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The highest smoothness of the Green 
function implies the highest density of a set 

Vladimir  V. Andrievskii  

Abstract .  We investigate local properties of the Green function of the complement of a 
compact set EC[O, 1] with respect to the extended complex plane. We demonstrate that if the 
Green function satisfies the �89 condition locally at the origin, then the density of E at 0, 
in terms of logarithmic capacity, is the same as that of the whole interval [0, 1]. 

1. D e f i n i t i o n s  and  m a i n  resul t s  

Let EC [0, 1] be a compact  set with positive (logarithmic) capaci ty  c a p ( E ) > 0 .  
We consider E as a set in the complex plane C and use notions of potent ial  theory  

in the plane (see [4] and [51). 

Let f t : = C \ E ,  where C : - { o c } U C  is the extended complex plane. Denote  by 

ga(z)=gf~(z, oc), zEgt, the Green function of ft with pole at oc. I n  what  follows 

we assume tha t  0 is a regular point  of E,  i.e., 9a(z) extends contimtously to  0 and 

g~(0)=0 
The  monotonie i ty  of the Green function yields 

9a(z) >9~\[0,1](z),  z C C \ [ 0 , 1 ] ,  

tha t  is, if E has the "highest density" at 0, then ga has the "highest smoothness"  

at the origin. In  par t icular  

g~( ~)_>gc\E0,11(-,-)>�89 0<~<1. 

In this regard, we would like to explore propert ies of E whose Green function has 

the "highest smoothness"  at 0, t ha t  is, of E conforming to  the following condit ion 

g~(z)<clz] ~-/2, c=const>O, zcC, 
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which is known to be the same as 

(1.1) l imsup  g a ( - r )  < oc 
r ~ 0  

(cf. [5, Corollary III.l .10]).  Various sufficient conditions for (1.1) in terms of metr ic  
propert ies  of E are s ta ted in [6], where the reader  can also find fur ther  references. 

There  m'e compact  sets E C  [0, 1] of linear Lebesgue measure 0 with p roper ty  
(1.1) (see e.g. [6, Corollary 5.2]), hence (1.1) may  hold, though the set E is not  
dense at 0 in terms of linear measure.  On the contrary,  our first result  s tates tha t  if 
E satisfies (1.1) then  its density in a snmll ne ighborhood of 0, measured in terms of 
logari thmic capacity, is a rb i t ra ry  close to the density of [0, 1] in tha t  neighborhood.  

T h e o r e m  1. The condition (1.1) implies 

(1.2) lira cap(EC)[0, r']) _ 1. 
r~0 r 4 

Recall tha t  cap([0, r ] ) = � 8 8  for any r > 0 .  
The  converse of Theorem 1 is slightly weaker. 

T h e o r e m  2. I r E  satisfies (1.2), then 

1 
(1.3) lim = 0 ,  0 < e < - .  

r-+0 r l / 2 - e  2 

The  connect ion between propert ies  (1.1), (1.2) and (1.3) is quite delicate. For 
example,  even a slight a l terat ion of (1.1) can lead to the violat ion of (1.2). As an 
i l lustrat ion of this phenomenon  we formulate  

T h e o r e m  3. There exists a regular compact set E C  [0, 1] s~uch that (1.3) holds 

and 

(1.4) tim inf cap(En  [0, d )  = 0. 
r-+0 T 

The  next  two sections contain preliminaries for the proofs. Then  come the 
proofs of Theorems 1-3. 

2. N o t a t i o n  

We shall use c, cl, c2, ..., and dl,d2, ..., to denote  positive constants.  These 
constants  may  be ei ther absolute or they may  depend on E depending on the con- 
text .  We may use the same symbol for different constants  if this does not  lead to 
confusion. 
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By IFI we denote the linear Lebesgue measure of a measurable subset F C R  of 
the real line R.  

