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A transformation from Hausdorff 
to Stieltjes moment sequences 

Chris t ian  Berg and  Anton io  J. Dur~n  

Abstract .  We introduce a non-linear injective transformation 7- from the set of non-vanish- 
ing normalized Hausdorff moment sequences to the set of normalized Stieltjes moment sequences 
by the formula 7 - [ ( a n ) ~ _ l ] n = l / a l  ... an. Special cases of this transformation have appeared in 
various papers on exponential functionals of Lgvy processes, partly motivated by mathematical 
finance. We give several examples of moment sequences arising from the transformation and 
provide the corresponding measures, some of which are related to q-series. 

1. I n t r o d u c t i o n  a n d  m a i n  r e s u l t s  

In  his fundamen ta l  memoir  [23] Stieltjes characterized sequences of the form 

/o (1)  ~n = x ~ d ~ ( x ) ,  ~ 0 , 1 ,  2 , . . . ,  

where # is a non-nega t ive  measure  on [0, col, by cer ta in  quadra t ic  forms being non-  

negative.  These sequences are now called Stieltjes momen t  sequences. They  are 

called normal ized  if s 0 = l .  A Stieltjes momen t  sequence is called d e t e r m i n a t e ,  if 

there is only one measure # on [0, co[ such tha t  (1) holds; otherwise it is called 

i n d e t e r m i n a t e .  It  is to be noticed tha t  in the inde te rmina te  case there are also solu- 

t ions # to (1), which are not  suppor ted  by [0, co[, i.e. solut ions to the corresponding 

Hamburger  momen t  problem. However unless explicit ly s ta ted  we only consider 

measures  suppor ted  by [0, co[. 

Later  Hausdorff, cf. [19], characterized the Stieltjes momen t  sequences for which 

the measure is concent ra ted  on the un i t  interval  [0, 1] by complete monotonici ty .  

This work was done while the first author was visiting University of Sevilla supported by 
the Secretarfa de Estado de Educacidn y Universidades, Ministerio de Ciencia, Cultura y Deporte 
de Espafia, SAB2000-0142. The work of the second author has been supported by DGES ref. 
BFM-2000-206-C04-02 and FQM 262 (Junta de Andalucfa). 
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Both  resul ts  can be found in [25] or in [5]. A g a u s d o r f f  m o m e n t  sequence 

~0 
1 

(2) an=  end~(~), ~=0 ,1 ,2 , . . . ,  

is eit her non-vanishing (i.e. an r 0 for all n) or of the form a~ =- c5o,~ wit h c > 0, where 

5 ( 0n)~=0 is the sequence (1, 0, 0, ...). The lat ter  corresponds to the Dirac measure 
~0 with mass 1 concentrated at 0. 

Our main result is the following construction of Stieltjes moment  sequences 
from Hausdorff moment  sequences. 

T h e o r e m  1.1. Let (an)n~=O be a non-vanishing Hausdorff moment sequence. 
Then ( Sn)~_O defined by s 0 - 1  and sn=l  / al ... an for n >_l is a normalized Stieltjes 
m o m e n t  sequence. 

The proof of Theorem 1.1, which will be given in Section 2, is rather  construc- 

tive: We find explicitly a Stieltjes measure for those sequences (s~)n~_0 which are 
defined from ghe Hausdorff moment  sequence of a finite linear combination of Dirac 

deltas. Finally we use tha t  the set of finite linear combinations of Dirae deltas 
is dense in the set of positive measures supported in [0, 1]. To find the Stieltjes 
measure associated to a finite linear combination of Dirac deltas we use a technique 
whose philosophy goes back to Euler: Development of q-infinite products of several 
complex variables in power series--see for instance Chapter  XVI or even Chapter  X 
of his masterpiece [17]. 

One can say tha t  the proof could in principle have been found by Hausdorff 
or Stieltjes, if they had been motivated to search for such a non-linear result. We 
shall explain below that  our motivation comes from recent work by Bertoin, Car- 

mona, Peti t  and Yor on exponential functionals of L6vy processes, par t ly  inspired 
by questions from mathemat ica l  finance. 

a oQ Remark 1.2. If we replace the Hausdorff moment  sequence ( ~),~ 0 by 
((1/c)an)~_o with c>0,  then Theorem 1.1 gives the apparently more general result 
tha t  s 0 = l ,  s , = e n / a l  ... an for n > l  is a Stieltjes moment  sequence. Since however 
(c~)~=0 is a Stieltjes moment  sequence for any c>0,  and the product of two Stielt- 
jes moment  sequences is again a Stieltjes moment  sequence (see below), we do not 
stress this more general version. In Section 3 we shall discuss the above transfor- 
n a t i o n  from non-vanishing normalized Hausdorff moment  sequences to normalized 
Stieltjes moment  sequences. 

