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E' and its relation with 
vector-valued functions on E 

Daniel  C a r a n d o  and  Silvia  Lassal le  

Abs t r ac t .  We study the relation between different spaces of vector-valued polynomials and 
analytic functions over dual-isomorphic Banach spaces. Under conditions of regularity on E and 
F, we show that the spaces of X-vahed n-homogeneous polynomials and analytic functions of 
bounded type on E and F are isomorphic whenever X is a dual space. Also, we prove that many 
of the usual subspaces of polynomials and analytic functions on E and F are isomorphic without 
conditions on the involved spaces. 

I n t r o d u c t i o n  

A n y  Banach  spaces  E and  F whose duals  are  i somorphic  have, of course,  the  

same l inear  forms. However,  t hey  do not  necessar i ly  have t i le same po lynomia ls .  

Dfaz and  Dineen showed in [11] t h a t  if E I and  F ~ are  i somorphic  and  E '  has  the  

Schur p r o p e r t y  and  the  a p p r o x i m a t i o n  p r o p e r t y  then ,  for any  n, the  spaces  of 

sca la r -va lued  n -homogeneous  po lynomia l s  over E and  F are  isomorphic .  In  [5] and  

[22] it  was shown t h a t  the  resul t  holds  under  condi t ions  of r egu la r i ty  where  the  

a p p r o x i m a t i o n  and the  Schur p rope r t i e s  p lay  no roll. In  [22] the  classical  subspaces  

of po lynomia l s  were also s tud ied  and  it was proved wi th  no fur ther  condi t ions  on 

E or F t h a t  those  sca la r -va lued  po lynomia l s  closely re la ted  to  the  s t ruc tu re  of the  

dua l  spaces  are i somorphic  whenever  E ~ and  F ~ are isomorphic .  

Our  in teres t  in these  notes  is to  s t u d y  the  X - v a l u e d  case of th is  p rob lem:  if 

E' and  F' are  i somorphic ,  are P('~E; X) and  P("~F; X) ( the spaces  of  X - v a l u e d  

n -homogeneous  po lynomia l s  on E and  F )  i somorphic?  We are  also in te res ted  in 

how the  different  subspaces  of po lynomia l s  are d e t e r m i n e d  by  E ' .  

One of the  ma in  difficulties to  be  dea l t  wi th  in the  vec tor -va lued  s i tua t ion  is 

t h a t  the  n a t u r a l  genera l i za t ion  of the  morph i s ln  cons t ruc ted  in [22] or [5] takes  

an  X - v a l u e d  po lynomia l  on E to an X ' - v a l u e d  po lynomia l  on F .  Also,  when we 

res t r ic t  the  ques t ion  to  cer ta in  classes of po lynomia l s  th ings  are  more  compl i ca t ed  

t h a n  in the  sca la r -va lued  case (specia l ly  for the  in tegra l  po lynomia l s ) .  
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The paper  is organized as follows: In the first section we construct the mor- 
phism between the spaces of polynomials and give the general results. In the second, 
we deal with different classes of polynomials: finite type,  nuclear, approximable, 
weakly continuous on bounded sets, regular, integral and extendible polynomials. 

We obtain without any assumption on the involved spaces the (isometric) isomor- 
phism of each of the subspaces (except for tha t  of extendible polynomials) whenever 
E '  and F ~ are (isometrically) isomorphic. The third section is devoted to the study 
of different spaces of holomorphic functions on dual-isomorphic spaces. 

Throughout ,  E,  F,  X and W are Banach spaces, E ~ is the dual space of E 
and Jz: E-+E" is the natural  embedding of E into its bidual. By P(~E; X) and 
L~ ("E;  X)  we denote, respectively, the spaces of continuous rt-homogeneous poly- 
nomials and continuous symmetric n-linear mappings from E to X. If P~P(nE; X) 
and A is its associated symmetric  n-linear operator  (i.e., P(x)=A(x, ..., x)) we de- 
fine some natural  mappings which are associated with P and A: 

Given x~E, we denote by A~ the (n -1 ) - l inea r  operator given by 

. . . ,  = A ( , , - 1 ,  . . . ,  

and by P~ the corresponding polynomial. Also, the mappings TA: E-~L.~('~-IE; X) 
and Tp: E--~P(~-IE; X) are defined as Z:4(x)=A~ and Tp(x)=P:~, respectively. 

We refer to [15] for general properties of polynomials, multilinear mappings 
and holomorphic functions on Banach spaces. 

1. C o n s t r u c t i o n  o f  t h e  m o r p h i s m  

For any linear map s: E'-+F ~ we construct a morphism relating the spaces of 
polynomials on E and on F.  In order to do this we define, via the Aron Berner 
extension [1] and the construction in [22], a continuous linear map 

f (nE; X) LCF; X"). 

If  �9 is a symmetric  scalar-valued n-linear form o1-1 E,  J) is its Aron Berner extension 

and s' is the transpose of s, then g(r is defined for any Yl, . . - , y~CF  as (see [22, 
Lemma 1]) 

8(d / ) ) (Yl , - . . ,  Yn) = ~ ( J ( J I ; ' ( y l ) ) ,  . . . ,  J ( J F ( Y n ) ) ) .  