The set D := {z :Izl < 1} is the unit disk, T = 0D is the unit circle and for zl, z2 C 

C, zl # z2, let 
[zl, z2] : -  { t z2+(1- t ) z l :  0 < t < 1} 

be the interval between these points. 
For the notions of logarithmic potential  theory see e.g. [4] or [5]. In what  follows 

PE denotes the equilibrium measure of E. We shalI frequently use the relation 

(2.1)  g ( )=lOgcap(E  

We define a generalized curve to be a union of finitely many  locally rectifiable 
Jordan curves. A Borel measurable function ~)_>0 on C is called a metric if 

where dmz stands for the 2-dimensional Lebesgue measure on C. For a family 
F = { 7 }  of some generalized curves let 

Lo(r) := inf f e(z)Idzl 
"~cF J~ 

(if the latter integral does not exist for some 7EF,  then we define the integrat to be 
infinity). The quantity 

A(~) 
(2.2) re(F) := inf - -  

Lo(I~) 2 '  

where the infimum is taken with respect to all metrics ~, is called the module of 
the family F. We use the properties of re(F) such as conformal invariance and 
comparison principle discussed in [2]. When applying results of [2] recall also that  
the module of a ring domain is 27r times the module of the family of curves separating 
its boundary components. 

3. Prel iminaries  and auxi l iary conformal mappings  

In this section we carry out some auxiliary constructions for the direct proof of 
Theorem 1 and the proof of Theorem 2. We are interested in the behavior of g~ (z) 

for small Izl, which depends on the geometry of E in a neighborhood of 0. In order 
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(3.2) 

(3.3) 

Let 

to avoid complications outside 0, we simpli~v/3 by constructing a regular compact 
se t /~  such that ECZ~C[0, 1] and 

lira inf cap(/~n [0, r]) _ lira inf cap(En  [0, r]) 
' r '~O 7" ' r '~O 7" 

This construction is done ~s follows. We use the well-known inequality 

(3.1) (log 1 1 )1  

which holds for any compact sets E'C[0,  1] and E"C[0,1] (see [4, p. 130]). Let 
1=r1>r2  >. . . ,  l i m , ~  r~=0,  be a sequence of positive numbers such that 

liminf cap(EN[0, r]) _ lira cap(EA[0, rn]) 

Without loss of generality we may assume that the inequality 

( Y < a 1 
log r,~+l _c,~, e,~: log cap(EN [0, r,~]) 

holds for all h e N : - { 1 , 2 ,  ...}. Next, for any h E N  we construct a compact set /~n 
which consists of a finite number of intervals and satisfies the following conditions: 
r n  C / ~ n ,  

[,',,+1, ~n} ~ ~n ~ z n  [,.,~+1, r,d, 

cap(~)  _< cap(en ?,,+1, ~])1/(~+4). 

O<3 

0 
The monotonicity of the capacity and (3.1) yield 

log 1 -1 1 .~-1 f 4 ,<1 
< - _  | + [ l o g - - /  

cap ( /~ [0 ,  r,~])) ( log cap(En) J \ r~+l] 
2 3 < (1+r162 n = (1+2c~)c,~. 

We thus get 
ca ENr0 r 1~ 1+2~< cap(/~n[0, r~])_< p( L, ~J, ' .  
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Since 

lim c a p ( E n [ 0 ,  r',~]) ~ = 1, 
n - -+oo  

we obta in  

(3.4) l imin f  c a p ( E ~ [ 0 ' r J ) -  l im cap(EA[0 ,  r~]) = Iim cap(/~N[0, rn]) 
r ~-0 r ~z-+ o~ I, n n - + o o  T n  

Since 

g e \ ~ ( - r ) < g a (  r), r>0 ,  

as a consequence of all these we can see t ha t  in the  proof  of T h e o r e m  1 we m a y  

&SSUl~le 

,) (3.5) E = / ~  = {0}U aj,bj , 

where 1 bl>al>b2>a2>.. . ,and 

(3.6) lira a,,~ = lira bn = 0 .  

