Every positive integer is the Frobenius number of an irreducible numerical semigroup with at most four generators

Pedro A. García-Sánchez and José C. $Rosales(^1)$

Abstract. Let g be a positive integer. We prove that there are positive integers n_1 , n_2 , n_3 and n_4 such that the semigroup $S = \langle n_1, n_2, n_3, n_4 \rangle$ is an irreducible (symmetric or pseudo-symmetric) numerical semigroup with g(S) = g.

Introduction

Let n_1, \ldots, n_p be positive integers with $\gcd\{n_1, \ldots, n_p\}=1$ (where as usual gcd stands for greatest common divisor). Then it is not hard to show that there are finitely many elements n that cannot be expressed as $n=a_1n_1+\ldots+a_pn_p$ for some nonnegative integers a_1, \ldots, a_p . Translated to numerical semigroups, this is equivalent to say that if we consider the numerical semigroup S generated by $\{n_1, \ldots, n_p\}$, that is, $S=\langle n_1, \ldots, n_p \rangle=\{a_1n_1+\ldots+a_pn_p | a_1, \ldots, a_p \in \mathbf{N}\}$, then the set $\mathbf{N} \setminus S$ is finite (where \mathbf{N} denotes the set of nonnegative integers). The maximum of this set is usually known as the *Frobenius number* of S and it is here denoted by g(S). The problem of determining a general formula for g(S) in terms of n_1, \ldots, n_p is known as the Frobenius problem, which goes back to [11], where an explicit formula for p=2 is given $(g(\langle n_1, n_2 \rangle)=n_1n_2-n_1-n_2)$. It can be shown (see [3]) that no general formula of a certain type can be found even for the case p=3. A nice survey on the state of the art of the Frobenius problem can be found in [5].

For a given positive integer g, the semigroup $S = \langle g+1, g+2, ..., 2g-1 \rangle = \{0, g+1, \rightarrow\}$ (here the symbol \rightarrow is used to indicate that every $n \in \mathbb{N}$ with $n \ge g+1$ belongs to the set) fulfills the trivial condition g(S)=g. Denote the set of numerical semigroups with Frobenius number g by $\mathcal{S}(g)$. In a recent paper [9] the authors have shown that for every positive integer g, there always exist n_1 , n_2 and n_3 such

 $^(^1)$ This work has been supported by the project BFM2000-1469.

that $\langle n_1, n_2, n_3 \rangle \in \mathcal{S}(g)$ (or in other words, $g(\langle n_1, n_2, n_3 \rangle) = g$). Among the elements in $\mathcal{S}(q)$, there are some numerical semigroups that have some relevance in ring theory, since their associated semigroup rings are Gorenstein and Kunz. These are the so called symmetric and pseudo-symmetric numerical semigroups, respectively, and have been characterized in many ways (see for instance [2] and [4]). One of these characterizations states that they are precisely those numerical semigroups in $\mathcal{S}(g)$ that are maximal with respect to set inclusion. Both concepts (symmetric and pseudo-symmetric) can be unified into the single concept of irreducible numerical semigroups (see for instance [7] and [8]). A numerical semigroup is *irreducible* if it cannot be expressed as the intersection of two numerical semigroups properly containing it. If S is a numerical semigroup with g(S) odd (respectively even), then S is symmetric (respectively pseudo-symmetric) if and only if S is irreducible. In this paper we give an easy procedure to find, for any fixed positive integer q, an irreducible numerical semigroup with at most four generators and having g as Frobenius number. Moreover, four is the least number of generators needed for the general case, even though in some cases an irreducible numerical semigroup with three (or two if g is odd) generators can be found.

Acknowledgement. The authors would like to thank the referee for her/his comments and suggestions.