Now, we define for a symmetric  n-linear function A: E'r~-+X, yl, ..., y ,~F and 
F c X  ~, 

~(d) (> ,  ..., y~)(~) = g (~oA) (> ,  ..., >~). 
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Although g(A) it is not necessarily symmetric,  the Xt~-valued n-homogeneous 
polynomial over F given by g (P) (y )=g(A)(y ,  ... ,y), for all y ~ F ,  is well defined. 
It  is clear tha t  if we take s = J E , : E ~ E  m, the morphism g is the Aron Berner 
extension. In this particular case we use the notation P and A for g(P) and ~(A), 
respectively. 

In what  follows we often write y instead of JF(Y). Also, we do not specify, 
unless it is necessary, the image of the function g(A), understanding tha t  for any 
X-valued function A, g(A) is an X ' - v a l u e d  map. 

The following results, that  were obtained for the scalar-valued case in [22], 
remain true for the vector-valued case. Their proof are an immediate consequence 
of the extended definition of g and g and the scalar-valued results. 

L e m m a  1.1. (a) If  fit is symmetric, then g(A) Ao(s 'x . . .xs ' ) .  Titus, g(A) 
is also symmetric, and if P is the homogeneous polynomial associated with A, then 

= P o s  1. 

(b) Suppose that s:E'--+ F' is an isomorphism, PE P('~E;X) and A is its as- 
sociated symmetric n-linear flmction. If A is symmetric then (s -1 o g ) ( P ) = P .  

Note that  in the second statement,  g(A) is an element of L~(~F; X") and then 

we are considering the morphism s -1 acting on elements of L~ (~F; X ' )  and taking 

its values in L('~E;Xi"). However, the result assures that  s-~(~(A)) belongs to 
L~('~E;X), whenever fi~ is symmetric.  Since in symmetrically regular spaces the 
Aron-Berner  extension of a symmetric  rnultilinear mapping is also symmetric,  we 
obtain the next theorem, the scalar-valued case of which was given in [5] and [22]. 

T h e o r e m  1.2. If E and F are symmetrically Arens-regular, and E ~ and F t 
are (isometrically) isomorphic, then for any n, s :P( '~E;X)-~P(nF X") is an (iso- 
metric) isomorphism with its image. 

In general, g(P) does not take its values in X,  even when (s ~og) (P )=P .  For 
example, consider two non-isomorphic spaces E and F whose duals are isomorphic. 
The isomorphism s: E'--+F' induces a mapping g:L(E;  E)-+L(F;E").  If Idz  is 
the identity operator on E,  then s ( I d E ) = I d ~  oS'OJF=IdE ,, os'oJF and it takes its 
values in E if and only if s ~ (F) is contained in E. But this would mean that  s is 

the transpose of an isomorphism between E and F,  leading us to a contradiction. 
However, if X is a dual space (say X=W~), something can be done. We define 

p ( " z ;  w ' )  by 

= s(wop)(y)  for y �9 F w �9 w. 

Note tha t  ~ is applied to the scalar-valued polynomial woP=P( .  )(w). Therefore, 

~(woP)(y) = woP(s ' (y ) )  = P(s ' (y ) ) (w)  = ( P o s ' o f ~ ( y ) ) ( ~ ) .  
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This gives us an equivalent expression for s w ( P ) :  

: (pos'o&(y))Lw. 

This second expression may seem more natural, but the first one matches better  
the proof of the following theorem. 

T h e o r e m  1.3. If E and F are symmetrically Arens-regular, and E' and F' 
are (isometrically) isomorphic, then for any n, P(~E; W')  and P('~F; W')  are (iso- 
metrically) isomorphic. 

Proof. Defining s ~ :  P('r~F; W ' ) ~ P ( n E ;  W') in the obvious way, we have for 
P~ P(nE; W'),  x ~ E  and w ~ W ,  

s~lo~(p)(x)(w) = s ~(wo~(P))(~ d. 

For y~r, we have ~os~(P)(v):a~(P)(v)(~0 =s(~oP)(y) and by [22, Theorem 4], 

8~V lo~-~( P)(x)(w) : 8 - I (8(woP) )(x) : (wo P)(2o) = P(fo)(w). 

The reverse composition is analogous. Note that  II~W(P)I]-< IlPll ]]sll n. Then, if s is 
an isometry the isometric result follows. [] 

In [16], P. Galindo, D. Garcfa, M. Maestre and J. Mujica give a construction 
which is similm" to sw, using the sequence of operators introduced by Nicodemi 
in [23]. Although the main interest in [16] is the extension of multilinear operators, 
the proof of [16, Theorem 9.3] can be adapted to obtain an analogous version of 
Theorem 1.3. We thank the referee for pointing out this fact. Though it is not 
obvious at first glance, the construction given in this paper coincides with the 
Nicodemi extension operators when applied to symmetric rnultilinear operators, a 
fact proven in [21]. Therefore, following the proof of [16, Theorem 9.3] it is possible 
to obtain the same isomorphism as in Theorem 1.3. However, our expression for sw  
will prove useful to study the usual subclasses of polynomials and analytic functions. 

