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Modules of principal parts 
on the projective line 

Helge Maakestad 

A b s t r a c t .  The modules of principal parts 7 )k (C) of a locally free sheaf C on a smooth scheme 
X is a sheaf of �9 which is locally free as left and right Ox-module.  We explicitly 
split the modules of principal parts T 'k (O(n)) on the projective line in arbitrary characteristic, as 
left and right Opt-modules.  We get examples when the splitting-type as left module differs from 
the splitting-type as right module. We also give examples showing that  the splitting-type of the 
principal parts changes with the characteristic of the base field. 

1. I n t r o d u c t i o n  

In this paper we will study the splitting-type of the modules of principal parts of 
invertible sheaves on the projective line as left and right Opl-modules in arbitrary 
characteristic. The splitting-type of the principal parts Pk(O(n)) as a left C9p1- 
module in characteristic zero has been studied by several authors (see [1], [6] and [7]). 
The novelty of this work is that  we consider the principal parts as left and right 
(.gp~-modules in arbitrary characteristic. We give examples when the splitting-type 
as left Opl-module differs from the splitting-type as right Opl-module. The main 
theorem of the paper (Theorem 7.1), gives the splitting-type of 7)~(O(n)) as left 
and right Opt-modules for all n_>l over any field F.  The result is the following: 
The principal parts 791(0(n)) splits as O(n)OO(n-2) as right Opt-module. f the 
characteristic of F divides n, then :Pl(O(n)) splits as O(n)| as left (9p~- 
module. On the other hand, if the characteristic of F does not divide n, then 
P l ( O ( n ) )  splits as O(n-1)OO(n-1) as left Opl-module. Hence the modules of 
principal parts are the first examples of a sheaf of abelian groups equipped with two 
non-isomorphic structures as locally free sheaves. In the papers [1], [6] and [7] the 
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authors work in characteristic zero, and they only consider the left module structure. 

In this work we split the principal parts  explicitly as left and right modules and 
the techniques we develop will be used in future papers to get deeper knowledge of 
the principal parts  in positive characteristic. In Sections 3-6 we develop techniques 
to construct non-trivial maps of O-modules fi'om O ( n - k )  to P~( �9  The main 
theorem here is Theorem 5.2, where we prove existence of certain systems of linear 
equations with integer coefficients. Solutions to the systems satisfying extra criteria 
determines the split t ing-type of Pk(O(~t)). Theorem 5.2 is used in Proposit ion 6.3 

to determine the split t ing-type of 79k(O(n)) for all l < k < n  in characteristic zero, 
and we recover results obtained in [1], [6] and [7]. W'e also give examples where the 
split t ing-type can be determined by diagonalizing the structure matr ix  defining the 

principal parts  (Section 4). 

2. Modules  of  principal parts 

Wre will in the following section define and prove basic properties of the prin- 
cipal parts: existence of fundamental  exact sequences, functoriality and existence 

of bimodule structure. Let X be a scheme defined over a fixed base scheme S. We 
assume that  X is separated and smooth over S. Let A in X x s X  be the diagonal, 
and let 27 in Ox•  be the sheaf of ideals defining A. Let X a be the scheme with 
topological space A and structure sheaf O:,~ =(.gx• k+l. By definition, X k is 

the kth order infinitesimal neighborhood of the diagonal. Throughout  the section we 
omit reference to the base scheme S in products. Let p and q denote the canonical 
projection maps from X x X to X. 

Definition 2.1. Let s be a quasi-coherent Ox-module .  We define the kth order 
modules of principal parts of g to be 

We write 7)~r for the module 7)~((9x). 
When it is clear from the context which scheme we are working on, we write 

p k  (g) instead of 7 ~  (g). 

Proposit ion 2.2. Let g be a quasi-coherent Ox-rnodule. There exists an exact 
sequence 

k--1 

of left Ox-modules, where k = l ,  2, .... 

See [4], Section 4, for a proof. 
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Prom Propos i t ion  2.2 it follows by induction,  t h a t  for a locally free sheaf  s of 

rank  e, 7)} (g) is locally free of r ank  e(~+k),  where n is the relat ive dimension of X 
over S. 

