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Superposition operators between the 
Bloch space and Bergman spaces 

Venancio Alvarez ,  M. A u x i l i a d o r a  M~rquez and  D r a g a n  Vukotid 

Abs t r ac t .  Using a geometric method, we characterize all entire functions that transform 
the Bloch space into a Bergman space by superposition in terms of their order and type. We also 
prove that all superposition operators induced by such entire functions act boundedly. Similar 
results hold for superpositions from BMOA into Bergman spaces and from the Bloch space into 
certain weighted Hardy spaces. 

I n t r o d u c t i o n  

If  X and  Y are  met r i c  spaces  of ana ly t i c  funct ions  in the  disk and  ~ is a 

complex-va lued  funct ion  in the  p lane  such t h a t  ~ o f E Y whenever  f E X ,  we say t ha t  

acts by superposition f rom X into Y. If  X and Y con ta in  the  l inear  funct ions,  t hen  

mus t  be  an  ent i re  funct ion.  The  superposition operator S~: X--~Y with  sy'mbol 
is t hen  defined by  S~( f )= po f .  Note  t h a t  if X and  Y are also l inear  spaces,  the  

o p e r a t o r  S~ is l inear  if and  only if ~ is a l inear  funct ion  t h a t  fixes the  origin. The  

cent ra l  ques t ions  are: 

When does a superposition operator map one space into another? When is it 
bounded? 

Even though  ana logous  concepts  also make  sense in the  con tex t  of rea l -va lued  

funct ions  and  the i r  t h e o r y  has  a long h i s to ry  (see [AZ]), the  s t u d y  of such n a t u r a l  

quest ions  oi1 spaces  of  ana ly t i c  funct ions  has  only begun  fa i r ly  recently.  The  oper-  

a tors  S~ t h a t  m a p  one B e r g m a n  space into another ,  or in to  the  a rea  Nevan l inna  

class, were cha rac te r i zed  in t e rms  of the i r  symbols  in [CG]; cf. [C] for H a r d y  spaces.  

Resul t s  of s imi lar  n a t u r e  were ob t a ined  in [BFV] for supe rpos i t ions  be tween  var ious  

spaces of Dir ichle t  type .  

In  th is  p a p e r  we give a comple te  desc r ip t ion  of the  superpos i t ions  be tween  a 

B e r g m a n  space A p and  the  Bloch space B (in b o t h  d i rec t ions)  in t e rms  of the  order  

and  t y p e  of ~.  T h a t  is, we measure  in a precise  way "how much slower" the  Bloch 
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functions grow than those in A p. We recall the basic definitions and facts which 
motivate our results. 

Let dA denote the Lebesgue area measure in the unit disk D, normalized so 
that  A ( D ) = I .  If 0 < p < o c ,  the Bergrnan space A p is the set of all analytic functions 
f in the unit disk D with finite LP(D, dA) norm: 

,,fH~ = / D  If(z) ,  p dA(z)  1 / i [ 2 ~  = _ I f ( r c i~  
7r J o  ,]o 

Note that ]]fl]p is a true norm if and only if l_<p<oe. When 0 < p < l ,  A p is a 
complete space with respect to the translation-invariant metric defined by dp(f, g )=  
II/-glIG. It is clear that  A q C A  p if 0 < p < q < o c .  The monograph [HKZ] contains 
plenty of information about Bergman spaces and so does [DS]; see also [Z]. 

The maximum growth of functions in Bergman spaces will be essential. If 
f c A  p, by the subharmonicity of Ill p and the area version of the sub-mean value 
property applied to the disk of radius 1 ]z] centered at z, we readily obtain the 
standard estimate 

(1) )f(z)) < [Ifl[~) for all z in D. 
(1-I~l):/p 

An analytic function f in D is said to belong to the Bloch space 13 if 

IlfllB = If(0) l+ sup(  1 -  I z l 2 ) l f ' ( z ) l  < oe.  
z G D  

Any such function satisfies the growth condition 

(2) ( 1 1 I f ( z ) l ~  l ~  Ilfll~ for all z in D. 

This follows by integrating the inequality l f ' (C) l<( l l f l lu - l f (O) l ) (1 -1~l  2) 1 along 
the line segment from 0 to z. For further basic facts about the Bloch space the 
reader may consult [ACP] or Chapter 5 of [Z]. 