In the previous theorem W' can be replaced by any Banach space X which is 
complemented in its bidual. For the isometry, the projection X"--+X must be a 
norm-one operator. Also, the hypothesis E and F are symmetrically Arens-regular 
can be replaced by E or F is Arens regular" (since if E '  and F '  are isomorphic and 
one of them is Arens regular, then so is the other). 

2. ~ a n d  s o m e  s u b s p a c e s  o f  p o l y n o m i a l s  

As it happens in the scalar-valued case, it is natural to expect that  those 
subspaces of polynomials which m'e closely related to E' are also preserved by s. 
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Since g ranges in P('~F; X") one of the main tasks is to show that  g(P) is X-valued 
for any P in the corresponding class. We will see that  in many cases, an isomorphism 
between the dual spaces induces an isomorphism between the different subspaces of 
polynomials. Besides the classes of polynomials which are constructed by means of 
linear mappings (such as finite type, nuclear and approximable polynomials), this 
is true for weak-type, integral and regular polynomials, without any assumption on 
the spaces E,  F or X. 

On the other hand, we know that  the weakly sequentially continuous polyno- 
mials are not, in general, preserved via the morphism g [22]. 

2.1. Finite-type, nuclear and approximable polynomials 

The formula ~(P)=PosloJF shows that  the subclasses of finite type, nuclear 
and approximable polynomials are preserved by s. 

p ~r~ n Let P be an n-homogeneous polynomial of finite type, say =~j 1 ~ j  Wj, 
'rrz 

where wjcX and ~j~E', j = l ,  ... ,m. Then, ~(P)=~j=~s(~j)~wj and we have 
that  s(P) is an X-valued finite-type polynomial. 

When P is an approximable n-homogeneous polynomial, there are n-homo- 
geneous finite-type polynomials PkEPf('~E; X) approximating P in norm. The 
continuity of s and the completeness of X assure that  g(P) is also an X-valued 
approximable polynomial. 

Finally, recall that  an n-homogeneous continuous polynomial P is said to be nu- 
clear if there exists a representation of P such that P=~j>~ ~w.j, where (Wj)jE N C_ 

X is a bounded sequence and (~j) jeN C_E' is a sequence satisfying E j > I  II~j I1 ~ <oo. 
The space of n-homogeneous nuclear polynomials, PN(~E;X), is a Banach 

space endowed with the norm 

IIPIIN = inf I ~  IIg~jljnllwjll: ~ g)}~ wj is a representation of P } .  
" j > l  j > l  

Then, if P = ~ j _ > I  ~~ is nuclear, s ( P ) - ~ j > l  s(gb)~wJ is also X-valued. On the 
other hand, 

IIg(P) IIN < inf/~--~. IIs(g)j)[l~llwjll : E g~wj is a representation of P }  
" j > l  j > l  

< LI,IInI/PIIN. 

Thus, the mapping g: PN(nE; X)-+PN(~F; X) is a continuous operator. 
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Now, if ~':E'--~F' is an isomorphism, 8--1o8(~n):(8 lo8(~))n:~n for F C E ' .  

This means tha t  g is an isomorphism for the classes of finite-type and nuclear poly- 
nomials. By density and continuity, this is also true for the space of approximable 
polynomials P~('~E; X). The isomorphism is isometric if s is. 

2.2.  W e a k l y  c o n t i n u o u s  p o l y n o m i a l s  o n  b o u n d e d  se t s  

Let Pw(~E;X) be the space of polynomials which are weakly continuous on 

bounded sets. For a Banach space E such that  E ~ has the approximation property, 
it was shown in [3] that  P~(~E; X)=-P~('~E, X). So if we consider a Banach space 
F whose dual is isomorphic to E t, by the results of the previous section, we have 
P~(~E; X)~P~(nF; X). Also, it was shown in [22] that  the isomorphism holds for 
the scalar-valued case, even when E ~ does not have the approximation property. 
The natural  question is if the result is valid for the general case. The following 
lemma will be often used. 

L e m m a  2.1. Let AELs(nE;X). IfTA:E-+L~( ~ 1E;X) is a weakly compact 
operator, then A is symmetric. 

Recall that  polynomials that  are weakly continuous on bounded sets are pre- 
cisely those which are K-bounded,  for some compact subset K of E ~ (see [24] and 
[4] for the scalar-valued case, and [8] for the vector-valued case). For any bounded 
set K,  the Aron Berner extension of an X-valued K-bounded polynomial is an X ~- 
valued K-bounded polynomial (see [6]). Moreover, the associated linear map of a 
weakly continuous polynomial is a compact  operator [3], and this assures that  its 
Aron Berner extension is in fact X-valued (as we will see in Proposit ion 2.5). As a 
consequence of this and with almost the same proof as in [22] we have the following 
results. 