We recall that  a function 9: ]0, c ~ [ ~  [0, oo[ is called completely monotonic, if it 
is C a and (--1)kp(k)(s)>0 for s>0 ,  k=0 ,  1 . . . . .  By the theorem of Bernstein we 
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have 

/o (3 )  = e 

where a is a non-negative measure on [0, oo[. Clearly ~(0+)=c~([0, co[). If a is a 
O oo non-zero finite measure, then ( '~)~=0 = (~~176176 is a Hausdorff moment sequence 

such that  a ~ 0  for all n, and the representing measure is the image measure of 
c~ under x>+exp( -x) .  Conversely, any Hausdorff moment sequence (a~)~__0 with 
an~ 0  for all n is of the form 

j~ l a~ = c5o~ + x n dp(x) 

with c_>0 and #({0})=0,  >50 ,  hence an=~(n ) ,  n > l ,  and a 0 - c + ~ ( 0 + ) ,  where 
is given by (3), and c~ is the image measure of > under x~->-log x. 

Therefore Theorem 1.1 is essentially equivalent to the following result. 

T h e o r e m  1.3. Let ~ be a no>zero completely monotonic function. Then 
(sn)~_o defined by s 0 = l  and s ~ - l / ~ ( 1 ) . . ,  p(n) for n>_l is a normalized Stieltjes 
moment sequence. 

Remark 1.4. If ~(0+)<oo,  Theorems 1.1 and 1.3 are equivalent, but it should 
be noticed that  ~(0+)=oo is not excluded. The proof of Theorem 1.3 is given in 
Section 2. 

The evaluation of ~ at the integers can be replaced by the evaluation at the 
sequence p+nq, n - l ,  2, ..., where p > 0  and q>0  are real numbers. The conclusion 
is that  s0= l ,  sn=l /~ (p+q) . . . ~ (p+nq) ,  n_>l, is a normalized Stieltjes moment 
sequence. 

A Hausdorff moment sequence (2) is decreasing with aoo :=lim,>+oo a,~ =#({1}),  
and a completely monotonic function (3) is decreasing with ~(oo):=tim~-~oo ~(s) = 
c~({0}). We shall now see how these quantities are related to the support of the 
representing measure(s) of the Stieltjes moment sequences of Theorems 1.1 and 1.3. 
The proof will be postponed to Section 2. 

8 oo T h e o r e m  1.5. Let (an),~_o (reap. ~) and ( ,~)~ o be as in Theorem 1.1 (reap. 
Theorem 1.3). 

If aoo =0 (reap. %0(oo)=0), then any representing measure for (s~)~=o has un- 
bounded support. 

S o o  If  a ~ = c > 0  (reap. ~(oo) c>0) ,  then ( ",*)no is determinate and the support 
S of the uniquely determined representing measure satisfies 1/c~SC_[O, 1/c]. 

s oo Hausdorff moment sequence if and only if aoo >_ 1 The sequence ( n)~=0 is a 
( reap .  
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Let (rJt)t>0 be a convolution semigroup of subprobabilities on [0, oc[ with Lapla- 
ce exponent or Bernstein function f given by 

o~ drlt(x)=e -tf(s), s > 0 ,  

cf. [6] and [9]. We recall that f has the integral representation 

F (4) f ( s )  = a+bs+ (1 e -sx) d , (x) ,  

where a, b>0 and the Ldvy measure ~ on ]0, oc[ satisfies the integrability condition 
Jo~(x / ( l+x) )dw(x)<oc .  Note that  r)t([0, e c [ ) = e x p ( - a t ) ,  so that  (~?t)t>0 consists 
of probabilities if and only if a=0 .  

In the following we shall exclude the Bernstein function identically equal to 
zero, which corresponds to the convolution semigroup r/t=(~0, t>0.  

It is well known and easy to see that  f ( s ) / s  and 1/ f ( s )  are completely mono- 
tonic functions, when f is a non-zero Bernstein function, viz. the Laplace transforms 
of the following measures 

(5) A=bao+(a+p(]x, oc[))dY(x) ,  J4= ~]tdt, 

where Y denotes Lebesgue measure on [0, oc[. 
These two completely monotonic functions lead to the following known results 

as special cases of Theorem 1.3. 

C o r o l l a r y  1.6. ([13], [14], [24]) Let f be a non-zero Bernstein function. Then 
s 0 = l ,  s~<=n!/f(1).., f (n )  for" n>_l is a StieItjes moment sequence. 

C o r o l l a r y  1.7. ([11]) Let f be a non-zerv Bernstein function. Then s0 = l ,  
s ~ = f ( 1 )  ... f (n)  for n>_l is a Stieltjes moment sequence. 