The inclusion B c A  p (0<p<oc )  follows easily from (2). Moreover, since the 
exponents in both (1) and (2) are sharp, it becomes intuitively clear that  the Bloch 
space should be contained in any Bergman space "exponentially", thinking in terms 
of superpositions. However, our main result, Theorem 3, will show that  functions 
such as p(z) =exp  ez, cr  fail to map B into A p. In fact, the superposition operator 
S~ maps B into A p if and only if the entire function p is either of order less than 
one, or of order one and type zero. Thus, the characterization of the superpositions 
does not depend on p. Our proof resembles the ideas employed in the proofs of 
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some of the main results of [BFV] (Theorem 12 and Theorem 19). Although here 

we no longer need the inequalities of Trudinger type, our argmnent still requires 
several delicate technical details. The key point is a geometric construction of a 
special univalent function in the Bloch space (Lemma 2) which may have some 
independent interest. 

1. S u p e r p o s i t i o n  f r o m  a B e r g m a n  s p a c e  in to  t h e  B l o c h  s p a c e  

Given tha t  any Bergman space Ap is larger than the Bloch space B, it should 
be intuitively obvious that  a superposition from the former to the latter is possible 
via constant functions only. However, some work is still required. This is due to 
the fact that  no uniform bounds are available (because we do not have any a priori 
information on the boundedness of the superposition operator).  

P r o p o s i t i o n  1. Let 0 < p < c o  and let ~ be entire. Then the superposition 
operator S~ maps A p into B if and only if ~ is a constant function. 

Proof. Suppose that  S~ maps A p into B. To show that  ~ is constant, it suffices 
to prove that  y)~ is constant. Indeed, if ~ - a  then ~ is a linear function: ~(z)=az+b. 
Taking f c A P \ B ,  we have that  S~( f )=a f+bcB ,  which implies a = 0  and therefore 

is constant. 

Now there are two possibilities for the function ~: either 

(3) 0, as co,  
~W 

o r  

for some fixed 5>0  and some sequence {w,~}n~_l such that  Iw~l--+co. 

Note that  (3), in particular, yields a s tandard Cauchy estimate I~'(w)l <_Alwl 
for some A > 0  and all sufficiently large w, which in turn implies that  p1(w) is a 
linear function. By letting w--+co and applying (3), it follows that  ~ '  is constant 
and we are done. 

It  is, thus, only left to show that  (4) is impossible. To this end, let c~E(0, 2/p) 
and consider the function 

1 
f (z)  = ( l _ z ) ~  , z c D .  



208 Veaancio  Alvarez, M. Auxi l iadora  Mgrquez  and  Dragan  Vukotid 

By integrating in polar coordinates centered at z =  1, it is easily checked that  f E A p. 
Hence ~ o f E B ,  and therefore 

Mf  : sup (1-Iz l2) l f ' (z ) l  I~'(f(z))l < oo. 
zED 

From here we deduce that  

(5) I~'(f(z))l  <_ M f l l - z [ ~ + l  for all z in D. 

Part i t ion the complex plane into a finite number of equal sectors with common 
vertex at the origin and of aperture at most �89 each. At least one of them will 
contain infinitely many points w~> From now on we consider only this infinite 

W oo subsequence and use for it the same labelling { ~}~=1 in order not to burden the 
notation. We may rotate the sequence if necessary since the function ~t given by 
99t(z)=99(eitz) has the same properties as ~. Thus, after eliminating the terms of 
modulus at most one, we may assume that 

(argw, d < -~r~ and [w~ 1 > 1 for all n. 

Consider the preimages of w~ under the function f :  

(6) z~ = 1 - w X  1/~. 

By our assumptions on {w~}n~_l, each z,~ belongs to the Stolz domain 

S =  { z E D : l l - z l  < 1 and larg(1-z) l  < 17r}. 

Therefore there exists a constant c such that  

(7) /1-z,~ / <c(1- /z ,~l)  for aI1 n in N. 

From (4), (5), (7), and (6), respectively, we get 

alw~l _< [~'(/(z~))l  <_ M z l l - z ~ l ~ + l  < c M f  { l _ z , d  ~ _ cM], 
c~(1-1znl ~) - c~ c~lw,~ I" 

It follows that 

~lw~12 < c  Ms , 
c~ 

which contradicts the assumption that  Iw,,}~oo. This completes the proof. [] 
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2. S u p e r p o s i t i o n  f r o m  t h e  B l o c h  s p a c e  i n t o  a B e r g m a n  s p a c e  

Proposition 1 tells us that  B is "very small" inside the Bergman space A p. The 
following questions are, thus, much more challenging than the one answered in the 
previous section. 