L e m m a  2.2. Let PEP('~E;X) be K-bounded (KC_E'), then g(P)CP('~F;X) 
 (K)-bo nded and 

II (P)II /K) -< ]FPHK 

P r o p o s i t i o n  2.3.  I f  s: E~-+  F I is an "isometric) isomorphism, then 

s: ~'~ (~E; X) Pw <F; X) 

is an (isometric) isomorphism. 
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2.3. Regular polynomials 

We say that  P: E-+X is a regular polynomial if its associated linear operator  Tp 
is weakly compact.  We let PR(*~E; X) denote the class of X-valued n-homogeneous 

regular polynomials on E endowed with the usual norm. 
We describe the vector-valued version of the inclusion of (P(kE))" into P(kE") 

studied in [2] and [20], which was introduced in [19]. First, define, for zCE", the 
mapping e~: P(kE; X ) ~ X "  by e ~ ( P ) = P ( z ) .  Let/3: (P(kE;  X))"-+P(kE"; X") be 

given by 
/3(A)(z)(z') = A(z'oe~) 

for AE(P(~E;X)) '', zCE" and x'EX'.  
With the definitions and the diagram 

z" T';> (pC_~E; x))" ~ > Pr  X") 

we state next lemma. 

Lemma 2.4. Tp=/3oT~.  

Pro@ Let zo, zCE", for any x ' c X '  we have 

(1) (/3oT~(zo))(z)(x') : T~,(zo)(x'oez) = zo(T~(x'oez)). 

Now, let x be in E.  Following the notation in [96] we have 

7'~ (~'o e~)(~): ~,o < (T. (~)) = T~ (.)(~)(.') = ~,o Tp (~)(~) : ~ ..... ~(~'o T. (~)) 
-- 1 :~ ..... 4xoA)(~). =z ..... z(x oAx) 

Since the last expression is weak* continuous in x, from (1) we have that  

(/3oT[,(zo) )(z)(x') = Zo(2 ..... 2(x'oA) ) = ft(zo, z, ..., z)(x') = (Tp(zo) )(z)(x'), 

as desired. [] 

The Aron Berner extension preserves the class of regular polynomials in the 
following sense. 

P r o p o s i t i o n  2.5. f f  P~PR(nE;X)  then P~P~(nE";X) .  

Proof. If P is a regular polynomial, then P is also regular as a consequence of 
Lemma 2.4. We see tha t  P is X-vMued by induction on n. Gantmacher ' s  theorem 
gives the result for n = l .  Now, suppose that  the result holds for every ( n - 1 ) -  
homogeneous polynomial and let A be the symmetric  rz-linear function associated 
with P.  
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For x0 c E, let Pxo be tile (n-- 1)-homogeneous polynomial given by G o  (x) = 
1 A(xo,x, x). We also define =l . p ( ,~ - lE;X)~p(~  2E;X) as r By 

�9 .. , ~x 0 - 

the symmetry of A we have that Tp~ ~ :Clxo oTp. Since Tp is weakly compact so is 
TRy0 , which means that  P~:0 is a regular polynornial. By the inductive hypothesis 

P~o is X-valued. Since Pxo-(P)xo we can define, for zCE' ,  the weakly compact 
mapping 

E > X, 

~o' > J(xo, z , . . . ,z) .  

The bitranspose of this operator is X-valued and in particular P(z) -A(z ,  z, ..., z) 
belongs to X. [] 

We are ready to show the isomorphism result for regular polynomials. 

P r o p o s i t i o n  2 .6 .  If s: E'-+ F' is an (isometric) isomorphism, then 

~: PR('~m x )  ----+ PRC F; x )  

is an (isometric) isomorphism. 

Proof. We first show that ~(P) is an element of PR(~F; X). Let us see that  
T~(p) is a weakly compact operator. Consider the diagram 

F <(')> P(~ 1F ;X)  

 o-I T 
E" T p  P C  1E ' ' ;X)  

If Yo E F,  by Lemma 1.1, we have (T~(p) (Yo)) (Y) = (Tp (s'o Jr) (Yo)) ((s'o JR) (Y)). 
OI1 the other hand, the morphism Q~+Qo(s'oJF) is a cominuous linear operator 
from P(~ 1E"; X) to P(~ 1F; X) that  makes the diagram commutative, and T~(p) 
is weakly compact. The result follows from Lemmas 1.1 and 2.1. [] 

Before studying the class of integral polynomials, we present a generalization 
of the results for the two previous classes. Polynomials which are weakly continu- 
ous on bounded sets as well as regular polynomials carl be considered in terms of 
some particular operator ideals: those of compact and weakly compact operators, 
respectively. In this context, we can obtain (in a more abstract way) the results in 
Propositions 2.3 and 2.6. However, in our opinion the proofs given above are more 
constructive and some of the intermediate results have interest by themselves. 

In order to proceed we use a factorization result given in [181. We present a 
simplified version for our purposes. 
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Corollary 2.7. ([18, Corollary 5]) Let 5t be a closed injective opeT~ator ideal. 
If PE P("~E; X),  then the .following are equivalent: 

(i) The operator Tp: E-+ P('~-I E; X)  belongs to 5t. 
(ii) There ezist a Bausch space Y, an operator U~51(E; Y) and a polynomial 

QEP('~Y; X) s'ueh that P=QoU. 