1. Preliminaries

Let S be a numerical semigroup. We say that $\{n_1, \ldots, n_p\} \subset S$ is a system of generators of S if $S = \langle n_1, \ldots, n_p \rangle$. For $n \in S \setminus \{0\}$ we define the Apéry set of n in S (see [1]) as the set

$$\operatorname{Ap}(S,n) = \{s \in S \mid s - n \notin S\}.$$

It is not difficult to prove that this set has exactly n elements, which are $w_0 = 0, w_1, \ldots, w_{n-1}$, where w_i is the least element in S congruent with i modulo n. From the definition of $\operatorname{Ap}(S, n)$ it also follows that if $x = y + z \in \operatorname{Ap}(S, n)$ with $y, z \in S$, then both y and z are again in $\operatorname{Ap}(S, n)$. This idea is implicitly used several times in the rest of the paper. Besides, it is not hard to show that g(S)+n is the greatest element in $\operatorname{Ap}(S, n)$.

The cardinality of the set

$$T(S) = \{x \in \mathbb{Z} \setminus S \mid x + s \in S \text{ for all } s \in S \setminus \{0\}\}$$

is known as the type of S (see for instance [2] and [4]; as usual \mathbf{Z} denotes the set of integers). Symmetric numerical semigroups are those numerical semigroups of

type 1 (this forces $T(S) = \{g(S)\}\)$, since by the definition of the Frobenius number of S, for every $n \in \mathbb{N} \setminus \{0\}\)$, the element g+n belongs to S). Pseudo-symmetric numerical semigroups are characterized by $T(S) = \{\frac{1}{2}g(S), g(S)\}\)$ (see [2] and [4]).

For a given numerical semigroup one can define the order relation \leq_S as follows: for $x, y \in S$, $x \leq_S y$ holds if $y - x \in S$. In [6] it is shown that for every $n \in S \setminus \{0\}$, we have that $T(S) = \{x - n | x \in \max_{\leq S} Ap(S, n)\}$ (max \leq_S stands for maximal elements with respect to \leq_S). Hence from [4], we deduce that, with $n \in S \setminus \{0\}$ fixed, S is irreducible if and only if

$$\max_{\leq s} \operatorname{Ap}(S, n) = \begin{cases} \{ \operatorname{g}(S) + n \}, & \text{if } \operatorname{g}(S) \text{ is odd}, \\ \{ \frac{1}{2} \operatorname{g}(S) + n, \operatorname{g}(S) + n \}, & \text{if } \operatorname{g}(S) \text{ is even.} \end{cases}$$

2. Main result

Lemma 1. Let g be a positive integer. If $2 \nmid g$, then

$$S = \langle 2, g+2 \rangle$$

is an irreducible numerical semigroup with g(S)=g.

The proof is trivial.

Lemma 2. Let g be a positive integer. If 2|g and $3\nmid g$, then

$$S = \langle 3, \frac{1}{2}g + 3, g + 3 \rangle$$

is an irreducible numerical semigroup with g(S)=g.

Proof. First note that $gcd\{3, \frac{1}{2}g+3, g+3\}=1$, whence S is a numerical semigroup. Also, $Ap(S,3)=\{0, \frac{1}{2}g+3, g+3\}$ and thus $\max_{\leq s} Ap(S,3)=\{\frac{1}{2}g+3, g+3\}$. This implies that g(S)=g+3-3=g and that S is irreducible. \Box

Lemma 3. Let g be a positive integer. If 2|g and $4\nmid g$, then

$$S = \left\langle 4, \frac{1}{2}g + 2, \frac{1}{2}g + 4 \right\rangle$$

is an irreducible numerical semigroup with g(S)=g.

Proof. Since 2|g and $4\nmid g$, we have $gcd\{4, \frac{1}{2}g\}=1$. Hence

$$\gcd\{4, \frac{1}{2}g+2, \frac{1}{2}g+4\} = 1$$

and S is a numerical semigroup. We prove that

(1)
$$\operatorname{Ap}(S,4) = \left\{0, \frac{1}{2}g+2, \frac{1}{2}g+4, g+4\right\}.$$

But this can easily be deduced from the following two facts:

(a) $\frac{1}{2}g+2$ and $\frac{1}{2}g+4$ are minimal in S with odd remainder modulo 4, and are clearly in different classes;

(b) g+4 is minimal in S with even (and nonzero) remainder modulo 4. Since (1) holds, we conclude that g(S)=g and $T(S)=\{\frac{1}{2}g,g\}$. \Box

Lemma 4. Let g be a positive integer. Assume that 2|g, 3|g and 4|g. Let α and q be such that $g=3^{\alpha}q$, with (3,q)=1 (and thus 4|q). Then

$$S = \left< 3^{\alpha+1}, \frac{1}{2}q+3, 3^{\alpha}\frac{1}{4}q+\frac{1}{2}q+3, 3^{\alpha}\frac{1}{2}q+\frac{1}{2}q+3 \right>$$

is an irreducible numerical semigroup with g(S)=g.