Proposition 2.3. Let f: X ~ Y be a map of smooth schemes over S, and let g 
be a locally free Oy-module. There exists a commutative diagram of exact sequences 

0 k * 1 * S ( f  f~y ) |  g > f .7 )~(g  ) > f .T)  ~ 1(~)  > 0 

0 > Sk(Qlx) |  > 7)~:(f*g) > 7)~x l ( f * g )  > 0 

of left Ox-modules for all k = l ,  2, .... 

See [5], for a proof.  

F rom Propos i t ion  2.3 it follows tha t  for any open subset  U of X ,  the  sheaf  
P~x(g)lu is i somorphic  to ;Pku(glu), hence we can do local computa t ions  wi th  the  
principal  par ts .  

Proposition 2.4.  The principal parts 79~ define a covariant.functor 

"Pkx: M o d ( O x )  > Mod(P~c),  

where for all quasi-coherent (gx-modules E, the kth order principal parts P~(g)  is 
a quasi-coherent P~-module. The functor is right exact and commutes with direct 
limits. I f  Pk x is fiat, the functor is exact. 

See [3], P ropos i t ion  16.7.3, for a proof.  

Note  t ha t  since we assume X to be  smoo th  over S, it follows tha t  7)kx is locally 
free, hence the  functor  in Propos i t ion  2.4 is exact.  

We next  consider the  b imodule  s t ruc ture  of the  principal  par ts .  

Proposition 2.5.  Let f , g: U-~ V be morphisms of topological spaces, and let 
s be a section of f and g with s(V) a closed set. Let furthermore .4 be a sheaf of 
abelian groups on U with support in s(V).  Then f . ( A )  equals g . (A) .  

Proof. We first c laim tha t  the  na tu ra l  m a p  from s . s - l A  to  A is an isomor- 

phism: Since s(V) is closed, and s is a section of f ,  we see t ha t  s is a closed map.  
Bo th  s . s - s A  and A have suppor t  conta ined in s (V) ,  hence we prove t h a t  the  m a p  
is an i somorphism at  the stalks for all points  p in s(V):  The  stalk (s .s- lA)s(p)  is 
isomorphic  to ( s - l A ) v ,  since s is a closed immersion.  Fu r the rmore  we have t ha t  

(s 1A)v equals As(p) since s 1 is an exact  functor,  and the  claim follows. We see 
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that  f.~4 is isomorphic to . f .s .s-lA,  and since s is a section of f ,  we get that  f .M 
is isomorphic to s- lA.  A similar argument proves that  g.A is isomorphic to s- lA,  
and the proposition is proved. [~ 

Let A be the diagonal in X • X, which is closed since X is separated over S. 
The sheaf OAk | has support in A, hence by Proposition 2.5 we get an iso- 
morphism between 79~x(g)=p,(OAk|163 and q,(O• | By tile projection 
ibrmula, q,(OAa~ @q'E) equals q,(OAk)|  , hence by Proposition 2.5 the principal 
parts 7)~((E) is isomorphic to q,(OAk)@s as sheaves of abelian groups. Identifying 
q.(OAk)| with T2~x(s we have defined two Ox-module structures on T2;~ ($). It 
follows that  IP~ (S) is a sheaf of Ox-bimodules,  which means that  for any open set 
U of X, the abelian group IP~(S[u) is an Ox(U)-bimodule and all restriction maps 
are maps of bimodules satisfying obvious compatibility criteria. Let X ~ be the kth 
order infinitesimal neighborhood of the diagonal. Then the two projection maps 

p , q : X x X ~ X  induce two maps l,r:Ox--+~P~x of Ox-modules. The maps l and 
r are the maps defining the bimodule structure on T2;~, and we see that  $2~. is a 
sheaf of Ox-bialgebras. The map d=l-r:  Ox-+T2~ is verified to be a differential 
operator of order k, called the universal differential operator. 