Theorems 1.1 and 1.3 were in fact found by searching for a result containing 
both corollaries. In [11], [13] and [14] the authors only consider Bernstein functions 

f with a = f ( 0 ) - 0 .  
It is stressed that  our theorems are more general than the results of the two 

corollaries. As we shall see below in Example 2.4, the Hausdorff moment sequence 
(q~) for 0 < q < l  leads to an indeterminate Stieltjes moment sequence, while the 
Stieltjes moment sequences of the corollaries are always determinate as shown by 
the following remark. 

Remark 1.8. The Stieltjes moment sequences of Corollary 1.6 and Corollary 1.7 
are determinate as pointed out in [14] and [11]. 
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First of all sn =n!  is a determinate Stieltjes moment sequence of the exponential 
distribution e x p ( - x ) d Y ( z ) .  The determinacy follows from Carleman's criterion 
which states that  the divergence of the series 

~-~ 1 

n 0 2 ~ n n  

implies that  the moment sequence is determinate (in the sense of Stieltjes), cf, [22]. 
By Stirling's formula the series in question is divergent. As s~=n!/f(1).., f(n)<_ 
n!/f(1) n, also this moment sequence is determinate. Since f(s)/s-+b, as s-+oo, 
where b is the drift term in the representation (4), we see by Theorem 1.5 that  the 

s oo [0, 1/b]. We also get support of the representing measure for ( ~),~=0 is contained in 
8 c~ that  ( n)n=0 is a Hausdorff moment sequence if and only if b_>l. 

Since a Bernstein function f satisfies f(s)<_f(1)s for s > l ,  we have s~:= 
f(1)  ... f(n)<_/(1)nn!, and the determinacy of (s~)~_ 0 follows again by the criterion 
of Carleman. By Theorem 1.5 the support of the representing measure is contained 

S oo in [0, f(oc)],  and ( ~)~ 0 is a Hausdorff moment sequence if and only if f(oc)_<l.  

The proofs of the results in [13], [14] and [11] use techniques from stochastic 
processes. To be more specific one considers a L6vy process ~= (&, t_>0) determined 
by the convolution semigroup (r]t)t>O corresponding to the non-zero Bernstein func- 
tion f (with f (0 )=0) ,  and one defines the exponential functional 

/7 I = exp(-~t)  dr. 

This random variable plays an important  role in mathematical finance as well as 
in the study of the self-similm" Markov processes obtained from { by a classical 
transformation of Latnperti, see [21]. In [13], [14] and [24] it is proved that  the 
stochastic variable I has the moments 

n! 
(6)  E ( I  - 

f (1)  ... f ( n ) '  

which is the Stieltjes moment sequence corresponding to the completely monotonic 
function f(s)/s. 

To prove the result of [11] the authors introduce the strong Markov process 
X=(Xt, t>0)  by 

Xt=exp~(t), t>_O, 

where the time-change r(t) is defined by the identity 

tiff t) 
t = exp(~s) ds. 
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They prove that  the expectation of the variable 1/Xt is a completely monotonic 
function of t and thus the Laplace transform of a probability 9. The moments of 0 
are proved to be given by 

s (7) x n d~(x) = / ( l )  ... f(n), 

which is the Stieltjes moment sequence corresponding to the completely monotonic 
function 1/f(s). 

One should note that  a non-zero Bernstein function f leads to the factorizations 

(8) s 

of respectively completely monotonic functions and measures, where we use the 
notation from (5). The paper [11] contains further information about the measures 

given by (7). For further results about moments and exponential functionals 
see [12] and the references therein. 

In [20] Jacobsen and Yor consider an n-dimensional subordinator (&)t>0 with 
non-vanishing Laplace exponent 

(9) q~(s)=(b,s}+[ (1-exp(--@,s)))dL,(x), 8=(81,.. . ,sn)~R+, 
aR~\{0} 

where bER+ and ~ is the L6vy measure. They prove that  for any s, tER+,  where 
t r  

n (~(s+k~)k f l  s n ; I I  and &= e( +kt) 
k 1 /~ 1 

are Stieltjes moment sequences. These results are special cases of Theorem 1.3, 
because A P ~ ( s + A t )  is a non-vanishing Bernstein function. 

In [11] Bertoin and Yor remarked that  the determinacy in Remark 1.8 leads to 
a factorization of moments and distributions which is analogous to (8), 

n! 
(lO) e p( 

Here I is the distribution of the stochastic variable I in (6), ~) is given by (7) and o 
denotes product convolution of measures on [0, oc[. The product convolut ion/ top 
of two measures > and ~ on [0, oc[ is defined as the image measure of #Q~ under 
the product  mapping (s,t)~--~st. The second equation follows from the first since 
the n th  moment of the product convolution is the product of the nth moments 
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of the factors. Therefore the product convolution has the same moments as the 

exponential distribution, which is determinate. 