We denote by Pu('*E; X) the subspace of P(~E; X) consisting of those polyno- 
mials satisfying (i) or (ii) of the previous corollary. We can define, for P E Pu ('~E; X), 
the norm HPHu=inf{llQII IIUH'*}, where the infimum is taken over all factorizations 
of P with UE51. 

Suppose that  N is a closed injective operator ideal which is contained in Wgo 
(the ideal of weakly continuous operators) satisfying that for any TEL/, T"  is also 
in 51. Then, if PcP~(nE;  X) we have that  PEPu(r"E"; X). Indeed, if P factors 
as in the corollary, then P=QoU". Since U is weakly compact, U"(E")C_Y and 
therefore P is X-valued. The fact that  U" Eb/ assures that  PEPu(~E"; X). More- 

over, IIPllu_< IIQII IIuIP=IIQII IIUII n and taking the infimum over all factorizations, 
we obtain IIPIIu<_IIPIIu. The injectiveness of 51 assures that  the norms of P in 
Pu(~E" ; X) and Pu(~E" ; X '') coincide. 

Note that  51c_]/VCo implies that  the Aron Berner extension of the symmetric 
n-linear mapping associated with any PEPu is also symmetric. From these facts, 
Lemma 1.1 and a similar development as in the proof of Theorem 1.3 we can state 
the following theorem. 

Theorem 2.8, Let 51C_WCo be a closed injective operator ideal such th, at J'or 
any TE51, T" is also in 51. If s:Et-+F ~ is an (isometric) isomorphism, then 

Pup E; x) (nF; x) 

is art (isometric) isomorphism. 

If 51=Wdo, Pu( 'E; X) is precisely the space of regular polynomials, while for 
51=Co (the ideal of compact operators), Pu('~E; X)  is the space of polynomials that 
are weakly continuous on bounded sets. In both cases, it can be seen that  IIPIlu 
coincides with IIPII- 

2.4. Integral polynomials 

Recall that  a polynomial P E P ( ' E ;  X) is integral if there exists a regular X- 
valued Borel measure G, of bounded variation on (Bz,,  weak*), such that  

= [ dC( ) 
d i g  E l 
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for all xCE. The space of n-homogeneous integral polynomials is denoted by 
PI(nE; X) and the integral norm of a polynomial PEP~(nE; X) is defined as 

IlrllI = inf {IGl( BE, ) }, 

where the infimum is taken over all measures G representing P.  
It was proved in [9] that  the Aron Berner extension of an n-homogeneous 

scalar-valued integral polynomial P is also an integral polynomial and that  the 
extension morphism is an isometry, i.e. IIPlI~--IIPII~. We give a generalization to 
the vector-valued case of this result using very different technics. First, recall that  
if T: G--+X is an integral operator,  then T": G"--+X" is an integral operator and 
IITb = IIT"b (this is a consequence of Corollaries 10 and 11 of [12, Chapter VIII, 2]). 
Since integral operators are weakly compact, T"  takes its values in X. Integral 
operators are not a regular ideal (i.e., an X-valued operator which is integral as an 
X"-valued operator, need not be integral as an operator to X). However, for the 
bitranspose of an integral operator we have the following result. 

Proposition 2.9. Let T: G-+X be an integral operator. Then T": G"-+X is 
an integral operator and IIT"llc~(c,,;x)=llT"llr~(a,y,)=lITllz. 

Pro@ Since T is integral, given c>0,  T admits a factorization 

T 
G > X  

c(K) 

where K is a compact topological space, # is a regular Borel measure on K,  j is 
the natural inclusion and IISII IlJll IIRII-<llTIIz+ e. The mapping j is integral with 
)ljll/=llJll. Thus, it is weakly compact and j " (C(K)")cLI(#) .  If we see that  
jH: C(/s (/t) is integral, then we have that  T"=Soj"oR" is also integral (as 
an X-valued operator). We know that  j": C(K)"--+L1 (#)" is integral and therefore 
absolutely 1-sulnming. This operator ideal is injective, so j": C(K)"-+Lx (#) is also 
absolutely 1-summing, with the same norm. Since C(K)" has the metric extension 
property, it is isometric to C(L) for some compact topological space L [10, I, 3.9]. 
Therefore, by [12, VI, 3, Theorem 12], j " :  C(K)"-+LI(#) is integral and 

IIJ" II L• (C(K)",L1 (,)) = IIJ" II Ih (C(K)";L10~))II = IIJ" IIH~ (C(K)"~LI (,)") 

= I l J t ' I i L •  = I]Jll" 

Now, T": G"-+X is integral and IIT"IIL• <_ IISII IIJ]l IIRII <-I]ZllI @G for any a>0.  
On the other hand, IITb=IIT"IILI(a,;x,,)<IIT"IIL,(c,,;x ) and this completes the 
proof. [] 
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In [25] it is shown that  the spaces LI('rzE; X) and L I ( @ ~  E; X)  are isometri- 
cally isomorphic. The next proposition shows that  the analogous result for n-homo- 
geneous polynomials holds. Note that  it does not follow from the multilinear result, 
since the integral norm of a polynomial does not coincide with the integral norm of 
the associated symmetric multilinear operator (in fact, IIAIII < I]rl[.r < (n~'/n!)IIAII~). 