3. T r a n s i t i o n  m a t r i c e s  for pr inc ipal  parts  as left m o d u l e s  

In this section we explicitly compute the transition matrices defining the princi- 
pal parts 7 )k (O(n)) on the projective line over the integers. We will use the following 
notation: Define p1 as Proj Z[x0, all ,  where Z are the integers, and put Ui=D(xi )  
and U01=D(x0xl)  for i=0 ,  1, where x~ are homogeneous coordinates on p1. Con- 
sider the modules of principal parts pk  from Definition 2.1 on p1 for k > l .  On the 
open set U01, the modules of principal parts P~ equals 

Z[t, 1/t, u, 1/u]/(u-t, 1 /u -  l/t) ~+1 

as an Out, l-module, and Ouol is isomorphic to Z[t, l / t ] .  

L e m m a  3.1. On the open set U01, as a left O-module, 7 )~ is a free Z[t, 1/t]- 
module of rank k + l ,  and the~ exists two natural bases. The bases are B= 
{i, dr, ..., dt k } B'-{I, ds, ..., i/t) 

The proof is an easy calculation. 
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P r o p o s i t i o n  3.2. Consider pk as a left O-module on p1 with k = l ,  2, .... On 
the open set U01 the transition matrix [L]u u '  between the two bases B'  and B is 
given by the formula 

d s P : E ( - 1 ) i + P  1 p _ 
i=0 

for all O<_p<_k. 

Proof. By definition ds p equals ( 1 / u - 1 / ~ )  p in the module 

Z[t ,  1//~, ~tt, 1/%] ( / t - /~,  1 / ? ~ - 1 / ~ )  k + l  . 

It  follows that  

1 p l  
= ( - 1 ) P - - d r  - -  

fP uP 

and since u t+u  t t+d t  we get 

&p = (-])p !dtp 
t ,  (t +-dr)," 

We have the equality 

and using the identity 

ds p = (_ l )p l dfp 1 
t2p O+dt/t),' 

oo 

1 _ _ E ( _ l ) i ( i + p - l ) w  ~ 

we get 
1 oo ( i + p _ l ) ( d t ) i  

dsP (1)P~ :~dtpE( 1)~\ p 1 
i = 0  

We put dt ~+1 =dt~+2=...=O and get 

, t i + 2 p  dt i+p 
i=0 

and the proposition is proved. [] 

Consider the invertible sheaf O(n) on p l  with n_>l. We want to study the 
principal parts  7~(O(n) )  with 1 < k < n  as a left O-module. 
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L e m m a  3.3. On the open set U01, as a left O-module, P~(O(n))  is a fr~e 
Z[t, 1/t]-module of rank k + l ,  and there exists two natural bases. The bases are 
C= { I |  dt| ', ..., dtkQX~o~ } and C' {l |  ~, dsQx~, ..., ds~Qxi~}, where dt ~ 
( u - t )  i and d s i = ( 1 / u - 1 / t )  i. 

The proof is an easy calculation. 

T h e o r e m  3.4. Consider Pk (O(n)  ) as a left O-module on P~. On the open set 
U0~ the trunsition-matrix [L] C' between the bases C and C' is given by the formula 

k--p 

i--0 

where O<p<k. 

Proof. By definition 

dsP@x~I~= (L -:)P| ~= (- l )p(Uu::~Pun| 

Since n - p > O  and u = t + d t  we get 

dsP| ~ = ( -1)p  l dtP(t+dt) ~ P| ~. 
tp 

Using the binomial theorem, we get 

d s P |  

i=0 

By assumption dtk+l=dt  k+2 . . . . .  O, which gives 

k p 

~i4-2p--n 
i 0 

and the theorem follows. [] 

Example 3.5. By Theorem 3.4 tile transition matrix [L] C' for ~ l ( O ( n ) )  is 

[L]cc C ' =  n~n- -1  _ t n  2 " 

We compute the determinant I[L]C;'I and find that  it equals t2~ 2. 
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4. S p l i t t i n g  pr inc ipal  par t s  as left m o d u l e s  by  m a t r i x  d i a g o n a l i z a t i o n  