Note that the second equation in (I0) implies that neither I nor ~ has mass at 

zero. 

The following result is an extension of Corollary 1.7. 

C o r o l l a r y  1.9. Let f be a non-zero Bernstein function and let c>0 be ar- 
bitrary. Then s0= l ,  s ~ = ( f ( 1 ) . . . f ( n ) )  ~ for n> l is a Stieltjes moment sequence, 
which is determinate for c<_2. 

Proof. It suffices to show that  l i f t  is completely monotonic, which follows 
since more generally ~( f ( s ) )  is completely monotonic when ~ is so, cf. [6]. Here we 
use the completely monotonic function qo(s)=s-% (One can also see that  1 I f  ~ is 
the Laplace transform of the measure 

F(c) t~ 1tIt dr, 

which is the cth convolution power of the potential kernel x of the semigroup (~] t ) t>O 

defined in (5)0 
The criterion of Carleman used above shows the determinacy for c<2.  [] 

Remark 1.10. There exist Bernstein functions f for which s**=(f(1).. ,  f (n ) )  ~ 
is indeterminate for c>2.  This is discussed in [4], and it proves that  the assertion 
in Corollary 1.9 about determinacy is best possible. 

2. P r o o f s  

8 o~ The set S of Stieltjes moment sequences ( n)~ 0 will be considered as a subset 
of [0, oc[ N~ with the product topology. We need the following well-known fact 

about $. 

L e m m a  2.1. The set $ is a closed set stable under pointwise sums, products 
and multiplication by non-negative scalars. 

S oo Proof. We first recall that  a sequence of real numbers ( n)~=0 is called positive 
definite if all the symmetric matrices (s~+j)0_<<j_<~ are non-negative, i.e. 

si+jcicj >_ 0 for all (e0, cl, ..., c~) C R ~+1, 
i-_0 j -0  

8 oo S oc cf. [5]. The theorem of Stieltjes tells that  ( ~),~=0ES if and only if ( ~),~=0 and 
(sn+l)~~ 0 are positive definite. This shows that  $ is a closed set. It is clearly 
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stable under pointwise sums and multiplication by non-negative scalars, but it is also 
stable under pointwise products by the theorem of Schur, cf. [5, p. 69]. The latter 
property is also a consequence of the following remark, which will be needed later: 

oo ~; oo let (s~)~=0 and ( ~)n=0 be two Stieltjes moment sequences of the measures > and 
8 oo y respectively. Then ( ~t,~),~ 0 is the moment sequence of the product convolution 

measure ><>~. [] 

L e m m a  2.2. Let # and y be two measures on [0, oo[ with moments of all 
orders and assume that # is indeterminate, p({0})=0 and ~,~0. Then #<>~ is 
indeterminate. 

Proof. For a positive measure # on the real line with moments of any order and 
corresponding sequence of orthonormal polynomials (p~)n~176 we recall the following 
formula, where z0 E C is arbitrary, 

(11) inf [p(x)[ 2 d p ( x )  C[x] and p(zo) = 1 [pn(ZO)[ 2 , 

cf. [1, p. 60]. 
A necessary and sufficient condition for # to be indeterminate for the Ham- 

burger moment problem is that  the quantity (1l) is strictly positive at z o - i ,  and 
if this is the case, then the function 

(n~0 [ ) 1  = 2 

is strictly positive and continuous for zEC.  
Let now # be the measure of the lemma which by assumption is indeterminate 

for the Stieltjes moment problem and a fortiori for the Hamburger moment pro- 
blem. Let p'  be an arbitrary measure on [0, oc[ with the same moments as p. Since 
the measures tt<>t, and tt 'ou have the same moments (but we do not know if they 
are different), it is enough to prove that  >~<>u is indeterminate for a conveniently 
chosen >'. We shall choose >' such that  # ' ({0})=0,  which is always possible for an 
indeterminate Stieltjes problem, cf. e.g. [8, Remark 2.2.2]. Without loss of generality 
we will therefore assume that t ,({0})=0. 

By assumption about t, there exists x0>0 belonging to the support of u. For 
0<e<Xo we then have ~(]x0-g,  Xo+e[)>0.  