P r o p o s i t i o n  2.10. The spaces PI(nE; X) and Li(@s'~ E; X) are isometri- 
cally isomorphic. 

Proof. If PcPI(nE;X),  its linearization Lp belongs to L I ( @ ~ , e E ; X )  and 

I[np[],<[[Pl]i [8] Suppose that  T e n , ( @ ~  s ;X) .  Since @s,e E is isometrically 
imbedded in C(BE,), for fixed g>0,  T factors as in previous proposition: 

@s~s E T > X 

l 
The inclusion j is integral and then Soj is a weakly compact operator on C(BE,). By 
[12, Theorem VI.2.5], there exists a measure GCJM(C(BE,); X) such that  Soj(f)= 
fgz, f(@dG('y) arid IGI=I[SojlI<IITII~-~ (note that  IlRII 1). Therefore, P,  the 
polynomial associated with T, can be written 

This means that  P is integral and II P[I I _< I GI _< I ITII I - ~ for any c > 0 and the isometry 
follows. [] 

The next lemma is a consequence of [13, Theorem 2.2] and extends the fact 
that  the bitranspose of" an X-valued integral operator is also X-valued. 

L e m m a  2.11. The Aron-Berner extension of an integral polynomial PE 
P~( 'E ;  X) is a polynomial P that takes values in X. 

T h e o r e m  2.12. If PEPz("~E;X), then P~Pt("~E";X) and [IP[lp• 

IIPII~. 

Proof. Take an integral polynomial P: E ~ X .  By Proposition 2.10, its lin- 
earization Lp: @s~,~ E--+X is integral and has the same integral norm. Thus, by 
Proposition 2.9, L~ is an X-valued integral operator (with the same norm). We 
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have the diagram 
n It L ~  (| E) ~x  

| u", 

77~ I I  n 1 where the map i: @'~s,e E"~-+ (@s,e E) = P i ( E )  is the inclusion via tile identifica- 

tion given in [9]. That  is, for an elementary tensor z ('~) E62) ~ E", i(z (~)) is the linear "k-J 8~C 

form on PI(~E) defined by i(z(n))(R)=R(z),  where R~PI(~ 'E '') is the aron-Berner  
extension of R. 

Let Q: E " - + X  be the polynomial 

Q(z) = L(zC~...| = L~(i(z(~))). 

By Lemma 2.10, Q is integral and IIQllz<llL~I]I. To show that  Q = P  take x ' c X ' .  
Then, 

x'(Q(z)) x'(L~(i(z~))) i(z~)(L~(x')).  

|  Note that f ~ ( ~ ' ) e (  ~,~ Z)' is the polynomial x'oP. Then, for all x ' e X '  

~ ' ( Q ( ~ ) )  = ~ ( ~ n ) ( ~ , o p )  = ~ ' o p ( ~ )  = x ' ( P ( ~ ) ) .  

Thus, P: E"--+X is integral and ]]PIIpr ]]L~lIz= ]]LpI]I ]]P[I~. The reverse 
inequality follows fl'om IIPIl~ < llfillpi(, , , ,;x) llJ, I}=llPlIp,(.,~E,,;x). [] 

In order to prove that  the vector-valued integral polynomials on E are deter- 
mined by the dual space E'  we prove first that  every morphism a preserves that  
subclass. 

L e m m a  2.13. If  P c P ( ' ~ E ; X )  is integral, then g ( P ) E P ( ~ F ; X )  is also inte- 
gral, and 

II~(P)II, _< Ilsll"~[lPlli. 

Pro@ As we have that g(P)=Pos'ogF,  the result is a consequence of the fact 
that  integral polynomials form a right ideal with continuous operators. Thus, by 
Theorem 2.12 we have 

II~(g)ll~ = I lPos'~ <_ IIPlIzlI~II ~ I I P I l ~ l l s I F  

Now, we show that  for any Banach spaces E and F with isomorphic dual 
spaces, the respective spaces of X-valued n-homogeneous integral polynomials are 
isomorphic. 
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P r o p o s i t i o n  2.14. If s: E'-+ F' is an (isometric) isomorphism, then 

s: Px(~E;x) > Px(~u; x )  

is a'n (isometric) isornof'phisrn. 

Proof. In order to prove that  s- los(P)=P when P is an integral polynomial it 
is sufficient to prove tha t  TA is a weakly compact  operator,  where A is the n-linear 
symmetric function associated with P. The reverse composition is analogous. It  is 
known tha t  A is an integrM multffinear mapping. To see tha t  TA is a weakly compact  
operator it is enough to see that  TA: E-+LI( ' - IE;  X) is an integral operator.  

It  was proved in [251 that  if B:E1 xE2-+X is an integral bilinear mapping, 
then BI: E1--+Lt(E2; X) is an integral operator. Some modifications of the proof 
in [25] would lead to the desired result. However, we prefer to provide a shorter 
proof using the bilinear case. 