For which entire functions ~ does S~ map 13 into AP? Which ones among them 
induce a bounded operator S~ ? 

We remind the reader that a (possibly nonlinear) operator acting between two 
metric spaces is said to be bounded if it maps bounded sets into bounded sets. 

2.1.  T h e  k e y  l e m m a  

A univalent function in D is an analytic function which is one-to-one in the 
disk. By the Riemann mapping theorem, for any given simply connected domain ft 
(other than the plane itself) there is such a function f (called a Riemann map) that  
takes D onto f~ and the origin to a prescribed point. Denoting by dist(w, Oft) the 
Euclidean distance of the point w to the boundary of the domain ft, the Riemann 
map f has the following property (see Corollary 1.4 of [P2], for example): 

(8) al (1-[zl  2) If'(z) l _< dist(f(z),  Oft) _< (1-Iz[ 2) If'(z) l for all z in D. 

This estimate plays an important role in the geometric theory of functions. In 
particular, (8) tells us that  a function f univalent in D belongs to B if and only if 
the image domain f (D)  does not contain arbitrarily large disks. 

The auxiliary construction of a conformal map onto a specific Bloch domain 
with the maximal (logarithmic) growth along a certain polygonal line displayed 
below might be of some independent interest. Thus, we state it separately as a 
lemma. Loosely speaking, such a domain can be imagined as a "highway from the 
origin to infinity" of width 25. Somewhat similar constructions of simply connected 
domains as the images of functions in various function spaces can be found in the 
recent papers [BFV] and [DGV]. 

W oo L e m m a  2. For each positive number 6 and for every sequence { ~}~ o of 
complex numbers such that w0=0, 1W11~55, a r g w l  <57r,1 argwn"-s0, and 

i n--1 I (9) Iwn[ _> max 3/wn_ll, E Iwk--wk_l I foral ln~_2,  
k 1 

there exists a domain ft with the following properties: 
(i) f~ i~ simply connected; 
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L O0 (ii) ~ contains the infinite polygonal line =Un=l  [wn-1, Wn], where [Wn-1, wn] 
denotes the line segment from w,~-i to w~; 

(iii) any Riemann map f of D onto ~ belongs to 13; 
(iv) dist(w, 0 ~ ) = 5  .for each point w on L. 

Proof. It is clear from (9) that  lw~lffoc, as n-+oo. We construct the domain 
as follows. First connect the points w~ by a polygonal line L as indicated in the 

statement. Let D(z, 5)={w: I z - w  I <5} and define 

i.e. let 9 be a 6-thickening of L. In other words, f~ is the union of simply connected 
cigar-shaped domains 

C,,~ = U { D ( z , a ) : z  C [~n ~,*~n]}- 

By our choice of w~, it is easy to check inductively that Iw,~-wkl>5~ whenever' 
n>k. Since our construction implies that  

wee see immediately that  
(a) for all m and n, CmNC,r if and only if Im nl_<l; 
(b) for all n, CnNCn+~ is either D(wn, a) or the interior of the convex hull of 

D(wn, (~)U{an} for some point an outside of D(w~, ~). 
N Thus, each f~x =U~=l  cn  is also simply connected. Since 

OO 

f t =  U f in  and f~NCf~N+I for a l lN,  
N 1 

we conclude that  ft is also simply connected (like in [DGV], Section 4.2, p. 56). By 
construction, dist(w,O~)<_5 for all w in f~, hence any Riemann map onto ft will 
belong to B. It is also clear that  (iv) holds. [] 

2.2.  C h a r a c t e r i z a t i o n s  o f  s u p e r p o s i t i o n  o p e r a t o r s  

In what follows we will need a few basic properties of the hyperbolic metric. 
Recall that the hyperbolic distance between two points z and w in the disk is defined 
a s  

z - w  
1 

inf [ I<1 1 

1 ~'~c, 
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where the infimum is taken over all rectifiable curves ~/in D that  join z with w. 

The hyperbolic metric L)a on an arbi trary simply connected domain ft (not the 
entire plane) is defined via the corresponding pullback to the disk: if f is a Riemann 
map of D onto ft then 

Qa(.f(z), f(w)) = t~(z, w) = inf [ 
Idr 

r J l  1r l - IC? '  

where the infimum is taken over all rectifiable curves F in ft from f (z)  to f(w). The 
metric t)a does not depend on the choice of the Riemann map  f .  For more details 
we refer the reader to Sections 1.2 and 4.6 of [P2]. 