Proof. Let $n_1=3^{\alpha+1}$, $n_2=\frac{1}{2}q+3$, $n_3=3^{\alpha}\frac{1}{4}q+\frac{1}{2}q+3$ and $n_4=3^{\alpha}\frac{1}{2}q+\frac{1}{2}q+3$. As (3,q)=1, we have $gcd\{n_1, n_2, n_3, n_4\}=1$. The reader can check that the following equalities hold:

- (i) $2n_4 = \frac{1}{4}qn_1 + n_2 + n_3;$
- (ii) $2n_3 = n_2 + n_4;$
- (iii) $n_3 + n_4 = \frac{1}{4}qn_1 + 2n_2;$
- (iv) $\left(\frac{1}{3}n_1+1\right)n_2=n_1+n_4;$
- (v) $\frac{1}{3}n_1n_2 + n_4 = (\frac{1}{4}q + 1)n_1 + n_3;$
- (vi) $(\frac{1}{3}n_1-1)n_2+n_3=(\frac{1}{4}q+1)n_1.$

Every element in $\operatorname{Ap}(S, n_1)$ is of the form $an_2+bn_3+cn_4$. By (repeatedly) using (i), (ii) and (iii) we can assume that one of the following three cases holds:

- (a) b=c=0;
- (b) b=0 and c=1;
- (c) b=1 and c=0.

It follows from (iv) that a is always $\leq \frac{1}{3}n_1=3^{\alpha}$. In the case (b), it follows from (v) that $a < \frac{1}{3}n_1$, and in the case (c), a must be less than $\frac{1}{3}n_3-1$ in view of (vi). Since $\# \operatorname{Ap}(S, n_1)=n_1$, one can easily deduce that

$$\begin{aligned} \operatorname{Ap}(S, n_1) = & \{0, n_2, 2n_2, \dots, \frac{1}{3}n_1n_2, n_3, n_3 + n_2, \dots, n_3 + (\frac{1}{3}n_1 - 2)n_2, \\ & n_4, n_4 + n_2, \dots, n_4 + (\frac{1}{3}n_1 - 1)n_2 \}. \end{aligned}$$

Now we prove that $\max_{\leq s} \operatorname{Ap}(S, n_1) = \{\frac{1}{3}n_1n_2, (\frac{1}{3}n_1-1)n_2+n_4\}$. From the shape of $\operatorname{Ap}(S, n_1)$ it is clear that

$$\max_{\leq_S} \operatorname{Ap}(S, n_1) \subseteq \left\{ \frac{1}{3}n_1n_2, n_3 + \left(\frac{1}{3}n_1 - 2\right)n_2, n_4 + \left(\frac{1}{3}n_1 - 1\right)n_2 \right\}.$$

After some simplifications one gets that

$$\left(\frac{1}{3}n_1-1\right)n_2+n_4-\left(n_3+\left(\frac{1}{3}n_1-2\right)n_2\right)=n_4-n_3+n_2,$$

which in view of (ii) is equal to n_3 , which trivially belongs to S. This implies that $n_3 + (\frac{1}{3}n_1 - 2) \notin \max_{\leq s} \operatorname{Ap}(S, n_1)$. Since $\frac{1}{3}n_1n_2 \in \operatorname{Ap}(S, n_1)$, we have that

$$\frac{1}{3}n_1n_2 - n_1 = 3^{\alpha}\frac{1}{2}q \notin S.$$

Thus $n_4 + (\frac{1}{3}n_1 - 1)n_2 - \frac{1}{3}n_1n_2 = 3^{\alpha}\frac{1}{2}q \notin S$. Hence

$$\max_{\leq S} \operatorname{Ap}(S, n_1) = \left\{ \frac{1}{3} n_1 n_2, \left(\frac{1}{3} n_1 - 1 \right) n_2 + n_4 \right\}.$$