Let  ei ther E consist of a finite number  of intervals or conform to the  condit ions 
(3.5) (3.6). In bo th  cases we wri te  

N 

E = d [ a j , b j ] ,  l = b l > a l > b 2 > . . . > a N = O ,  
j--1 

where N is ei ther finite or oc. 
Denote  by H : = { z : I m z > 0 }  the  uppe r  half-plane and consider the funct ion 

(3.7) f(z) :=exp ( / z log ( z -~ )d#z (~ ) - logcap(E) ) ,  z E H .  

I t  is analyt ic  in H and has the  following obvious proper t ies  (ef. (2.1)): 

]/(z)l eg~(z) > 1, z ~ H ,  

Im f(z) = e g~(~) s i n / s  a r g ( z - ( )  dpz(() > O, z E H. 

Moreover,  f can be extended f rom H cont inuously to H such tha t  

[f(z)l = 1 ,  

f ( x )  : e g~(x) > 1, 

f (x)  - e  g~(x) < - 1 ,  

z E E ,  

x e R ,  x > l ,  

xCR, x < - l .  
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Next, for any l < n < N - 1  and bn+l __~Xl <X2 ~--an, we have 

that is, 

arg - -  -- f(Xl) f ( x 2 ) -  argexp f JE log X2----<(Xl d#E(r = 0' 

argf (x l )=argf (x2) ,  b~+l<_xl<x2<a~, 

Our next objective is to prove that f is univalent in H. We shall use the 
following result. Let zx/~-2-1, z E C \ [ - 1 ,  1], be the analytic function defined in a 
neighborhood of infinity as 

1 

L e m m a  1. For any - l < x < l  and zEH, 

(3.s) : - R e -  _>0. 
Z--X 

Proof. First, we consider the particular case when x=0 .  For z ~ H ,  let h(z) := 
/z. Then h(z)2= 1 - 1 / z  2. Thus, the image of the upper half-plane under h 2 

is disjoint from ( -oc ,  1]. Thus the image of H under h lies entirely in the left half- 
plane or entirely in the right half-plane. On taking account of the determination of 
the square root for large z, it ibllows that the real part of h is always positive. 

In the general case, - l < x  < 1, a continuity argument allows us to restrict our 
proof of (3.8) to the case x27L1. Consider a linear fractional transformation of H 
onto itself given by 

z - x  ( + x  
( - - x z + l  and z x~+~" 

A straightforward calculation shows that 

fl'om which (3.8) follows. [] 

Using tile reflection principle we can extend f to a function analytic in C \ [0, 1] 
by the formula 

f ( z ) :=f (2) ,  z e C \ H ,  

and consider the function 

1 
h ( w ) : = f ( j ( w ) ) ,  w E D ,  
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where d is a linear transformation of the Joukowski mapping, namely 

which maps the unit disk D onto C \ [0  1]. Note that the inverse mapping is defined 
as follows 

Therefore, for z E H  and w=d-l(z)ED, we obtain 

wh'(w) w(log h(w))' 
h(w) 

= -~ (rE log(J(w)-r d.E(;))' 

-wJ'(w) /E dpz(r162 

- - !  @-1)  ./; d~E(C) 4 ~-r 

! f X/(2z 1)2-1  
dpE(~) 

2 JE z 

I ~  X/(2z-  1 )2-1  
( 2 z - 1 ) - ( 2 ~ - 1 )  dpE((). 

According to (3.8) for w under consideration we obtain 

wh'(w) 
Re h ~  _>0. 

Because of the symmetry and the maximum principle for harmonic functions we 
have 

ReWh'(w)  >0, w~D. 