For pEC[x] satisfying p(i)=1 and yE]xo e, x0+g[ we consider the polynomial 
qy(X):-p(xy)  which satisfies qy( i / y )=l .  By formula (11) we have 

/0 Iqy(x)l 2 d~(x) > ~ , 
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hence 

[p(t)l 2 d#ou( t )  > [p(xy)] 2 dp(x)  du(y)  > p( i / y )  du(y) .  
dxo  c \ J O  J x o - - a  

Since the last term is strictly positive and independent of the polynomial p, it follows 
that  #<>u is indeterminate for the corresponding Hamburger  moment  problem. Then 

it is also indeterminate as a Stieltjes problem, unless it is the N-ext remal  solution 
with mass at zero, cf. [15]. However #<>u({0}) #([0, ocDu({0})+p({0})u(]o,  o c [ ) -  
0, so this possibility is excluded. [] 

R e m a r k  2.3. It  can be proved that  Lemma 2.2 holds under the weaker as- 
sumption that  ~ C 6 o ,  c_>0. In fact, if L,({0})>0 then z/=~,({0})(~0+p' with ~' 
satisfying the assumptions of the lemma. Therefore p o Y  is indeterminate. Since 

p o y = p ( [ 0 ,  oc[)p({0})~0+pop' ,  it follows that  also po~  is indeterminate. 

We now give some examples of Theorem 1.1, and we shall use these as building 
blocks in the proof. 

Example  2.4. For 0<q_<l let a n = q  ~ be the Hausdorff moment  sequence cor- 
responding to the Dirac measure (~q concentrated at q. The claim of Theorem 1.1 

__(n+l~ 
for this sequence is that  s ~ = q  ~ 2 j is a Stieltjes moment  sequence. This is clear 
for q = l  but in fact true also for q < l ,  since it is the moments  of the density 

q l / S  1 ( (log X) 2 "~ 
v(x)= 2 log(1/q) exp 21og(Uq)/' x>0,  

which is closely related to a log-normal density. There are many probabilities on 
[0, oc[ with the same moments  as v, cf. [16] tbr a recent paper  on this indeterminate 
Stieltjes moment  problem. 

The next example involves basic hypergeometric functions, for which we refer 
the reader to the monograph by Gasper  and Rahman [18]. We recall the q-shifted 
factorials 

n--1 

(z; q)~z = H (1 -zqk) ,  
k 0 

z E C ,  0 < q < l ,  n =  l, 2, ... , oc, 

and (z; q)o 1. Note tha t  (z; q)o~ is an entire function of z. 
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Example 2.5. For e > 0  and 0 < q < l  the (non-normalized) Hausdorff  moment  

sequence an=l+cq  ~ 1, n>O, of the m e a s u r e  (~lq-(c/q)(~q leads by Theorem 1.1 to  

the sequence s ~ = l / ( - c ;  q)~. This is a Stieltjes inoment  sequence of the following 
discrete probabil i ty 

1 
k~O ~ C  Oqk. = : 

In fact, by the q-binomial theorem, cf. [18], we have 

fo ~176 1 ~ q(~) ~ ,,,k (-cq~;q)oo 1 
z ~ d # ( x ) -  ( - c ;  q)~ ~ tcq ) - ( - c ;  q )~  - ( - c ; q ) n "  

k 0 

Since the measure # has compact  support ,  the Stieltjes moment  sequence is 
determinate.  

The  next example is an extension of Example  2.5 but  more involved, and it 

is therefore presented as a lemma. It  is the main  ingredient in the proof  of Theo- 
rem 1.1. 

L e m m a  2.6.  Let p>_l, c j > 0  and 0 < q j < l ,  j = l ,  ... ,p, be given. Then s 0 = l ,  

n 1 
1 

l q-Clqkl +...q-Cpqkp ' 
k=O 

is a Stieltjes moment sequence. 

Proof. Consider the entire funct ion of p complex variables 

O 0  

f(Zl, ..., Zp) = H (l q-zlqk-i-...-i- Zpq~). 
k = 0  

The power series expansion of f can be wri t ten 

f(z)  = f ( z l ,  . . .  ,Zp)=~-~baz a, 
OX 

where we use the mult i- index nota t ion  

Z = (ZI,... , Zp), O~ = ( a l , . . . ,  ap) and  z ~ = z~ * ... zp~, 

and the sum is over all integers OL 1 ) > 0 ,  . . . ,  OZp ~ 0 .  The coefficients b~ =b~ (q) of the 
power series are positive as sums of products  of powers of ql,. . . ,  qp. 
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Let 

1 E b~ca~q~" 
# =  f ( e l , . . . , ep )  

Then # is a probabili ty measure with compact  support.  
The n th  moment  of # is 

1 ~ ,  b~e~(q~ ~ = f ( e ~ q b . . ,  c~q; ~) = ~y[~ 1 Sn 
f (e )  ~---* " " f ( c l , . . ,  cp) . t•  14_clq~+.. .§  ~" 

a ' k = O  

[] 

