.

Let ¢(G) be the space of constant functions in [, (G). By definition. [Cg|c]* is a
subbundle of EY (G) of complex rank 1 with fibre ¢(G) associated with the trivial
homomorphism G—Iso(c(G)). Let Pr:=[lg|c]*: EL(G)—[Cqlc]* be the homo-
morphism of bundles dual to Ig|y. Then for any z€U. Pi-(z) projects the fibre of
EY(G) over z onto the fibre of [Celu]* over z. Moreover, we have

(3.3) sup | Py (2)| <C.
2elU

where || - || is the dual norm defined with respect to |- le¢ () and | - |jcgp)-- The
operator Py induces also a linear map P}.: O(U. EL(G))—~O(U. [Csluv]*).

[PL(O1(2):=[Pu(2))(f(2). fE€OU.EL(G)).

Further, any feH °°((7 } can be considered in a natural way as a bounded holo-
morphic section of the trivial bundle U x C—U. This bundle satisfies the assump-
tions of Proposition 2.5 (for U instead of A). Furthermore. it easy to see that
in this case the bundle (U x C)y; defined in Proposition 2.3 coincides with EL(G).
Let ®: HY (g~ (U), U x C)— HO(U, EY.(G)) be the isomorphism of Proposition 2.4.
(This is just the direct image map with respect to pg-: U—U .) We define the Banach
subspace So(U)CHY(U, EL(G)) with norm |- |- by the formula

JESl) = Il =l Epaie <

Clearly ®9, maps H>(U) isomorphically onto S+ (U). Moreover, s;:=® |, @)
is a linear isometry of Banach spaces. By definition. the space sy (pr.(H>*(U)))
coincides with O(U, [Cyrly]*)NSx(U). Then according to the definition of sg
and the inequality (3.3), the linear operator P:=s;'<P{-cs; maps H *(U) onto
p5; (H*(U)). By our construction P is a bounded projector satisfving (1). Here the
required projector P,:1°(F,)—¢(F,) can be naturally identified with Pp;(z). Let
now fe H*(U) and g€py;(H>(U)). Then by definition we have

P[f9]|p51(z) :Pz[(f9)|p51(z)] :Pz[f|p;1(z)]9|p;1(z) = (P[f]g)\pgl(z)‘
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Here we used that glpal(z) is a constant and P, is a linear operator. This implies (2).
Property (3) follows from the fact that P, is a projector onto c(F;). Further, (4) is a
consequence of the fact that Py (z) is dual to (I5)(z) and so P; is continuous in the
weak* topology of [ (F;). Finally. the norm of P coincides with sup, ¢ || P (2)|l-
Thus || P||<C for C as in (3.3). This completes the proof of (5). D

Proof of Corollary 1.3. First note that any finite bordered Riemann surface N
admits an embedding to a Riemann surface M so that the pair N € M satisfies con-
dition (1.2). Let R be a covering of N and i: U< R be such that 7, (U) is generated
by a subfamily of generators of the free group ﬂl(ﬁ). Then the homomorphism
iv: T (U)—m1(R) is injective. In particular, K (U):=Keri.={1} and py: U—U is
the universal covering. Since Uis biholomorphic to D. the existence of the projector
P: H>*(D)—p;, (H>(U)) follows from Theorem 1.1. O

Proof of Corollary 1.6. Let NeM, RCF.(N) and i:U<R be open Rie-
mann surfaces satisfying the hypotheses of Theorem 1.1. Assume also that
K(U):=Keri,={1}. Let py:D—U be the universal covering map. Then there
is a projector P: H>*(D)—p},(H>*(U)) with properties (1)—(5) of Theorem 1.1.
Let fi,..., fn€ H(U) satisfy the corona condition (1.3) with 6>0. Without loss
of generality we will assume also that max; || fillp>=@w)<1. For 1<i<n we set
hi:=p};(fi). Then hy, ..., h, € H*(D) satisfy the corona condition in D (with the
same d). Also max; ||k gee(py<1. Now according to the solution of the Carleson
Corona theorem [Ca2], there are a constant C(n.é) and g, ..., gn € H>(D) satisfy-
ing max; ||g;|| gre(py <C(n, 8) such that 3", g;h;=1. Let us define d;€ H>(U) by
the formula

pir(di):=Plg]. 1<i<n.