In this section we will explicitly split the modules of principal parts. We will 
work over p1 defined over F, where F is a field. By [3], Theorem 2.1, we know 

that all locally free sheaves of finite rank on p1 split into a direct sum of invertible 

sheaves, and we want to explicitly compute the splitting-type tbr the sheaf :pl (O(n)) 

as a left O-module. From Lemma 3.3 it follows that on the basic open set U0, 

P l (O(n ) )  is a free f[ t ] -module on the basis C {l|174 On the open set 

U1, "]:)1(O(7t)) is a free F[s]-module on the basis C '={l |  ds| where s=l/t .  
When we pass to the open set Urn=U0 N U1 we see that P l (O(n) )  has C and C'  as 

bases as F[t, sJ-module. On U0 consider the new basis D = {1 <gx~ ~, t| +n dt| 
Consider also the new basis D'={1/t|174 ~, l |  ~} on the open set U1. 

Notice that D and D ~ are bases if and only if the characteristic of F does not divide 
n, hence let us assume this for the rest of the section. We first compute the base 

change matrix for P~(O(n))lw o from C to D, and we get the matrix 

- t 

g .  

We secondly compute the base change matrix for Pl(O(n))lu, from D'  to C',  and 

get the matrix 

[z]g; : ] 
0 

In Example 3.5 we saw that  the transition matrix defining T'l(O(n)) is given by 

7~n 1 __~n--2 " 

If we let D be a new basis for 791(0(n)) as F[t]-module on U0, and let D' be a new 

basis  for ~1((9(7~)) as xP[8]-nlodllle Oil Wl, t i le  t r a n s i t i o n  matrix [L]D D' becomes 

which equals 

We get 

= [4g: 

( t n-1 0 ) 
o ' 
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hence as a left O-module, the principal parts  ~-21 (O(Tt ) )  splits as O(n- 1) @ O ( n -  1). 
By Proposition 2.3, it follows tha t  the splitting "P~(O(n))~-O(n-1)| is 
valid on P~ ,  where A is any F-algebra.  

5. Maps of  modules  and systems of  linear equations 

We want to s tudy the split t ing-type of the the principal parts  on the projective 
line p1 over any field F as left O-modules. Given Pk(O(n)) with l < k < n ,  we will 

{A.~xr=b~.}~. 0, where A~. is a rank prove existence of systems of linear equations k 
r + l  matr ix  with integral coefficients. A solution x~ to the system Arx~=b~ gives 

rise to a map r of left O-modules from O(n-k) to 79~(O(n)). The main result 
is Theorem 5.2 where we prove the following: If there exists, for all r = 0 , . . . ,  k, 
solutions x~ of the systems A.rx~=b~- with coefficients in a field F,  satisfying certain 
explicit criteria, then we can completely determine the split t ing-type of the principal 
parts  on  p l  defined over the field F.  

By Proposit ion 2.2 we know that  Pk(O(n)) is locally free of rank k + l  over P~ 
defined over Z, hence by base extension, Pk(O(n)) is locally free over p l  defined 

over any field F.  By [2], Theorem 2.1, we know that  on p l  every locally fl'ee sheaf 
of finite rank splits uniquely into a direct sum of invertible O-modules. Recall from 
Lemma 3.3 that  Pk (O(n) )  has two natural  bases on the open set Urn: 

C={l| ~} and C'={1Qx~,...,dskQX'l~}. 

By Theorem 3.4, the transition matr ix  ILl C' from the basis C ~ to C is given by the 

relation 

(5.1) 

k--p 

i=0  

We will use relation (5.1) to construct split injective maps O(n-k)--+79k(O(n)) of 
left O-modules. On the open set U0, the sheaf O(n k) is isomorphic to F[t]x~o ~ k 
as an O-module. On the open set U1, O(n k) is isomorphic to F[1/t]x~ ~-k. For 

i=0 ,  1 we want to define maps 

of left Ov~-modules, agreeing on the open set U01 , where r = 0 , . . . ,  k. The maps 
i {r will then glue to give k + l  well-defined maps 6~:O(n-k)--+Pk(O(n)) 

of left O-modules. Let 6 ~ ( x ~ - k ) = l |  ~. On the open set Um we have n-k  X 0 
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o ~ k X~o~-k=tk-~X~ k it follows that  tk ~x~ k. We want to define r ). Since 
0 n--k  k--n 1 n k n--k  n--k  6o(Xo ) = t  OO(Xl ) = t  ( l |  1 ). We now use relation (5.1) which proves 

the equation 

Tt n .n ~t ~ 
R @ X ~ ' =  ( 0 ) ~  @ X o - ~ ( 1 ) l ~ n - - l d t @ X r o - F . . . - } - ( ~ ) t n  IVdl~rt-k@2C~. 