Proof of Theorem 1.1. Any non-negative measure p on [0, 1] is a weak limit of a 
sequence of discrete measures of the form a~ ~ +... +apa,  p, where aj > O, j = 1, . . . ,  p, 
and 0 < x l  <x2 <...  <Xp < 1. By the closedness of,5 stated in Lemma 2.1, it is enough 
to prove Theorem 1.1 for discrete measures of this type, i.e. to prove tha t  

(12) 
s~ = alXkl +...+apxkp, 

k=l  

(with s o = l )  belongs to ,5. 
We have 

8n= (Xp)--( 2 ) k =  1 l_}_al (xlx}s _...@ap_l ( . f  1) k' 
ap \Xp /  ap \ Xp / 

which is the pointwise product of three Stiettjes moment  sequences, namely (1/ap) n, 
and moment  sequences of the type discussed in Exmnple 2.4 and Lemma 2.6. A 
representing measure is the product  convolution of three corresponding representing 
measures. [] 

Remark  2.7. The moment  sequence (12) is indeterminate since the factor 

(x~) (,,~1) 

is an indeterminate moment  sequence, cf. Lemma 2.2. 

8 Remark  2.8. For a Stieltjes moment  sequence ( ~),=0 all the Hankel determi- 
nants 

~n = det(~+j)o<<j<~, H" = det(~+j+a)o<,j<,~, 

are non-negative, Conversely, if for a real sequence (sn)n~176 we have H~>O and 

_ s oo Stieltjes moment  sequence. Using the special H~>O for all n>O, then ( ~),~=0 is a 

form s ~ = l / a l  ... an we obtain two sequences of inequalities for a non-vanishing 
a e~ Hausdorff momen t  sequence ( ~),~ 0. 
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We have not found a proof of Theorem 1.1 by verification of the positivity of 
the Hankel determinants.  

Proof of Theorem 1.3. We only have to prove the result for completely mono- 
tonic functions ~ with ~ (0+)=oc ,  since the result follows from Theorem 1.1 if 
p (0+)<oo .  For c > 0  the function 9 ~ ( s ) = p ( s + e )  is completely monotonic with 

s o  

1 
s~(s) = ~(1+c)... ~(n+c) 

is a Stieltjes moment  sequence. The result now follows from the closedness of S 
letting e tend to zero. [] 

For the proof of Theorem 1.5 we need the following elementary result. 

L e m m a  2.9. Let 

/7 = r 

be a Stieltjes moment sequence. I f  a>O belongs to the support of p, then for O < e < a  
there exists A > 0  such that 

s~>_A(a-c )  ~, n>O. 

The support of # is contained in [0, c] for some c>0  if and only if  there exists K > 0  
such that 

(13) s,~ <<Kc n, n>_O. 

Pro@ If a belongs to the support  of # and 0 < e < a ,  then A : = # ( ] a - c ,  a + e  D >0  
and 

j[a a+e sn > x n dp(x) > A ( a - c )  n. 
a - - c  

If the support  of # is contained in [0, c], then clearly s n < K e  ~ with K =  

Z[0 ,  oH). 
Conversely, if (13) holds there cannot be a point a in the support  of # with 

a > c  by the first part  of the lemma. [] 

Proof of Theorem 1.5. We shall only prove the results about  Hausdorff moment  
sequences since the other results follow in the same way. 

Suppose first that  aoo=0. For any e > 0  there exists N E N  such that  a~_<e for 
n_>N and hence for such n, 

a l  . . .  a N  
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Since c >0  was arbitrary, it follows by Lemma 2.9 that  the support of # is un- 
bounded. 

Suppose next that  a ~ = c > 0 .  Then clearly s~,<(1/c) ~, which shows that  the 
support S of p is contained in [0, 1/c], and then p is determinate. 

On the other hand, since a~--+c there exists to any c > 0  an N ~ N  such that  

- -  , n > N .  

a l  . . .  a N  

This shows by Lemma 2.9 that  1/cCS.  
If finally a~_>l,  then S is a subset of the unit interval, so (s~)n~_0 is a Hausdorff 

S moment sequence. Conversely, if ( ~)~=0 is a Hausdorff moment sequence and in 
particular decreasing, we get from s~<_sn-1 that a~_>l and hence a ~ > l .  [] 

As an application of Theorem 1.5 and Theorem 1.1 we get the following result. 

C o r o l l a r y  2.10. For an arbitrary Hausdorff moment sequence (a~)~=o the 
sequence (s~)~=o defined by s 0 = l  and sn= l / ( l  +al)  ... ( l+a~ )  for n> l is a Haus- 
do~ff moment  sequence. 

For a non-negative measure p on [0, o z[ with moment sequence (s,~)n~_0 the 
moment generating function is given by 

/0 (14) exp(tx) d#(x) = ~.s~. 
7 ~ 0  

If the radius of convergence of the power series in (14) is positive, then it is 
well known that  # is determinate. 