Then property (2) for P implies that > " d;fi=1. Moreover, max; ||d;|| =<
C(N)C(n,d), where C(N) is the constant from Lemma 3.3. 0O

4. Proof of Theorem 1.9

Let NEM be a relatively compact domain of a connected Stein manifold
M satisfying (1.2). For a subgroup GCm (M) we denote by gng: Ng— N and
guma: Ma— M the covering spaces of M and N corresponding to the group G with
NgCMg. Further, assume that i: U< N¢ is a holomorphic embedding of a com-
plex connected manifold U, K(U):=Keri,Cm(U), and pr: U—U is the regular
covering of U corresponding to K (U). As before, without loss of generality we may
assume that homomorphism i,: 7, (U)—G(=m(Ng)) is surjective (see the argu-
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ments of Lemma 3.1). Thus the deck transformation group of U is G. We begin
the proof of the theorem with the following result.

Proposition 4.1. For any z€U, the sequence pgl(z):z{ws}segcﬁ is inter-

polating with respect to H>*(U). Moreover, let

M(Z): sup inf{llg||Hm(U):gEHx((7)' g(ws):as: .]:12*}

lesllice (gy <1

be the constant of interpolation for p;;'(z). Then there is a constant C=C(N) such
that

sup M (z) <C.
zelU

Proof. Consider the homomorphism pf,: G—Iso(l« (G)).

les(9)(W))(@) =w(zg™), welx(G). 7,9€G.

Let EX<(G)— Mg be the holomorphic Banach vector bundle associated with g% .
Then EX<(G)|ly=EY(G) (see Example 2.2(b)). According to Proposition 2.5,
we can define the holomorphic Banach vector bundle [EX¢(G)]p— M with the
fibre [I°(G)]oc(Xc). Let G be the set of all subgroups GCmi{M). We define
the Banach space L= 4[> (G)](X¢) such that z={z¢}geg belongs to L if
2 €[l1°(G)](Xg) and

|zl == sup |re|p= (6)) (xs) < O
Geg

where | - [0 (@)]c(xg) IS the norm on [I°°(G)]«(X¢). Then similarly to the con-
struction of Lemma 3.2, we can define the holomorphic Banach vector bundle B on
M with the fibre L by the formula

B:=P[EY (G-

Geg

Note that the structure group of B is Iso(L). Therefore the norm |- | induces a
norm | - |g on B (see Example 2.2.(b)). Let O€ M be a relatively compact domain
containing N. Denote by H>(O, B) the Banach space of bounded holomorphic
sections from O(O, B), that is,

FEH®(0,B) = |fl=sup|f(:)]s <.
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For any 2€0 consider the restriction operator r(z): H>*(0. B)— L.

M= f(z). fEH=(0.B).

Then r(z) is a continuous linear operator with the norm ||r(2)||<1. Moreover, by a
theorem of Bungart (see [B, Section 4)), for any v€L there is a section f€O(AM. B)
such that f(z)=wv. Since O is relatively compact in M. the restriction f|o belongs
to H>(O, B). This shows that r(z) is surjective. For any veL we set K,(z):=
r(2)"H(v)CTH>(0, B). The constant

h(z):= su inf |t
()= s ot 1]
will be called the constant of interpolation for r(z). We will prove the following
result.

Lemma 4.2. [t is true that

sup h(z) < C < x.
zeN

where C' depends on N only.

Proof. In fact it suffices to cover N by a finite number of open balls and prove
the required inequality for z varving in each of these balls. Moreover. since N is
compact, for any weN it suffices to find an open neighbourhood U,, CO of w such
that {h(z)}.cp,, is bounded from above by an absolute constant.