We define r176 ) t~ -n ( l |  and it follows that  

1/, n k n- -k  n /Z n--1 n 0 x n - - k  t k - -n  7~ t n X n 

which equals 
k 

1~ n id~i  x n 
O" 

i--O 

Define o_ c. i - ( ~ )  and Xo,o = 1. We get 

k 

c i t  at O x  o and r k)=Xo,o(l| 
i 0 

We see that  we have defined a map of left O-modules 0o: O(n--k)--+7 9k (O(n)) ,  which 
in fact is defined over the integers Z. We want to generalize the construction made 
above, and define maps of left O-modules 6,-: O ( n - k ) - + P ~ ( O ( n ) )  for r = l ,  ..., k. 
Define 

(5.2) r (x~_k) X o , r l |  1 n ~ n +xl,,.t,-rZT_l d s |  1 +...+z,.,~.ds |  , 

where the symbols xi,~ are independent variables over F for all i and r. Simplifying, 
we get 

1 n k ~)r (Xl  ) = X j , r ~ J - r d 8  j @ x ~ .  

j - o  

We want to define a map r on Co, such that  r and r glue together to define a 
map of left O-modules 

k) - +  

For @ to be well defined it is necessary that ~b ~ and @ agree on Uol. On Um we 
see that x~ -k equals t k - n X ~ - k ,  hence we get 

= Q , , , / t  x 1 ) = t  q), ,tx 1 ). 
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We get from equation (5.2), 

@(z0o ~ k) = t ~ ~ ~ x j # t J - ~ d s J  | 

j=o 

which equals 

(5.3) 
j=o 

Using relation (5.1), we substitute dsJ |  ~ in formula (5.3) and get the expressio~ 

r k - j  

j=0 "i--0 

Let l = i + j  be a change of index. We get the expression 

0 n - k  O,-(zo ) =  x j ~ t  ~+k "~-" ( 1)st~-~-J cz~oz; ~ 
j o l j  

Since (al) = ( 5 )  . . . .  0, we get the expression 

0 n - - k  " X n r ) =  x J , ' S  +~ ~ - "  (-1)  j t~ - '  J ( n - J ~ d t ' C x ~  o �9 

0 o z o ~ ~  

Simplify to obtain 

Z(-1)Jt~-~" x~,,.dt'~4 ~. 
j=o l=o 

Change order of summation and simplify to get 

k r . 

r ) ~ t  ~ ~-~ ( - 1 /  ~ -  --  d t  I |  ~. 
t o = l - j /  ' /  

Let 

(5.4) 4 = ~ ( - 1 ) J  z - j  xj,~. 
j=0 
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for r 1, ..., k and 1=0, ..., k. We have defined maps  

k 
t o o )  ' ~ . ~ '  e,,,~z 0 - o  . . . . .  k,) 

= ~ - k - ~ - - I  ~--I ~ ~ 
t C l at 99x o 

l=O 

and 

r 
(5.6) Cr(Xll n-k )  : Z Xj'r~J rdSj @Xrl~" 

j=0 

Note tha t  the definitions from (5.5) and (5.6) are valid for r = 0 ,  ..., k since c ~  (~/~) 

and x0,0 = 1. 

L e m m a  5.1.  Let r = l ,  ..., k. The maps r and r glue to a well-defined map 

of left O-modules  
> 

r _  T _ __ r _ o i f  and only i f %  ck_ 1 . . . . .  ck_, ,+~-O and c; <=1.  