For the moment sequences under consideration we get the following simple 
result. 

8 c~ T h e o r e m  2.11. Let (a~)~_o (resp, ~) and ( ~)~=0 be as in Theorem 1.1 
(resp. Theorem 1.3). 

I f  l i m n ~ n a , = R  (resp. l im ,~ ,c~n~(n)=R) ,  then RE[0;cxD 1 is the radius of 
convergence of the power series in (14). 

The proof is straightforward by considering the quotient of two consecutive 
terms of the power series. 

Applying Theorem 2.11 the determinacy discussed in Remark 1,8 can also be 
obtained as a consequence of the finiteness of the moment generating function (14). 
This was also pointed out in [14] and [11]. We give the following precise statement. 

T h e o r e m  2.12. Let f be a non-zero Bernstein function with the representa- 
tion (4). The radius of convergence R of the power series in (14) is given by 

(i) R = f ( o o )  if s ,~=n!/ f (1) . . ,  f (n ) ;  
(ii) R = l / b  if s~=f (1 ) . . ,  f (n ) .  
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3. Complements  and examples  

a oo Given a non-vanishing Hausdorff moment  sequence ( n)n 0 with representing 
measure #, then (cS0n +an)~~ is again a non-vanishing Hausdorff moment  sequence 
for any c_> #({0}), and they all give rise to the same normalized Stieltjes moment  
sequence by the construction of Theorem 1.1. 

We denote by T the transformation from the set 7t.  of non-vanishing normal- 
ized Hausdorff moment  sequences a=(an)~~176 0 to the set $ .  of normalized Stieltjes 
moment  s e q u e n c e s  8=(8n)n~176 given by Theorem 1.1, viz. 

1 
- - ,  n > l .  (15) s,z = T [ ( a n ) h  al  ... a~ 

Note that  T is multiplicative, i.e. 

_ _  o o  b o<3 (16) T[(a~bn)~~ T[(an)~ 0]T[( ~),~=0]- 

The image of 7/, under T is the set of normalized Stieltjes moment  sequences 
(s~)~~176 0 for which a~=s~_l/s~, n > l ,  is a Hausdorff moment  sequence (with a0--1). 
It is clear that  T is a bijection of 7t. onto this set. 

The image is different fi'om S. .  In fact s~=n! is a Stieltjes moment  sequence 
which does not belong to T(?-/,). If  this sequence would belong to the image of T,  

then an=l/n,  n > l ,  a 0 = l ,  should be a Hausdorff moment  sequence of a measure 
p, and hence 

/ i  (1 - x) d~t(x) = O, 

but this is only possible if #=51 which does not have the right moments.  (One 
can also easily see that  a ~ - l / n ,  n>l,  a 0 > l ,  can never be a Hausdorff moment  
sequence.) 

The example just given also shows tha t  the t ransformation T cannot be ex- 
tended to a t ransformation of S.  into itself by the formula (15), because 

T[(n!)~~ = (1! ... n!) 1 

is not a Stieltjes moment  sequence. The reason is that  the second Hankel determi- 
nant is negative. 

Let (a~)n~=0 ET/. with representing measure p, and suppose that  s=T[(a~)~__0] 
is determinate with representing measure u, which is then uniquely determined. The 
equation a~+lSn+l=sn, n>_O, means that  the measures (x dp(x))<>(x du(x)) and 
have the same moments,  and since u is assumed determinate we get 

(17) (x dtt(x) )v(x du(x) ) = L,. 
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By L e m m a  2.2 it follows tha t  also the measure x &, ( z )  is determinate.  The  process 

can now be iterated, and we find tha t  all the measures x n du(z ) ,  n_>0, are deter- 

minate.  Using a terminology from [7] one can say tha t  the index of de te rminacy  of 

is infinite. See [2] for a discussion of cases, where y is de terminate  but  z du(x)  is 

indeterminate.  

We calculate some further  values of the t ransformat ion  7-. 

Example  3.1. For a > 0  we have the following normalized Hausdorff  moment  

sequence 

__ _ _ a  _ x a + n _  1 
a~ a + rt a dx. 

The corresponding Stieltjes moment  sequence is 

(a+l) . . .  

8n 

and therefore 

sn(a) : :  ( a + l ) . . .  ( a + ~ ) ,  s0(a) :--1,  

is likewise a Stieltjes moment  sequence, which can be wri t ten sn (a )=(a+l ) ,~  using 

the P o c h h a m m e r  symbol.  

