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Entire curves avoiding given sets in C 

Nikolai Nikolov and Peter Pflug 

Let F C C ~ be a proper closed subset of C ~ and A C C "  \ F be at most countable, 
n_>2. The aim of this note is to discuss conditions for F and A, under which there 
exists a holomorphic immersion (or a proper holomorphic embedding) ~: C ~ C  '~ 
with A C 9 ( C ) c  C ~ \ F .  Our main tool for constructing such mappings is Arakelian's 

approximation theorem (cf. [3] and [10]). 
The first result is a generalization of the main par t  of Theorem 1 in [7]. More 

precisely, we prove the following result. 

P r o p o s i t i o n  1. Let F be a proper convex closed set in C ~, n>_2. Then the 
following statements are equivalent: 

(i) either F is a complez hyperplane or it does not contain any complez hyper- 

plane; 
(ii) for any integer" k > l  and any two sets {ctl, ... , c~k}cC and {Q,  ... , a k } c  

C ~ \ F ,  there exists a proper holomorphic embedding ~: C--~C ~ such that p ( c u ) = a j ,  
l<_j<_k, and p ( C ) c C ~ \ F .  

(iii) the same as (ii) but )'or" k=2 .  

The equivalence of (i) and (iii) follows from the proof of Theorem 1 in [7]. For 
the convenience of the reader we repeat  here the main idea of the proof of (iii) 

(i). Observe that  condition (iii) implies that  the Lempert  function of the domain 

D : = C  ~* \ F  is identically zero, i.e. 

/CD (z, w) := inf{ct _> 0: there is f ~ O(A, D) with f (0)  = z and f ( a )  = w} = O, 

z, wED,  where A denotes the open unit disc in C. In the case when condition (i) 
is not satisfied we may assume (after a biholomorphic mapping) that  F = A  • C n - l ,  
where the closed convex set A, properly contained in C, contains at least two 

points. Applying standard properties of k, we have kD(Z, w) kc \a ( z ' ,  w'), where 

(z, w) ((z', z"), (w', w") )CD.  Since [~CkA is not identically zero we end up with a 
contradiction. 
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Hence, we only have to prove the implication (i) ~ (ii). 

Pro@ For simplicity of notation we shall consider only the case r~--2. 
If F is a complex line, we may assume that  F = { z E C  2 :z~=0}. Considering an 

automorphisni of the form (Zl, z2)~+ (zle ~ ,  z2e - ~ )  for a suitable constant 7, 
we may also assume that the second coordinates of the given points are pairwise 
different. Then there exist two one-variable polynomials P and Q such that  the 
mapping t ~ (~ + P(e  c2(t)), eQ(t)) has the required property. 

Assume now that  F does not contain any complex line. The idea below comes 
from that  of Theorem 8.5 in [9]. 

First, we shall prove by induction that  for any j<k there is an automorphism 
r such that  the set co(r does not contain any complex line and it does not 
have a common point with the set 

where Gj :={r ..., r (co(M) denotes the convex hull of a closed set M 
in C'~). Doing the induction step, we may assume that  r Then, since F is 
convex and does not contain any complex line, after an affine change of coordinates 
one has that (cf. [2] and [7]) 

FcH:-{zEC2:Rez l<  l a n d  R e z 2 _ < - l } ,  

co (a j )  C { z E C  2 :Rez l  -->0}, 

aj+i E {z E C 2 :Rez2_>0}. 

In addition, we may assume that  the set A: {04, . . . ,  a~} of the given points and the 
strip {z E C 2 : - 1  <Re  z2 <0} do not have a common point. By Arakelian's theorem 
(cf. [3]), for c:=min{1, dist(F, A)} we may find an entire function f such that  

1 if R e t _ < - l ,  If(t)-aj+l,i I< gc, 

[f(t)l<le, if Ret_>0 

and, in addition, f ( a j+ l ,2 )=0  (here, aj+l,~ denotes the kth coordinate of the 
point aj+l) .  Then it is easy to see that  the automorphism 

(I)j+l (Z1, Z2): (Z1 +f(z2), Z2) 

has the required properties. 
So, let F be a convex set, which does not contain any" complex line and FN 

co(A)=f). Then we may assume that  (cf. [2] and [7]) FcH, Ac{zEC2:Rezl>_l 
and Rez2_>0}, and, in addition, that  Rec~j_>l, l<_j<_k. 



E n t i r e  c u r v e s  a v o i d i n g  g i v e n  s e t s  in  C n 327 

Note tha t  there exists an entire function g such that  Ig(t)l_<l if R e t < - I  and 
9(aj ,2)-c~j-aj ,~ (ef. [3] and [11]; this can be proved also directly, applying a stan- 
dard interpolation process and Arakelian's theorem many times). Then, apply- 

ing the automorphism (zl,z2)~->(zl+g(z~),z2), we may assume tha t  a j , l=a j  and 
FC{zEC2:Rez l<_O and Rez2_<- l} .  Finally, we find, as above, an entire func- 
tion h such that  Ih ( t ) l< l  on the set Ret_<0 and h(c~j)=aj,2. Hence, the mapping 
t ~ ( t ,  h(t)) has the required properties (in the new coordinates). [] 

The end of the proof shows tha t  we may also prescribe values of finitely many 
derivatives of ~ at the points of the given planar set. 

Open problem. Is it true for an F as in (i) of Proposition 1, that  for any discrete 

set of points in C ~ \ F  there exists a proper holomorphic embedding of C into C ~ 
avoiding F and passing through any of these points? 