Proof. Consider the expression from (5.5): 

/~--r 1 

/=0 

@Crk rdt k - r  @xrO t +C~ r+11dtk-r+1@X~0 z--'''-~-grs ! d t  k @x~O ~. 
t t" 

We see tha t  the maps  r and @ glue if and only if we have 

r r r r Ck=Ck--1- - ' " - -Ck  r+l  0 and c k _ r = l ~  

and the lemma follows. [] 

Let  r = l ,  ..., k, and consider the equations from the proof  of L e m m a  5.1. We 

have c~ c~_ 1 . . . . .  c~_~.+1=0 and % _ ~ - 1 .  ~ - We get from the equat ion c~'r 0 tha t  

k)XO,,. /n-l"\ [n-2\ ,~ n - r  Tt ~]~ 1)Xl,rAr-~ 2) X2/r-~...@(1) (]~_r)X,i,-,r O. 

Writing out c~ i=0 we get the equation 

n n - 1  n - 2  ~ n r 
(~- -  ] / XO'r -- (~ - -2 /XX' r - -  (]r 3 )  x2'r -V "'" ~- ( -  ~) ' ]~--r 1 / x r ' r  = O" 
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The equat ion %-.r  ~ -- --1 gives 

( ] ~ r ) X O ,  r (k:r]_1)x1,r--(k~:22)x2,rq-...q-(kL~2;)Xr,r =]. 
We get a sys tem of linear equat ions A~-xr=b,-, where A,~ is the rank r + l  matr ix  

, , - ,  ) . . .  

. . .  (k 3) (-- 1)r (]~2,---r 1) 

i : : "'. : 

(/~ ~ ' r ' )  ~ - - 1  ',~--2 ?% r 
1) . . .  

X r iS the vector (x0,T, x~,~, ..., x~.,~), and b~. is the vector (0, 0, ..., 0, 1). Clearly the 

coefficients of Ar and b~. are in Z. Also, assume tha t  Xr is a solution to the system 
A~.x~=b~. with coefficients in a field iv, then by construct ion and Lemma 5.1, the 
map  

r O (n -k )  > "Pk (O(n)) 

defined by 

and 

0 n - k  ~ r ( X  0 ) =~cr ~l-k-r-l--l~a~ QgX On 
/=0 

r 
1 n--k r ) : Z x.j,,.t~-'ds5 Ox~ 

d=O 

is a well-defined and nontrivial  map  of left O-modules.  We can prove a theorem. 

T h e o r e m  5.2.  Assume that there exists a field F with the property that for 
all k = l , . . . , r  there exists a solution Xr to A,,,xr=b~- satisfying k I]i o x<i~O, then 
Pk(O(n)) splits as ( ~ o  O(n-k) as a left Opt-module over F. 

Pro@ Assume tha t  there exists a field F and k solutions x , , . . . , X k  to the 
k systems A~.xr=b,,, with coefficients in F satisfying the proper ty  tha t  [ I i=0 zi,,s#O. 

k 
On the open set U0, the module  (~=o O ( n - k )  is a free k[t]-module on the basis 

{X~o~-~ eo, ..., X~o~-k ek }. Define the map  

k 
~o: E~) o(',,-,~)lOo ~ ' P ~  (o(',~))bo, 

i=O 
(Xo e~) = ~(Xo )" 
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k On the open set U1 the module (~i o O ( n - k )  is a free k[1/tJ-module on the basis 
,~-k x ~-k e ~ Define the map {xl f0 , . . . ,  ~ jk~. 

k 

Cr(Xa ). (~1: G O(~k ]~) IU~ > ~k (O(T i ) ) lU1 ,  r 1 n- -k  

i=0 

Then by construction, the maps q)0 and r glue to a well-defined map r from 
(9{=0 o0~-k)  to (o00) of left O-modules. We show e~plicitly that the map r 
is an isomorphism: Consider the matrix corresponding to the map ~Iuo, 

[r176 1 = 

i ~kc 0 t k lc 1 ... tCko-1 C~) 
t k - l c  o t~ 2c~ ... c~ -1 0 

i : ".. : i . 

I tcO_l ck_11 ... 0 0 
\ c o o ... o o 

k i We see the determinant  1[r176 equals [Ii=0 ek-i  which equals 1 by construction, 
hence the map r is an isomorphism. Consider the matr ix  corresponding to r 1, 

1 1 
XO,k--1 t ~  ~ - 

1 Xl,k-- i F I XI, o XO,1 ~ ... 
[~)1] = Xl,1 

0 

1 / 
XO, k: ~s 

1 
~ l ' k  ~---1 . 