From the definition of the hyperbolic metric we notice the following important  
feature of Riemann maps: if f ( 0 ) = 0  then 

1 1 
(10) ea(o,.f(z)) =~(0 ,  z) > ~ log l _ l z l ,  z c D .  

Another fundamental  property, which is easily deduced from (8), is that  

(11) &f~(Wl, w2) < i ~ f f r  Idol 
- dist (w, Oft) '  

where the infimum is taken over all rectifiable curves F in ~2 from Wl to w2. 
Denote by DP~ (c~ > - 1 )  the weighted Dirichlet space of all analytic functions f 

in D for which 

D If'(z)lP(1-1zl2)a dA(z) < 

P l < p < o c ;  see [DGV] for some and by B p the s tandard analytic Besov space Dp_2, 
of its properties and [BFV] for superposition operators between such spaces. Since 
/3 can be viewed as a limit space of all B p as p-~oe,  the results about  superpositions 
from • into A q might be inspired by those for the superpositions from B p into A q 
by letting p--+oc. Also, it is well known that  

D If(z)lq dA(z)• + fD If'(z)lq(1-1zl2)q dA(z), 

hence A q - D  q as sets. One of the main results of [BFV], Theorem 24 there, tells 
us that  S~(BP)cD~ if and only if either p has order less than  p/ (p-1)  or it has 
order p/ (p-1)  and finite type. This seems to suggest that  the characterization of 

all superpositions from B into A q should be related to the entire functions of order 
one (letting p--+ec), but in which way exactly? In the earlier papers [CG] (in the 
results for the Nevanlinna class) and [BFV] the cut usually occurred at the level of 
functions of infinite type. The appearance of the functions of given order and type 
zero in the result below seems to be a novelty in this context. The intuitive reason 
behind it lies in the fact that  B is not the smallest space that  contains all B p spaces. 
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T h e o r e m  3. Let 0 < p < o c  and let ~ be entire. Then the following statements 
are equivalent: 

(a) the superposition operator S~ maps 13 into AP; 
(b) S~, is a bounded operator from B into AP; 

(c) ~ is an entire function either of order less than one, or of order one and 
type zero. 

Proof. We need only show that  (a) ~ (c) ~ (b). 
In order to prove that  (c) implies (b), let us suppose that  p is an entire function 

of order one and type zero. Writing M(r )=max{ l~(z ) [ :  [zl=r}, this means that  

lim sup log log M(r)  _ 1 
r~ log r 

(see [Bo], for example) and the quantity 

(12) E( r )  -- log M(r)  
r 

tends to zero as r--+oc. 

(la) 

Let f be an arbitrary flmction in B of norm at most K.  By (2), we have 

1 

1 
(14) E(Iwl) < n 2 p  ~ '  whenever Iwl > Ro. 

Thus, whenever If(~)l>2~0 we get 

199(f(z))  I < M ( I f ( z ) l )  --  elf(~)lE(If(z)l) 
el/2p 

(]-]zl)l/2P 

by the definition of M(r )  and by (12), (13), and (14), respectively. 
If, on the contrary, If(z)l_<•0 then I~(f(z))l<_M(Ro) by the maximum mod- 

ulus principle. Combining the two possible cases, we obtain 

fD dA(z) +M(Ro)P=C, II~~ (1 Iz[)l/2 

By our assumption on E(r) ,  for some sufficiently large R0 it follows that  
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where C depends only on ~, p, and K ,  but not upon f .  This shows that  S~ is a 
bounded operator  from B into A p. 

The reasoning is similar, but simpler, when ~ has order 0<  1: use the estimate 
M(r)_<exp r ~ for a small enough e and large enough r. 

For the proof of (a) ~ (c), let us assume that  S~: B--+A p but (c) is false. Thus, 
either ~ has order greater than one, or it has order one and type ere0. The former 
case is easier to handle, so we consider only the latter. 

Since p has order one and type different from zero, there exists an e and a 

sequence {r~}~~ 1 such that  r~-+oc,  as n-+oc,  and 

(15) logM(r,~) > e > O  for all n. 