It means that  h is a conformal mapping of D onto a starlike domain (cf. [3, p. 42]). 
Hence, f is univalent and maps C\[0 ,  1] onto a (with respect to oc) starlike 

domain C \ K  (see Figure 1) with the following properties: C \ K  is symmetric with 
respect to the real line R and coincides with the exterior of the unit disk with 2 N -  2 
slits, i.e., 

N--1 
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F igure  1. The  set K.  

where rj>l, 0 < 0 1 < 0 2 < . . . < 7 1 -  , and in the case N oc, 

Note that  

lim Oj = 7r and lira r j  = 1. 

: =  U 
bj+l  <x_<a t 

lira f(z)) [e ~~ "~~ 
and any point of [e i~ , rye i~ ) has exactly two preimages. Besides, 

f(E) := f(z) T O H .  
x C E  

There is a close connection between the capacities of the compact sets K and 
E, namely 

1 
(3.9) cap(E) 4cap(K)"  

Indeed, let wEC\K), z=J(1/w) and {- f(z) .  Now 

where the first relation follows from the definition (3.7) of f ,  and the second one 
follows from the fact that  w~-~ is the canonical conformal map w~-~(w) of C \ D  
onto C \ K  (note that  log I~ ~ (w)] is the Green function of C \ K  with pole at infinity 
and apply (2.1)). Thus, 

cap(E) cap(K) = lira z 1 
to~Oo W z ~ .  
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Figure 2. The domain ZE. 

For r > 1 we have 

cap(D tO [1, rJ) -- - -  

(see [4, Section 5.2, p. 135]), therefore, (3.9), 
monotonicity of the capacity imply 

( l + r )  2 

4r 
the equality cap ( rD)=r  and the 

sup r j  
1 < cap(E) < I<j<_N 1 

(3.10) 4 sup r j  - - 2" 
I < j < _ N - 1  (1§  sup r j )  

I < j < N - - I  

In addition to the conformal map f we introduce the conformal map 

F ( z )  : = r r §  z G H ,  

which maps H onto s  bounded by the set (see Figure 2) 

N 1 

whel?e 

and in the case N = o c ,  

uj  = ~ -  Oj, v j  = log r j ,  

.lira Uj  ~ " j l i I I ~  Vj  = O. 
j -+ oc 

If we extend F continuously to the real line, we obtain the following boundary 
correspondence: 

(3.11) F ( 0 ) = 0 ,  F([b j+l ,a j ] )  [ u j , u j + i v j ]  and g ~ ( z ) = I m F ( z ) ,  z E H \ E ,  

where the last equality is a consequence of (2.1). 
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4. P r o o f  o f  T h e o r e m  1 

We assume (cf. (3.5)-(3.6)) that  E consists of" countably many closed intervals 
accumulating at the origin, i.e., 

l) E = { 0 } u  a j ,b j  . 
\ j = l  

Let F : H - - + E z  be the conformal mapping defined in the previous section. The 
regularity of 0 C E implies 

(4.1) l im uj = l im vj =0 .  
j--+oc j--~ec 

We divide the proof of Theorem 1 into several steps. 

Step I. First we prove that much more can be established than (4.1) if the 
Green function satisfies the l-HSlder condition: i f  (1.1) is true then 

lira v j  =0 .  (4.2) j-.oo uj 

We carry out the proof by contradiction. Assume that  (4.2) is false, i.e., there 
exists a constant 0 < c < 1  and a (monotone) sequence of natural numbers {Jk}~_l 
such that  

Vjk > CUjk , 2Ujk+~ < Ujk and u j ~ < l .  

Let the domain E*D E z  be bounded by the set 

oz*  = { r  :~ > 0}o{r = ~ + i v  :~ > 0}u[0,~]u  ~j~, ~5~(1+i~ 
\ k = l  

Consider the auxiliary conformal mapping F*: H--+ E* normalized by the conditions 

f * ( ~ ) = ~ ,  F*(O)=O and F * ( 1 ) = ~ .  

Comparing modules of the quadrilaterals 

for r > 0 we have 

(4.3) 

EE(0 ,7~ ,c~ ,F( - r ) )  and z*(0, ~-, 2 ,  F ( - r ) ) ,  



The highest smoothness  of the Green function implies the highest density of a set 227 

Figure 3. 