Xk,k 
k The determinant I[r equals I]~ 0 xi,i which is non-zero by hypothesis. [] 

6. A p p l i c a t i o n :  T h e  left  m o d u l e  s t r u c t u r e  in c h a r a c t e r i s t i c  z e r o  

In this section we use the results obtained in the previous section to determine 
the split t ing-type of 7)k(O(n)) for all l < k < n  on the projective line defined over 

any field of characteristic zero. 

L e m m a  6.1. Let n,k,a,b>_O, and put (~  Then we have the equality 

( n - a + 1  ~ n k + b (  n a + l  ~ =  ~ "(all)(\k-a-b+2]n-a+1" 

The proof is an easy calculation. 
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P r o p o s i t i o n  6.2.  

with r = l ,  2, . . . .  Then the determinant 

IA~.I = 

Let n, k> 1, and consider the matrix A~. from Theorem 5.2, 

(t;) n--1 n 2 -- (k-- l )  (k 2) "'" ( - -1)r  ( ~ - ; )  
( k : l )  n-1 [ ' n - 2 ~  1"~ "r" --(/~ 2) ( - -1) r (k- - r  1) 

\ k - - 3 ]  " ' "  

: : : " .  : 

( / c - r )  n - 1  n 2 "~ (~_,, 2) ( -~ ) " ( ;%)  -(~_,, 1) ... 

+/i (;'::) ,=o ( : : ; )  

Proof. We prove the formula by induction on the rank of the nlatrix. Assume 
first that r = l .  Adding - (n-k+l ) /k  times the second row to the first row of A1 
and applying Lemma 6.1 with a = l  and b= l ,  we see that the formula is true for 
r = l .  Assume the formula is true for rank r matrices A~.-1. Consider the matrix 

( ( ~ )  ~-1 ,,-~ ,-~ ) (~_ 1) g_,) (~_2) ... 
(k 1) n--1 (k--3) �9 (k--r 1) 

]V~r= 

(k--r--1) n--2 n--r (~:,) ,-1 (~_,_2) ..- (~_2~) 

which is the  m a t r i x  A~. wi th  signs removed.  A d d  - ( n - k + l ) / k  t imes  the  second 

row to the  first row. Continue and add  - ( n - k + l + i ) / ( k - i )  t imes  the  ( i + l ) t h  row 

to the  i t h  row, for i=2 ,  . . . ,  r 1. A p p l y  L e m m a  6.1 to  get  the  m a t r i x  

(1~ [n--l~ (k--2) (1) (k--r) 0 \1)\k--1]  (~) n 2 n r 

(1 ~) (1 ~) - (~) 
1 n--1 (~ ~) (1)g ,-1) 0 (1) (k--2) (2) n--2 n--r 

(~1 ]) (~11) ... (~;,) 

0 (11) n--1 

(/c 1"+1) 

The determinant of" _N:,. equals 

L~-I) (1) g_2~.1) 
(%+1) (k-V1) 
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where M~ ~ is the matrix 

f (!!) \k'--l] " ' "  \k'--r+l] 

\k'-2] "'" \ k'--r ] 

! " "'. i 

< k ' - r ]  " ' "  \ k ' - 2 r + 2 ]  

and n ' = n - 1  and k ' = k - 1 .  By the induction hypothesis, we get modulo signs 

n ( n ' - i  

\ r - l - i ]  

Change index by letting l = i + 1  we get 

and the proposition follows. [] 

P r o p o s i t i o n  6.3. Let F be a field of characteristic zero. The maps r from 
Theorem 5.2 ezist for r = l ,  ..., k, and the induced map ~b=(~_ 0 ~b,. defines an iso- 
morphism 

k 

v~(o(~)) ~ ( ~  o(n-  k) 
i--0 

of left O-modules. 