W oo In other words, there exists a sequence { ~},~ 1 such that  ]wn[=r~ and 

(16) Is(w )l >e lw' l for all 

Let us fix a constant 5 so that  5>12/r We can now choose an infinite sub- 

sequence, denoted again {w,~}~~176 so that  the sequence {argwn}n~176 in [0,27c] is 
convergent and all points wn lie in an angular sector of opening ~71-.1 We may fur- 

ther assume that  they are all located in the first quadrant  and the arguments arg w,~ 
decrease to 0, by applying symmetries or rotations if necessary. There is no loss of 
generality in doing this because the entire functions ~b and ~t, defined by ~p(z)=~(2) 
and ~t(z)=~(eitz), respectively, have the same order and type as ~. 

Select inductively a further subsequence, labelled again {w,~}n~176 in such a way 
that  w0=0, [w~1_>55, and (9) holds. Next, use Lemma 2 to construct a domain f~ 
with the properties (i)-(iv) indicated there. Let f be a Riemann map of D onto f~ 
that  fixes the origin. 

Now let zn be the points in D for which w~=f(z~). Since [w,~l-+oc , as n-+oc,  
it follows tha t  Iz~l--+l. By applying est imate (10) for the hyperbolic metric, the 
triangle inequality, inequality (11) and property (iv) from Lemma 2, as well as 

the properties (9) of the points wn, respectively, we obtain the following chain of 
inequalities: 

~ l o g  l__lZn[ ~kgf2(0, W,z)~  cOa(Wk 1,Wk)< 
k 1 k 1,~] dist(w,0ft)  

:5s 5 [dw[ __ 1 i~Uk__Wk_l] ~ glwn[-  
k=l  k-l,wkJ (~ 5 k=l  

This shows that  

5 1 
(17) I ~ 1 - )  ~ log 1-Iz~-~" 
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It follows from (16) and (17) that  

( ~  1 ) 1 
(18) I~(wn)/>exp log 1-1 nl - 

On the other hand, fCB, hence by assumption (a): 9~ofcAP. By (1), we have 

I1 o/11  (19) I~(w~)l = I(~of)(z~)l < 

for all n. However, (18) and (19) contradict each other since ~6>2/p by out' initial 
choice of & The proof is now complete. [] 

2.3.  S u p e r p o s i t i o n s  b e t w e e n  s o m e  re la ted  spaces  

We would like to emphasize that  Theorem 3 used very few facts typical only 
of Bergman spaces. One could consider instead the weighted Hardy spaces H ~  
(sometimes also denoted A -~  and called Korenblum spaces). A function f analytic 
in D is said to belong to H ~ ,  0 < a < o c ,  if and only if 

sup (1 -[zl2)  a I.f(z) I < o o .  
z~lD 

The point here is that,  by (1), APcH~p, while it can be easily seen that  c~<l /p  
implies H~ ~ c A  p. Thus, it follows that  

(a) S ;  maps H ~  into/3 if and only if ~o=const; 
(b) S~ maps/3  into H ~  if and only if the entire function ~ is either of order 

one and type zero, or of order less than one; also, whenever this happens, S~ acts 
boundedly from/3 into H ~ .  
A similar statement can easily be formulated for weighted Bergman spaces. 

It should especially be worth pointing out that  there is a variant of Theorem 3 
with another well-known space instead of B. Recall that BMOA is the space of all 
Hardy H 1 functions whose boundary values have bounded mean oscillation. For 
the precise definition and the basic properties of BMOA we refer the reader to the 
survey papers [Ba] and [G]. 

Since BMOAcB,  it makes sense to ask whether B can be replaced by the 
smaller space BMOA in Theorem 3. This is indeed the case. Namely, a weE-known 
result of Pommerenke [P1] states that  every univalent function in the Bloch space 
also belongs to BMOA, so the function used in the proof above works for this space 
as well. All standard norms on BMOA are equivalent and the injection operator 
fl'om BMOA into /3 is bounded, so an inequality for BMOA totally analogous to 



Superposition operators between the Bloch space and Bergman spaces 215 

(13) also holds. Thus, we can either give a proof that  (c) implies (b) as above or, 
alternatively, factor the superposition operator  from BMOA into A v through 13 and 
use the boundedness of S~: 13--+A p. The rest of the proof is obtained by following 
the same steps as in the proof of Theorem 3. 

In fact, the above reasoning shows that  the Bloch space in Theorem 3 can be 
replaced by the class of all univalent functions in 13 (that is, in BMOA). 
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