Let weN. Without loss of generality we may identify a small open neigh-
bourhood of w in O with the open unit ball B.(0.1)CC", n=dim O, such that
w corresponds to 0 in this identification. It is easy to see that r(z), 2€B.(0.1),
is the family of linear continuous operators holomorphic in z. Let R:=1/4h(w).
Since h(w)>1, B.(0,1) contains B.(0.R). For a y€B.(0.R) consider the one-
dimensional complex subspace I, of C" containing y. Without loss of generality we
may identify 1,NB.(0,1) with the open unit disk DCC. With this identification,
let 7(2):=> .2, 7:2" be the Taylor expansion of r(z) in D. Here r;: H*(O.B)— L is
a linear operator with the norm ||r;||<1. The last estimate follows from the Cauchy
estimates for derivatives of holomorphic functions. We also have ro:=r(0) (recall
that w=0). Let v€L, |v|p<1. For z<R we will construct v(z)€ H>*(O. B) which
depends holomorphically on z. such that ||v(2)||<8h(w) and r(z)[v(z)]=v.

Let v(z)=>_,=,v;z". Then we have the formal decomposition

vzr(z)[v(z)]:ZziZTi(‘Cij):sz Z ri(vs).

i=0  j=0 k=0 it+j=k
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Let us define v; from the equations

ro(vp) =v and Z ri(v;)=0 for k>1.
i+j=k

Since the constant of interpolation for r(0) is h{w). we can find vo€ H>(O, B),
llvo}l <2h(w), satisfying the first equation. Substituting this v, into the second equa-
tion we obtain ro(vy)=—r1(vo). Here ||r1(vo)| <2h(w) because |r1||<1. Thus again
we can find v; € H* (O, B) satisfying the second equation such that v, ]| <(2h(w))?.
Continuing step by step to solve the above equations we obtain v, € H>(0, B) sat-
isfying the nth equation such that ||v,|| <37, (2h{w)) !t <n(2h(v))"*! (because
h(w)>1). Thus we have

2h(u)

Gngeyme

lo(z)] <) n(2h(w)" R <
=0

The above arguments show that h(z)<8h(w) for any z€ B.(0,1/4h{w)). O

Now let us prove Proposition 4.1. Consider the fibre pgl(z)C(} for zelU.
Using the isometric isomorphism between H>(U) and the space H>*(U, EL(G))
of bounded holomorphic sections of EY (G) (which is defined by taking the direct

image of each function from H°(U) with respect to pr: see the construction of
Proposition 2.4), we can reformulate the required interpolation problem as follows:

Given hel(G) find ve H*(U. EX.(G)) of least norm |v|| such that v(z)=h.

Let us consider y=gn¢(2)€N and its preimage g (y) C Ng. Further, consider
the bundle EX¢(G)—Mg. We define a new function h€(l(G)]-(Xg) by the
formula

h(z) =h and h(z)=0 for any = €gvely), z#2.

Then |}~L|[lx(G)]oc(Xc):|h|lx(G)- Let us now consider the bundle [EX/¢(G)]ar on M.
Taking the direct image with respect to gasg, we can identify h with a section of
[EXe(G)|ar over y. Since [EMe {G)]ar is a component of the bundle B, we can
extend h by 0 to obtain a section h’ of B over y whose norm equals |h[;__(q)-
Therefore according to Lemma 4.2, there is a holomorphic section v'€ H>(0. B)
such that sup,en [v'(w)|B<C|h|;_(s) and v'(y)=h’. Now consider the natural
projection 7 of B onto the component [E/¢(G)]as in the direct decomposition
of B. Then ©:=n(v") satisfies

sup |{7(w) <Cl|hli.(zy and @(y)=h.

weN lB2e )1
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Using identification of %] with a bounded holomorphic section v of EXS(G) (see
the construction of Proposition 2.4), we obtain that v(z)=h and sup,,cs [v| EYe () <