Let r(t, E*), t>0, be the family of all cross-cuts of E* which join in E* its 
boundary intervals [0, it] and {~=Tr+iv:v>O}. Let 

Fl,k :=F(ujk, E*), F1, k '  .=" (F*)-I(FI,k) = {~/: F*(7 ) ~ Fa,~}, rjk* := - (F*)  l(iujk ). 

For k large enough we have r~k < 1. Therefore, for such k by (4.3) and [2, Chapter II, 
(1.2) and (2.10)] the module of the family F], k satisfies the inequalities 

/ ( 1 6 ( 1 + r ; ~ ) )  -1 2 (log 4cu~j? )-1" (4.4) ~ ( r , , k )  _>~ log < >_ 
3 k  

Our next objective is to estimate (for large/c) the quantity m(Fl,k) from above. 
For m E N let 

S~:=  { ~  E*: I~-u~ml_<uj~,,( 1 ~ / i ~  1) and 0<arg(~-~3~) < �89 

Consider the metric (see Figure 3, where the shaded area is the support of ~l,k for 
k=3) 

g 

( 0, 

We claim that for any ~/cFI,k, 

(4.5) 

Indeed, let 

k 

elsewhere. 

f ~x,~(~)IdC] _> log ~ 
ujk 

R(a,b):=(s 0 < a < b < o c .  
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For "yEFI,k denote by "f(a,b)cyNR(a, b), uj~<a<b<% a subarc of "y joining in 
R(a, b) its boundary circular components. Note that  in Figure 3, each ~/EF1, k must 
make at least one crossing of each ring within the shaded area (even after removing 
the quarter-disks). Taking into account the obvious inequalities 

(a,V) I~l- (a,b) - -  a 

with Ujo :=Tr we have (cf. Figure 3) 

k 

m=l (uj  . . . .  jrn 1 ~ )  I~l (uJm l" /~7 'uJ  . . . .  1) 

k 
> log lx/lx/lx/lx/lx/lx/I~c 2 +log ~ uJm ujk, 

m=l 

IdCl) 

which proves (4.5). 
Recalling the definition of the module of a family of curves (2.2),we have 

(4.6) 

7/1"(I~1's \'YCFI,k( inf jQ~ Ol ,k(s  kgl,k(~)2dfrt( 

ujk / 

where 

(4.7) f s  d~ ~ ~( 1,/g47-1)~=c~k A~ :-- ~ ~7 ~ >- ~ 4(1+~) m=l m r n = l  

Comparing (4.4) and (4.6), we obtain Ak <_ca, which contradicts (4.7). This contra- 
diction proves (4.2). 

Step II. We can rewrite (4.2) as follows: for 

vj 
(4.8) w k : = s u p - - ,  k ~ N ,  

j>k Uj 

we have 

(4.9) lira w k = 0  and vj<<wkuk, j>_k. k-+oo 
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Let 

1 = r I > r2 > . . . ,  lira rn = 0, 
n---F OO 

be the sequence of real numbers from the definition of the set /~ in (3.2)-(3.3). 
Recall that  we assume that  E=/~ .  By splitting some of the intervals [aj, by] into 
two subintervals we may assume without loss of generality that  rn=bj, with some 
j~'s. For n C N let 

zn:=En[0,~'~d={0}u [_J [~,bs] 
j =j~ 

Denote by Fn: H-+EE,~ the corresponding conibrmal mapping from Section 3, where 

OEz,~ = {~ = iv : r />  0}u{~ =Tr+irl  : V > 0}u[0, 7flu 4~,4j+ir]j 
J J~ 

and 

7 c > 4 1 > 4 2 > . . . ,  .lira ~ j = 0 ,  ~lj>0- 
2---~ oo 

Note that  ~j and rlj depend also on n. 
boundary correspondence: 

F~(0)=0, Fn(~)=~, F~(oo)=~ 

The mapping F,~ adheres to the following 

and F,,~(bj+l) = F ~ ( a j )  =4y for j _>jn. 