Since A is integral, so is its linearization LA: @2 E--+X. Identifying @2 E 

with E @ ~ ( @ 2  - 1 E ) ,  we get a bilinear mapping B : E x  (@2 - 1 E ) - + X  which is 
integral by the multilinear version of Proposition 2.10. By the bilinear case, TA= 
Bl: E-+Lz(@2 -1E;X)  LI(~-IE;X) is  an integral operator.  [~ 

2.5. Extendible  polynomials  

We say that  P: /~--+X is an extendible polynomial if for any Banach space ZDE 
there exists Q: Z-+X extending P. The extendible norm of such a polynomial P 
can be defined as IIPIl~-inf{ll@l :@ C ( B E , ) - + X  extends P}.  

It  was mentioned in [22] that  the spaces of scalar-valued extendible polynomials 
on E and F are (isometrically) isomorphic if E '  and F '  are. We will give a proof 
of this fact in a more general context. 

We have that  if P:E--+X is extendible, then its Aron-Berner  extension 

P: E"--+X" is also extendible, with IIPlI~<_IIPII~. Also, PoT is extendible for any 

continuous linear operator T on X with IIP~ IIPII~ IITII ~ [7, Theorem 3.4, The- 
orem 3.6]. However, the Aron-Berner  extension of P needs not be X-valued. For 
instance, consider the identity map idt~ :lo~-+lo~, which is extendible since lo~ is an 
injective space. I ts  Aron Berner extension is the identity on id(z~),, which is clearly 
not (/~)-valued. 

If X is a dual space, say X=W' ,  we consider the morphism sw as in Theo- 
rem 1.3. Since ~V(P)=oopos'oJu (where ~: W " ' ~ W '  is the restriction mapping),  

it is clear tha t  ~ ( P )  is extendible with II.~W(P)II~< IIPll~lIsll ~, whenever P is ex- 
tendible. 
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To prove that  an (isometric) isomorphism s:E'--+F' induces an (isometric) 
isomorphism sue: P~(nE; W')--+P~('~F; W') it is enough to show, by Lemma 1.1, 
that  the Aron Berner extension of the symmetric  n-linear mapping A associated 
with each extendible polynomial P is also symmetric.  Note that  P can be ex- 
tended to C(BE,, w*), and therefore A factors through a symmetric  n-linear map- 

ping B: C(BE,)x... x C(BE,)-->W'. The mapping A factors through B, which is 
symmetric  since C(BE,)  is symmetrically Arens-regular, and this assures the sym- 
metry  of A. We have obtained the following result. 

Proposit ion 2.15. If E' and F' are (isometrically) isomorphic, then for any 
Banach space W, the spaces P~(~E; W') and Pr W') are (isometrically) iso- 
morphic. 

2.6. One example 

It  was shown in [22] that  the subclass of weakly sequentially continuous poly- 
nomials is not preserved, in general, by g. With the following example we show that  
the class could be preserved under certain conditions. 

Proposit ion 2.16. Let E be a separable Banach space such that E~l l .  If F' 
is isomorphic to E', then the spaces Pws~(~E) and Pw,c("~F) are. isomorphic. 

Proof. Recall that  by a result of Odell and Rosenthal, a separable Banach 
space contains ll if and only if the cardinality of its bidual is greater than e. Since 
E ~ l l  and E '  is isomorphic to F', F cannot contain 11. Therefore, P~,c(**E)= 
P~('~E) and P,,~c(~F)=Pw(~F) (see [3], Proposition 2.12) and tile result follows 
from Proposition 2.3. [] 

Note that  we need only impose conditions on one of the spaces. 

3. Holomorphic functions 

In this section we investigate the relation between the different Fr6chet algebras 
or spaces of holomorphic functions on Banach spaces whose duals are isomorphic. 
Most of the work' has already been done in the previous sections, where the be- 
haviour of the mapping s (or sw-) on different spaces of polynomials was studied. 

Recall that  if U is an open subset of E, Ha(U; X) is the space of X-valued holo- 
morphie functions of bounded type on U, tha t  is, the functions which are bounded 
on subsets V c U  which are bounded and bounded away fl'om the boundary of U. 

Hb(U; X) is a Pr6chet space with the family of seminorms pv(f)=suPv Hfll. 
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On the other hand, H ~ (U; X)  denotes the space of bounded holomorphic func- 
tions from U to X. This is a Banach space when equipped with the sup norm. If 
X is an algebra, Hb(U;X) and H~ are, respectively, F%chet and Banach 
algebras. 

In order to derive conclusions for analytic functions from the results obtained 
for polynomials, we need the following lemma. 

L e m m a  3.1. Let UCE be an open subset containing 0 and f: U-+X an, an- 
alytic ];unction whose Taylor series expansion at O, f(x)=~k>_ o Pk(x), converges 
unifo~vnly on rBE. Then, 

(a) f ~176 g(P~) ~niformly on rBF/llsll; 
(b) if X = W '  then fos'oJF(y)Iw--~k>oSff(P~)(y) uniformly for IlYll _<r//Isll. 

P r o m  (a) Since f--Ek_>0 ~ converges uniformly on rBE,, [1], we have that  

f~176 N~176 s(Pk) (and the series converges uniformly), 
whenever Ils'oJv(y)ll <r. In particular, this holds if IlY]I <_r/llsll. 