C|hli_ (). It remains to note that EX¢ (G)|y=E%L(G) and so vly e H*(U, EY (G)).
In particular, sup,.; M(2)<C. O

Proof of Theorem 1.9. Assume that {2;}>2,CU is an interpolating sequence
with the constant of interpolation

M= swp_inf(lol: g€ H(U). g(z)=a =120}

We will prove that p;;* ({2;}32,) CU is also interpolating. According to [Gal, Chap-
ter VII, Theorem 2.2], there are functions f,€ H>(U) such that

falzm)=1, falz)=0, k#n, and Y [fa(2)|<M>

n=1

Further, according to Proposition 4.1, for any xz€U, p(jl(.r) is an interpolating
sequence with the constant of interpolation <C. Let p;'(2n)={2ng}gec. Then
[Gal, Chapter VII, Theorem 2.2] implies that there are functions f,q€H (U ) such
that for any n,

Fug(zng) =1, frg(zns) =0, s#g. and Y |fag(2)| <C*
g

Define now b,g€ H>(U) by the formula

bng(2) := fng(2) (P (fn))(2)-

Then we have
bng(zng)zla bng(zks)zoe k#n or g#s.

) Ibng(2)1=Z(l(piv(fn))(Z)lZ lfng<z)l> < (MO,

=1

Now we have the linear interpolation operator S: 1 —» H>(U) defined by S ({ang})=
Y n.g ngbng(2) for any {any}€1>. This shows that {p;-'(2n)} is interpolating.
Conversely, assume that {z,}>%,CU is such that {p;'(2,)} is interpolating
for H>(U). Let {an )2, €1, and consider the function t€1°°({p;'(zx)}) defined
by t]pgl(zn):an for n=1,2,.... Then there is feHx(f]) such that f|{p;1(z,,)}:t-
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Applying the projector P constructed in Theorem 1.1 to f, we obtain a function
ke H*(U) with pf;(k)=P(f) which solves the required interpolation problem. [J

Proof of Theorem 1.11. Let 7:U—U be the universal covering and he H>(U)
be the function defining the projector P: H>(U)—r*(H>(U)), see Remark 1.2.
For a character p we define the map L, by the formula

> h((@)g(r(2))e(vh). ge HX(U). 2€U.
~yEm (U)

It is readily seen that L, maps H>(U) in H>®(mr1(U). ¢) and its norm is bounded by
the norm of P (i.e. it depends on N only). Moreover, from Theorem 1.9 it follows
that for any o€U there is a function feH °°(U ) such that

f(y(0))=0(7). ~em(U).

Thus L,[f](0)=1 showing that L, is non-trivial. O

5. Interpolating sequences on Riemann surfaces
In this section we prove Propositions 1.13, 1.15, 1.17, 1.18 and Corollary 1.14.

Proof of Proposition 1.13. Assume that {zJ ©,CU is an interpolating se-
quence. Then by Theorem 1.9, r=1({2;}32,) is mterpolatlng for H>*(D). Let
7 Y(z)={2jg}gem (). Then by the Carleson theorem [Cal] on the characteriza-
tion of interpolating sequences we have (for any j and g)

(H IB-, (254) >< [T |2 ch>o.

1-Zipz;
kikAj hihg 1h<jg
Further, since
Zih —%jg 1<1
I—Zthjg

h:h+£g

from the above inequality it follows that for any j.

H sz ZJ H |sz "Jg)l>c>0

k:k#jf kik#j

Conversely, assume that for any j we have

II P=(zi) = ce>o0.
k:k#j
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From the proof of Theorem 1.9 we know that the constant of interpolation for
r~1(z) with an arbitrary z€U is bounded from above by some C=C(N)<oc. Thus
according to the inequality which connects the constant of interpolation with the
characteristic of an interpolating sequence (see [Cal]) we obtain for any j and any

gEﬂ'l(U)v
Tl
hhge LT ¢

Combining these two inequalities we have {for any j and g)

(I 2o (TL 72520 ) = (I 1t )T 1252 )

k] kik#j h:hsg

c
>—>0.
_C>

This inequality implies that the sequence r~!({z;}7%,) is interpolating (see [Cal]).