Step III. Our next aim is to prove that  i fga  satisfies (1.1), then 

(4.10) lim sup r]j =0 .  
n ",'oz~ j > j  n 

To this end for any fixed n and j_>jn consider the set 

% := Ez~ n [i~l, ~j +iv],  

consisting of a finite number of open intervals. 
these sets, i.e., 

0<~l_<~lj, 

Denote by F2,j the family of all 

By the comparison principle for the module of F2d we have 

(4.11) m(F2,j) >-m({[irl,~j+i~l]}o<v<_v~) = 4j 7c" 
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EE 

uj 71- 

Figure 4. A typical element of F~,j. 

Next we estimate from above the module of the family F~,j :=FoF~I(F2,j) (see 
Figure 4). Without loss of generality we may assume wj < �89 and consider the metric 

1 ~ - ~ S F  1, if wC EE and wjuj <_ Iw-ujl < u j l ~ j ,  
~02,j (W) : z  

[ 0, elsewhere, 

where wj are the mtmbers from (4.8) (4.9). We claim that for any ~EF~,j, 

(4.12) j(~ 1 1 
e~,j(w) Idwl > g log ~ .  

To demonstrate the validity of (4.12), for wjltj <r<l~<_uj w e  define (see Figure 5) 

/ 
B(r,R) :=Ez;?  [ { w = u + i v : u j - R < u < u j - r  and 0 < v <  wjuj} 

{ 2 2 2 2<~2-- 2 20<O<Tr_arcsinWjUj}) U w=uj+~eiO:r -}-wjuj < 

For 7EF~d and R < 2 r  we have 

C~B(r,R) 
R - r  R - r  1 1 R 

- > ~ > 5  og 7, 
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Figure 5. The domain B(r, It). 

from which (4.12) immediately follows. 
Recalling the definition of module (2.2), we obtain 

~//l+w~ 
(4.13) m(F~,,) <9(log ~j~2 JJcO2,j(w)2 dm~=97~(log-~j~21og wj 

Comparing (4.11) and (4.13) we get for large n 

1 1 
sup ~,j <_ 107r2 (log - - ~  . 
J~_jn \ "llJj,~ / 

Therefore, (4.10) follows directly from (4.9). 

Step IV. According to (3.10) we have 

cap(E [0, > 1 

f n  

Hence, by (4.10), 

-- 4 s u p j > j  n cr~J 

lim cap(EA [0, r~]) 1 
n ~  rn 4 

This and (3.4) yield (1.2), and that concludes the proof of Theorem 1. [] 
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Let 

V l a d i m i r  V.  A n d r i e v s k i i  

5. P r o o f  o f  T h e o r e m  2 

O<t<r t ~ - -  

where Et : = E ~  [0, t]. 
Note that  hE (r) is a nonnegative, monotonically increasing (with respect to r) 

function which satisfies 

(5.1) lim hE(r) = O. 
r -+O 

Below we derive estimates for ga in terms of hE in the case of a "simple" E and 
then extend this estimate to the arbitrary E under consideration. It is important  to 
emphasize that  it is the uniformity of these estimates with respect to the function 
hz  which makes it possible to deduce the result for arbitrary E. 

Let E consist of a finite number (greater than one) of intervals, i.e., 

N 

E = U [~J, bs], 
j = l  

O = a N  < b N  < . . .  < a l  <bl  = 1.  