This in particular implies that $g(S) = (\frac{1}{3}n_1 - 1)n_2 + n_4 - n_1 = 3^{\alpha}q$ and that $T(S) = \{\frac{1}{2}g(S), g(S)\}$. Therefore S is irreducible. \Box

Theorem 5. Let g be a positive integer. Then there exist $n_1, n_2, n_3, n_4 \in \mathbb{N}$ such that $S = \langle n_1, n_2, n_3, n_4 \rangle$ is an irreducible numerical semigroup with g(S) = g.

Proof. If g is not a multiple of 2, then by Lemma 1 we can choose $n_1=2$ and $n_2=n_3=n_4=g+2$. If on the contrary g is a multiple of 2, then we distinguish two cases.

(1) If g is not divisible by 3, then in view of Lemma 2, for $n_1=3$, $n_2=\frac{1}{2}g+3$ and $n_3=n_4=g+3$, the semigroup $S=\langle n_1, n_2, n_3, n_4 \rangle$ is an irreducible numerical semigroup with g(S)=g.

(2) If g is divisible by 3, then

(a) either g is not divisible by 4, and thus we can apply Lemma 3 and take $n_1=4, n_2=\frac{1}{2}g+2$ and $n_3=n_4=\frac{1}{2}g+4$;

(b) or g is divisible by 4, and in this case we get the desired semigroup by using Lemma 4. \Box

If one computes the set of irreducible numerical semigroups with Frobenius number 12 as explained in [10], one gets that this set contains only two elements: (5, 8, 9, 11) and (7, 8, 9, 10, 11, 13). This implies that the bound of four generators obtained in Theorem 5 cannot be improved.

References

- APÉRY, R., Sur les branches superlinéaires des courbes algébriques, C. R. Acad. Sci. Paris 222 (1946), 1198–1200.
- BARUCCI, V., DOBBS, D. E. and FONTANA, M., Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible Local Domains, Mem. Amer. Math. Soc. 125, Amer. Math. Soc., Providence, R. I., 1997.
- CURTIS, F., On formulas for the Frobenius number of a numerical semigroup, Math. Scand. 67 (1990), 190–192.

- 4. FRÖBERG, R., GOTTLIEB, C. and HÄGGKVIST, R., On numerical semigroups, *Semigroup Forum* **35** (1987), 63–83.
- 5. RAMÍREZ ALFONSÍN, J. L., The Diophantine Frobenius problem *Preprint*, Forschungsinstitut für Diskrete Mathematik, Bonn, 2000.
- ROSALES, J. C. and BRANCO, M. B., Numerical semigroups that can be expressed as an intersection of symmetric numerical semigroups, J. Pure Appl. Algebra 171 (2002), 303–314.
- ROSALES, J. C. and BRANCO, M. B., Decomposition of a numerical semigroup as an intersection of irreducible numerical semigroups, *Bull. Belg. Math. Soc.* 9 (2002), 373–381.
- 8. ROSALES, J. C. and BRANCO, M. B., Irreducible numerical semigroups, *Pacific J.* Math. **209** (2003), 131–143.
- ROSALES, J. C., GARCÍA-SÁNCHEZ, P. A. and GARCÍA-GARCÍA, J. I., Every positive integer is the Frobenius number of a numerical semigroup with three generators, *Preprint*, 2003.
- ROSALES, J. C., GARCÍA-SÁNCHEZ, P. A., GARCÍA-GARCÍA, J. I. and JIMÉNEZ-MADRID, J. A., The oversemigroups of a numerical semigroup, *Semigroup Forum* 67 (2003), 145–158.
- 11. SYLVESTER, J. J., Mathematical questions with their solutions, *Educational Times* **41** (1884), 21.

Received February 11, 2003

Pedro A. García-Sánchez Departamento de Álgebra Universidad de Granada ES-18071 Granada Spain email: pedro@ugr.es

José C. Rosales Departamento de Álgebra Universidad de Granada ES-18071 Granada Spain email: jrosales@ugr.es

306