The  sequence (s,~(a))~_ o gives the moments  of the G a m m a  distr ibut ion with 

density ( 1 / P ( a + l ) ) z  ~ e x p ( - z )  for z > 0 ,  so (sn(a))~~ is in fact a Stieltjes moment  

sequence for any a > - l .  Note tha t  ( s n ( a ) ) ~ _ o ~ T ( T t , )  for - l < a _ < 0 .  

Ezample  3.2. The  Stieltjes moment  sequence (sn),~~ 0 from L e m m a  2.6 is again 
a normalized Hausdorff  moment  sequence, because the representing measure is sup- 
por ted  by [0, 1], see also Corol lary 2.10. Therefore we can apply 7 - t o  this sequence 

and get 

n--1  

( i s )  = 

k=O 

In part icular,  for c > 0  and 0 < q < l  we have tha t  

n--1  

(19) k, n > l ,  
k = 0  

is a Stieltjes m o m e n t  sequence. 
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We shall give the representing measure for the Stieltjes moment  sequence (18). 

To do this we consider the  entire function of p complex variables 
o o  

g(~l,...,~p) = 1-I(l+~lq~+...+~pq~) k 
k--0 

The power series expansion of g can be wri t ten 

v(~)=g(Zl,. .,zp)= Z d~,  
OL 

where we use the mult i- index nota t ion  as in the proof  of L e m m a  2.6. The  coefficients 

d~ = d ~  (q) of the power series are positive as sums of products  of powers of ql, ..., qp. 

For ~/> 0 and Cl, ..., Cp > 0 we consider the probabi l i ty  measure 

_ 1 E #%c g(Cl,..., Cp) daca(~Tq~' 

which is concentra ted  on the interval [0, 7]. 

The  n t h  moment  of P%c is 

1 ,, g ( c l  q]Z, . . . ,  Cpqp ~) 
sn(#-~,~) = 7(~ ~, d~c~(Tq~)n = 7  ~ ,cp) , 

which can be wri t ten 

s,~(#~,c) = ~[,~_~(l+cxq~+...+cvq~) k ,k=o(l+clq;+k+...+cvq~+~) . 

W i t h  

~= [1 (z+~M +...+~,q~) 
k=O 

8 oo we get tha t  ( ,~(#%c))~ 0 is the moment  sequence (18). 
In  par t icular  for p = l  and c > 0  we get t ha t  

(20) P(-<q)~,c  - g(c) d~c~ 
o z = 0  

has the moments  (19), where 
OG O& 

g/~)= II(l+~q~) ~= ~ ~ .  
h=0 c~--O 

Notice tha t  the moment  sequence (19) converges to the sequence 

( l+c)(~+*) 

as q--+l, which is the log-normal moment  sequence for the base q-1/(l+c), cf. 

Example  2.4. Weak accumulat ion points  of the  measures /*(-c;q) . . . .  cf. (20), for 

q--+ 1 will therefore be solutions to this log-normal moment  sequence. 
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a oo Example 3.3. Let  0 < q < l  and let ( ~),~=0 be the  Hausdorf f  m o m e n t  sequence 

1 1-q~ 1 f l  dx 
- - jq  z n - ,  n > l .  

an log ( l /q )  n log ( l /q )  x - 

(Notice t h a t  the  r igh t -hand  side is 1 for n = 0 . )  The  Stieltjes m o m e n t  sequence 
( log( i /q ) )  nT[(a~)~~ is sn=n!/(q; q)n. This  is a de t e rmina te  m o m e n t  sequence, 
and it corresponds  via  Corol lary 1.6 to  the  Bernste in  funct ion f ( s ) = l - q  ~. The  
corresponding measure  was found in [10] and has the  densi ty  

( - 1 p q ( ~ )  
i(x) = Z e ~ p ( - ~ q - b  (3; q)~(q; q)~' 

k 0 

See [10] for references to work on DNA-dupl ica t ion  and on t ransmiss ion  control  
protocols ,  where  this densi ty  also appears ,  and [3] for an analyt ical  study. 

a oo Example 3.4. Let  ( n)~=0 be a non-vanishing Hausdorf f  m o m e n t  sequence of 
m j 

a measure  #, and let p(x)=~j=0 cjx be a po lynomia l  wi th  posi t ive coefficients or 
more  general ly a po lynomia l  which is non-negat ive  on the  interval  [0, 1]. 

T h e n  /01 fi ~ = x~p(x) dr(x) = c j ~ + j  
j = 0  

is a new Hausdorf f  m o m e n t  sequence and this leads to the  following Stieltjes m o m e n t  
sequence )1 

8 n  ~ -  C j a k + j  . 

Taking  e.g. p(x)=l+x we get t h a t  

n 1 ~ 1 
Sn:klJ= 1 and sn : I~I 1 

a k + a k + l  ak--ak+l 

are Stieltjes m o m e n t  sequences. 
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