Let ak<r=rk<bk,  k = l ,  ... , N - l ,  be an arbitrary but fixed number. Denote by 
FT: H-+EE,.  the appropriate conformal mapping fi'om Section 3, where 

N--1 

orE, : {r  i,7 :,j > o}u{r ~+i~: ~ > o}uIo, ~]u ( U [~, (J + i @  
/ = k  

Note that  ~j and ~]j depend on r. Taking r sufficiently close to ak we can ensure 
�89 <7c. Let 

~/~ := max ~/j. 
k<_j<_N--1 

According to (3.10) we have 

e'l; 1 cap(E~) _ < _  
4 hE(,')_< ~ ( l + ~ , ; p '  

which implies 

(5.2) ~ < log(A@)+ x/A(r)  2 - 1  ), A ( r ) . -  l + 4 h z ( r )  
- 1 -4hz ( r ) "  
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Since h E ( l ) <  1 a, inequality (5.2) yields 

~1~ < l o g ( A ( 1 ) + ~ l )  =:dl all(E). (5.3) 

The set 
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03,k(~):={ 1, 
0, 

! Since for any ~Y~Fa,k, 

we have 

(5.5) 

if ~ C Ez,. and O < I m ( < r / ~ + l ,  

elsewhere. 

~ ~3,~(~)IdOl ~ i, 

(5.7) 

Indeed, setting 

{ 
0, 

Combining (5.3)-(5.5) we obtain 

(5.6) ~• _< ~(< +~) =: d~ = < ( E ) .  
~tk 

�9 , 1 For small ~]k, (5.6) can be improved in the following manner. If r]k < ~7c, then 

v_~ <27rc l o g ~  . 
uk - 2r/k 

* ~  2 * 2  if ~ ~ P,E~ and ~/k --I~--~1 < ~/~k+(~/k) , 

elsewhere, 

%:=EEN[iv, uk+iv], O<v<_v~, 

consists of a finite number of open intervals. Let F3,k denote the family of all these 
sets, i.e., 

r3,k := {%}0<~<vk. 

By the comparison principle for the module of F3,k we have 

(5.4) -~(r3,k) _> ~,~({[iv, ~k +iv]}0<~<~k)= ~k. 
~tk 

Let F~, k:=F~oF-l(F3,k) .  Consider the metric 
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and repeating word for word the proof of (4.13), we obtain 

( ~,'~ 2 * 2  Q ~9@~; 1 -2 ~/~+(~) 
rn(P~,k) < 9rr log log �9 < 277r log . 

The above inequMity and (5.4) yield (5.7). 
Let F4,x, 0 < x < l ,  z e E ,  be the family of all cross-cuts of H which join (-oo,  0] 

with Ix, 1]. Then 

(5.8) rn(F<~) <_ I log 16 
7r x 

(see [2, Chapter II, (1.2) and (2.10)]). For tile module of the family P~,,,:=F(P4,x) 
we have 

(5.9) m(r~, , )  _> 2 log rc 

Indeed, in the nontrivial case when 1 ~  F(x)<rr ,  we compare P~,~ with the 
family F of all circular cross-cuts of the domain 

to obtain 
.~(p~,:~) > ~ ( r )  = _2 log 

71" 

Comparison of (5.8) and (5.9) gives 

(5.10) * _< daF(z)% 

71- 

16 
da = d a ( E ) : =  ~ ( l + d  9 .  

Let xoCE be any point satisfying 0 < x 0 < l  and 

Such an .% exists because of (5.1). For an 3, k such that ak<:Co we can choose 
r = r k < x o  in the above discussion. Hence, by (5.2), r/~5 ~71-.1 Taking into account 
(5.2), (5.7) and (5.10), for such k we have 

(5.11) v-k<27rc l o g ~  7 <27rc log , 
" uk - 2rl k - 
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where 

and where we have used that  

Ak := A( 2dau 2k ) 

r = r/~ < daF(r/~) 2 < 2d3u~, 

since for r sufficiently close to a~ we obtain F(rk)<_2F(ak)=2uk. 
Let 

no := \ d a /  ' 

A*(u) := A(2dau2), 

B*(u) := log(A* (u)+ x/d* (u )2 -1 ) ,  

(u) := 27rc (log 
1 

C* 

Vo .= max{C (uo), d2}, 

C ( u ) : = {  C*(u), i f 0 < u < u 0 ,  

vo, if u0 < u < 7r. 