Proof. Consider the systems A,.xr=b,- for r = l ,  ..., k, from the proof of Theo- 
rem 5.2. By Proposition 6.2 we have that  

n(z:) 
modulo signs. Since the characteristic of F is zero, the determinant ]A~ I is different 
from 0 for all r - l ,  ..., k, hence the system A~-xr =b~ has a unique solution xv=A~.lb,. 
for all r. It follows from Theorem 5.2 that  the maps 

<-: o(~ k) > ~k(o(~)) 
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of left O-modules exist, for r = l ,  ..., k, and we can consider the map 

e O(n-k) 
i 0 i : 0  

We want to prove tha t  {b is an isomorphism. Again by Theorem 5.2, @ is an isomor- 
phism if and only if x i , i#0  for i=0 ,  ..., k. Assume tha t  x~-,,-=0, and consider the 

system A~.x=-b~. If z~.,.r=O we get a new system A~ lYr-1 0, where Yr 1 is the 
vector (z0,~., ..., z~.-1,~.). Since the matr ix  A~. 1 is invertible, it follows that  the sys- 
tem A~. ly=_1=0  only has the trivial solution Yr 1--0, hence Xo,,.=... x~._<.,.--0, 
and we have arrived at a contradiction to the assumption that  Xr is a solution to 
the system A.,.x~=b,,., where b.r is the vector (0, ..., 0, 1). It  follows tha t  x.,.,~.r for 

all r - 0 ,  ..., k, and the proposition follows from Theorem 5.2. [] 

7. Spl i t t ing the  right m o d u l e  s tructure  

In this section we consider the split t ing-type of the principal parts  as left and 
right O-modules on p1 defined over F,  where F is any field. We prove that  in 
most cases the split t ing-type as left module differs from the split t ing-type as right 
module. We also show how the split t ing-type of the principal parts  as a left Op l -  
module changes with the characteristic of the field F. Conskter 7 9~(O(rt)) on p1 ,  
where F is any field and n > l .  It  is easy to see that  Pl(O(n)) is locally free as a 
right O-module. 

T h e o r e m  7.1. If the characteristic of F does not divide n, then 7)s(O(n)) 
splits as O(n-1 )@O(n-1)  as a left O-module and as O(n )OO(n-  2) as a right O- 
module. If the characteristic o fF  divides n, then 7)a (O(n) ) splits as O(n) |  2) 
as left and right O-modules. 

Pro@ Recall fl'om Section 4, that  the splitt ing-type of 79~(O(n)) as a left 

O-module is O ( n - 1 ) O O ( n - 1 )  if the characteristic of F does not divide n. We 
next consider the right O-module structure. Let p and q be the projection maps 
from p l •  to p1. By definition, Pl(O(n)) is p.(Ozx~@q*O(n)), where (gzx~ is 
the first order infinitesimal neighborhood of the diagonal. By Proposition 2.5 we 

get the right O-module structure, by considering the module q.(OA~ |  
q.(OA~)QO(n). One checks that  glu0 is a free k[n]-module on the basis E 
{l<gxD ~, dn@cc'~}, where du t - u .  Similarly, $1u~ is a free k[1/~c@module on the ba- 
sis E '  {l<gx~ ~, d(1/u)@X~l~}, where d(1/u)=l / t  1/n. On U01 the module g is free 
on E and  E '  as an F [u ,  1 /u] -module .  We compute the transition matr ix  [R]~'. We 
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see that  l |  equals "u~| L By definition, d(I/u)| equals (1/t-i/u)u~| ~. 
We get 

By definition, t=u+du, and hence we get 

1 1 n - 1  , _ _  @X~' = - u n - 2 d u ~  @ x ~  ~. - u  dUu+du t ~-au/u 

Since du2=du 3 . . . . .  O, we get 

hence the transition matrix looks as 

(: 0) 
and it follows that g splits as O(n) |  (9(n-2) as an O-module. Recall the transition 

matrix for 7)1(0(n)) as a left O-module, 

~,tn-i _ _ t n - 2  - 

Clearly if the characteristic of F divides n, the splitting-type of 7 )1 (O(n)) is O(n)@ 
O ( n - 2 )  as left and right O-modules, and we have proved the theorem. [] 
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