Hence by Theorem 1.9, {2;}32, is interpolating for H>(U). [

Proof of Corollary 1.14. From the proof of Proposition 1.13 and Theorem 1.9 it
follows that the characteristic 8’ of the interpolating sequence r~'({z;}7%,) is >6/C.
where C'>1 depends on N only. Then according to the Carleson theorem [Cal], the
constant of interpolation K’ of r='({2;}%,) is

cC C Ch 1
< — g — — g— 1.
<€ (11100 §) < & (116

Here ¢ is an absolute constant and C;=C;(N). Thus applying the projector P
of Theorem 1.1 to functions f&H> (D) which are constant on each fibre r~*(2;),
j=1,2, ..., and using that ||P||<C;=C3(N )< we obtain that

: 1
K <K' < lez (1+log g>- 0

Proof of Proposition 1.15. We start by letting 7 !(z;)={zj¢}ger () and
771(€)={&;g tgem (v)- By the definition of ¢* and because 71 (U) acts discretely on
D, we can choose the above indices such that o(§;4. 2j4) <A for any g. Let us fix
some hem (U). Then by the definition, for j#k we have

Po(e)= [l o€n-&o)-

gemi (L)
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Using an inequality from the proof of Lemma 5.3 in [Gal, Chapter VII] gives

o(zjg- 2kn) — ¢
T 1—ao(zjg- 2kh)

0(&ig, Ekn) >

for a:=2X/(1+A?). According to our assumption we have

H P, (2k) H H o(zkh. 2j4) >

Jij#k J:j#k gemi(U)

Therefore 9(2xn, 2j4)>d for any j#k and any gem; (U). Hence we can apply the
inequality of [Gal, Chapter VII, Lemma 5.2] to obtain

H Pe, (&) H H 0(Ejg: Exn) > H H _“_M__

—(10 Z Zkh
J:i#k J:i#k gem(U) Jij#k gem (U) 79 )

> Lz Hgemuy 0(zig- 2on) =0 Ty Pey(20) —a 5 9=

T 1=l Hoemu) 0(zi0: 2on) — 1=a Tl Pry (2) ~ 1=

This gives the required inequality. O

Proof of Proposition 1.17. From the condition of the proposition it follows that
the distance in the pseudohyperbolic metric on D between interpolating sequences
= ({2 322,) and 7 ({w:}32,) is >c. This implies that 7~ ({z;}22 ) Ur*({v:}3%,)
is interpolating for H>°(D) (see e.g. [Gal, Chapter VII, Problem 2]) Therefore by
Theorem 1.9 {2}, U{y;}2, CU is interpolating for H>(U). O

Proof of Proposition 1.18. Consider the function F(z):=[]; P:,(z). Then we
have a decomposition F(z)=F)(2)Fy(z) with FS(/,).—H P, (z). s=1.2. It suffices
to choose the required decomposition such that

[T Pa,(20) = Fa(za).  if Fi(za) =0,
Jij#En
II P (20) > Fi(z0).  if Fa(z)=0.

jig#n

The proof of the above inequalities repeats word-by-word the combinatorial proof
of Lemma 1.5 in {Gal, Chapter X] given by Mills. where we must define the matrix
[axn] by the formula

akn, =log Py, (zn). k#n., ann=0.
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We leave the details to the reader. Now from the above inequalities for Fi(z,)=0
we have

2
II Ps(zn) ):

Jii#n

5< I Poy(en) —<H P, m)pzz §<

Jii#En Jij#n

which gives the required estimate of the characteristic for {z; };’;1 The same is
valid for {2;}52,. O

[Ca3]
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