O < u < u o ,  

O<u<uo, 

The function C(u) is monotonically increasing and it satisfies 

l i m e ( u ) = 0  and V~<C(uk), k = l , . . . , N - 1 .  
u-+O U k - -  

1 denote by ue any point such that  O<ue<u0 For an arbitrary but fixed 0 < ~ < 
and 

1 e 

Fix any 0 < r c < l  such that  F(-r~)<_e-~ruc. Let Fs,,., 0 < r < l ,  be the family of all 
cross-cuts of H which join ( -oo ,  -7"] with [0, 1]. Comparing Fs,,. with the family F* 
of all circular cross-cuts of the domain 

{w=Loei~ :r < ~9< l and O< O < Tr} 

we have 

> = -1 log 1. 
71- /~ 
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I ,__ Next we estimate from above the module of the family Fs,,..-F(Fs,~ ). 
iR :=F(- r ) ,  0 < r < r k .  Consider the metrics 

0~#(w):= lwl(l_26)~r, i fRe -~ /2<lw l<u~  a n d r c 6 < a r g w < 2 ,  

0, elsewhere, 

e~/~ 
0~,%(w):= u~cosarr' i f w E E z  and O<Imw<_vorr+u~cosarc/e ~/2, 

0, elsewhere, 

By a straightforward calculation we obtain that  for any ?EFt,,., 

./~ e~,~(w)Idw{ _> 1. 

Therefore, 

11o /1o'- re(F<,-) < 0~,~(v0) 2 dm~ < a~,~(w) dm,~+ 0a,,-(w) dm~ 
(5.~3) 

where 

1 

~(1-ua) 

Let 

d4 =d4(E,c )  : ~  l o g  eTr/2u~ @ 
u~eos2~-~ ~r2. e~/2 J 2 

Comparing (5.12) and (5.13) we get 

(5.14) R <__ edar (1 -e)/2, 

and in view of (3.11) this proves (1.3) for E consisting of a finite number of intervals. 
Let now E be an arbitrary compact set in the statement of Theorem 2, and let 

be a sequence of sets each of which consists of a finite number of intervals, 1EE~, 
ECE~, 

(5.15) ~k~ge\~,(-<)--g~(-~), < > o. 

Note that g~\E~ satisfies (5.14). Since 

h~(r) > hE. (<), 

careful analysis of constants and (5.15) show that, as before, we have 

(5.16) 9~(-r)  < e&r (1-~)/2, 0 < r < re, 

with d4 and r~ which depend only on e and E. Thus, (1.3) follows from (5.16). 
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6. P r o o f  o f  T h e o r e m  3 

By [6, Chapter Ii, Theorem 2.2] (see also [1, Corollary 1]), for any compact set 
E C  [0, 1] with positive capacity we have 

(SlOs~(z) 2 ) 2 
(6.1) gf~(-r)_<clx/Texp c2 x3 dx lOgcap(E~ , 0 < r < l ,  

where 0E (x):= I[0, x] \E l ,  0 < x ~  1, is the linear measure of [0, x] \ E .  
In order to prove Theorem 3, it is enough to find two monotonic sequences of 

positive numbers {aj}j~ 1 and {bj}j~_a converging to 0 such that  for the set 

the following properties hold 

(6.2) 

(6.3) 

(711 E := {0}[2 aj, by 

( ~ ) - 1  J_ [ OE(x) 2 
log X3 dx  = O, 

lim bj+l = O. 
j-~ec aj 

Indeed, in this case (1.3) follows from (6.2) and (6.1). Moreover, since 

cap(E•[0, aj]) < bj+l 
aj - 4aj ' 

bj :=2 -2j 1 

(6.3) implies (1.4). 
With the choice 

aj :-- bj+l log( j+ l ) ,  j E N, 

both properties (6.2) and (6.3) hold. [] 
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