(b) The s ta tement  follows applying the restriction mapping ~): W~"-+W ~ to the 
equality obtained in (a). [Z 

Suppose E and F are symmetrically regular and X = W  ~ is a dual space. 

If f~Hb(E;W') ,  we can define ~ ( f ) E H b ( F ; W ' ) b y - g W ( f ) ( y ) - - f o s ' o g F ( Y ) l w ,  
which coincides with ~ k > 0  Ng(Pk)(Y). To see that  g w ( f )  is a bounded-type holo- 
morphic function, observe that  if f has infinite radius of uniform convergence, by 
Lemma a.1 (b), ~ ( f )  has also infinite radius of uniform convergence. Theorem 1.3 
(applied to each polynomial in the expansion of f )  and the fact that, the Aron Berner 
extension is multiplicative, give the first s tatement  of the following proposition. 

P r o p o s i t i o n  3.2. Let E and F be symmetrically Arens-reg'alar with isomor- 
phic duals. Then: 

(a) the spaces Hb(E; W') and Hb(F; W') are isomorphic Frdchet spaces. 
If the isomorphism between E t and F ~ is isometric, then 
(b) the spaces Hb(BE; W') and Hb(BF; W') are isomorphic Fr'dchet spaces; 
(c) the spaces H~(B~;  W') and H~176 W') are isometrically isomorphic Ba- 

nach spaces. 
If W ~ is a Banach algebra (in particular, if W ~ is the scalar field), Sw is an 

isomorphism of Frdchet/Banach algebras. 

Proof. To prove (b), we have to show that  if fcHb(BE; W~), then sw( f )E  
Hb(BF; W'). But this follows from the fact that  8'OdF(rBF) is contained in rBE,,, 
since s is an isometry. The result is now a consequence of Lemma 3.1 (b) and 
Theorem 1.3. The proof of (c) is analogous. [] 
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The scalar-valued case of the first s tatement  is in [5]. It  is worthwhile to note 
that  s needs be an isometric isomorphism for s to be an isomorphism in (b) and 
(c) in the previous proposition, even for the scalar-valued case. The same holds for 
Propositions 3.3 and 3.4. 

As we have seen in the first section, the assumption that  X be a dual space can- 

not be omitted, unless restrictions are made on the polynomials which are involved. 
Naturally, the same occurs with analytic functions. We need not make assumptions 
on X for those classes of analytic functions related to spaces of polynomials where s 
has a good behaviour. We point this out with two examples: holomorphic functions 
which are uniformly weakly continuous on bounded sets, and boundedly integral 
functions. 

Let H ~ ( E ;  X) be the space of holomorphic functions which are uniformly 
weakly continuous on bounded sets. Analogously, H ~  (Bz ;X)  consists of holomor- 
phic functions on BE which are uniformly weakly continuous on rBE for r < l .  A 
function f :  E-+X belongs to H,,~(E; X) if and only if it has an infinite radius of 
uniform convergence (at 0) and every polynomial in its Taylor series expansion is 

weakly continuous on bounded sets (for H.~ (Bz; X),  the radius must be at least 1). 
Therefore, from Proposition 2.3 and Lemma 3.1 (a) we have the following result. 

P r o p o s i t i o n  3.3. (a) If E' and F' are isomorphic, then Hw~(E;X) and 
H,~(F; X)  are isomorphic Frdchet spaces. 

(b) If  E' and F' are isometrically isomorphic, H,~(Bz;  X)  and H ~ ( B F ;  X) 
are isomorphic Fr{chet spaces. 

If X is a Banach algebra (in particular, if X is the scalar field), s is an 
isomorphism of Frgchet algebras. 

Now we study the boundedly integral functions introduced for the scalar-valued 
case in [14]. A function f :  BE--+X is integral if there exists an X-valued measure 
G on (BE,, w*) such that  

(2) f (x)  = ~, 1-~/(x~ dG(7). 

Integral functions are holomorphic and each polynomial in its Taylor series expan- 
sion is integral. 

A function f : B E - - ~ X  is boundedly integral if f r - f ( r ' )  is integral for any 
0 < r < l .  Proposition 11 in [14] (which readily extends to the vector-valued case) 

states tha t  a holomorphic function f = ~ k  Pk is boundedly integral ( f  C HD~ (Bz;  X))  
if and only if each Pk is an integral polynomial and r~ := 1/lim sup H P]I x is at least 1. 

On the other hand, a function f :  E ~ X  is boundedly integral if f I~BE is integral 
in the sense of (2), with a measure defined on Bz, /n ,  for all h E N .  It  can be seen 
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that f = ~ k  Pk is boundedly integral on E if and only if each Pk is an integral 

polynomial and r i = + o c .  

As a consequence of Proposition 2.14 and Lemma 3.1 we have the following 

result. 

P r o p o s i t i o n  3.4. (a) I r E '  and F'  are isomorphic, HbI(/~;X) and H b I ( F ; X )  

are isomorphic Frdchet spaces. 

(b) I f  E '  and F '  are isometrically isomorphic, Hvr(Bz;  X )  and HbI (BF;X)  

are isomorphic Frdchet spaces. 
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