It is known that  for any discrete set of points in C ~ there exists a proper 
holomorphic embedding of C into C ~ passing through any of the points of this set 
(Proposition 2 in [5]; cf. also Theorem 1 in [11] for n>_3). We have not been able 
to modify the proofs of [5] and [11] to get a positive answer to the above question 
in the general case. Nevertheless, the following result gives a positive answer to the 
open problem in the case when F is a complex hyperplane. 

P r o p o s i t i o n  2. f f  F is a union of at most n -  1 C-linearly independent corn- 
plex hyperplanes in C ~, then for any discrete set of points in C ~ \ F  there exists a 

proper holomorphic embedding of C into C ~ avoiding F and passing through any 
of these points. 

The proof of Proposit ion 2 will be a modification of the one in the case when 
F is the empty  set (see Proposition 2 in [5]). 

The key point is the following lemnm. 

L e m m a  3. Let K be a polynomiatIy convex compact set in C ~, A a set of 
finitely many points in K ,  and H a union of at most n - 1  C-linearly independent 
complex hyperplanes in C '~. For every p, q c C n \ (K  U H) and every c > O, there exists 
an automorphism ~ of C ~ such that ~ ( z ) = z ,  z c H N A ,  ~(p) q, and I~(z) zl<e, 
z C K .  

In view of Lemma 3, Proposition 2 follows by repeating step by step the proof 
of Proposit ion 2 in [5]. Start ing with an embedding c~0 whose graph avoids H,  
the desired embedding (~ is constructed as the linfit of a sequence of embeddings 
c 9 with (~j--~9jo(2j_l, j >  1, where the qDj are automorphisrus chosen by Lemma 3. 
Note that  the graph of a avoids H by the Hurwitz theorem. 



328 Nikolai Nikolov and  Pe t e r  Pf lug 

Proof of Lemma 3. After  a linear change of coordinates,  we may  assume tha t  

H C {z ~ C ~: zs ... z,~ = 0} and tha t  all the coordinates  of the points in B :=  A U {q} \ H 

are non-zero. Applying an overshear of the form 

Wl = Z 1 exp(f(z2 ,  ..., zn)), w2 = z2,. . . ,  w~ = zn, 

where 

( f i )  f(z2, ..., z**) :=  z2 ... z~ e+ cJzj 
\ j = 2  / 

and e is small enough, provides pairwise different products  of the first n - 1  coor- 

dinates of the points  in /3 .  Repeat ing  this argument ,  we may  assume the same for 

every n - 1  coordinates.  

Now, we need the following variat ion of Theorem 2.1 in [6]. 

L e m m a  4. Let H be the union of at most n -  1 C-linearly independent complex 
hyperplanes in C'% D an open set in C n, and K c D  a compact set. Let ~t: D -+Cn, 
tE [0, 11, be a C2-smooth isotopy of biholomorphic maps which fix D N H  pointwise 
such that q & ( D n H ) - - ~ t ( D ) N H .  S'appose that ~o is the identity map and the set 
qh(K) is polynomially convez for every t e  [0, 1]. 

Then dP 1 can be approzimated, uniformly on K,  by automorphisms of C ~, 
which fiz H pointwise. 

For a moment ,  we m%v assume tha t  Lemma 4 is true. Let 7: [0, 1 ] ~ C ~ \ ( K U H )  
be a C2-smooth  path,  7 (0 )=p ,  7 (1 )=q .  Then  we apply L e m m a  4 to the following 

situation: Take Oh(z) to  be z near K and to be z + 7 ( t )  p near p, and choose 
a sufficiently small ne ighborhood D of the polynomial ly  convex set KU{p} .  For 

a sufficiently small ~>0,  denote by ~ the corresponding au tomorph i sm and set 

r:--~0(r) for r ~ B .  Let f l  be the Lagrange interpolat ion polynomial  with 

r l  
fz (r2...  r,~) = N 1 log =- 

r 2  ".- f n  *'1 

tbr every r C B .  Note tha t  the overshear 

g)~ (z) :=  (zl exp(z2 ... z,~fl (z2 ... z~)), z2, ..., zn) 

sends ff to  the point  ( r l ,  f 2 ,  .-. , f n ) -  It  is left to  define 7/;2, ..., ~b,rz in a similar way and 
to consider the composi t ion ~b,, o .... ~1 o~b. This completes the proof  of L e m m a  3. [] 

Proof of Lemma 4. Note tha t  under  the assumptions  of L e m m a  4, there ex- 
ists a ne ighborhood U c D  of K such tha t  U t : -q ) t (U)  is Runge for each t~[0,1]  
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(Lemma 2.2 in [6]). We shall follow the proofs of Theorem 1.1 in [6] and Theo- 

rem 2.5 in [13]. Consider the vector field Xt:-(d/dt)eptoa~t 1 defined on Ut. For a 
sufficiently large positive integer N and 0 < j _ < N - 1  set 

S O, t r  
xj,  : 

t x /N, 

Note that  Xy/N vanishes on Uj/NAH. It  is easy to see that  it can be approximated 
by holomorphic vector fields on C ~ which vanish on H ,  since Uj/N is Range (here 

and below, the approximations are locally uniformly). On the other hand, these 
vector fields can be approximated by Lie combinations of complete vector fields 
vanishing on H (Proposition 5.13 ill [13]). Thus we may assume that  Xj/N is a 
Lie combination of complete vector fields vanishing on H.  Note that  the local flow 

N--1 
of ~ j = 0  Xj,, at t ime 1 is h x - 1  . . . . .  h0, where hj is the local flow of Xj/N at t ime 
1/N. If N-+oc ,  then this composition converges to the t ime one map r of the 
flow of Xt. To finish the proof of Lemma 4, it is enough to note that  e v e r y  hj can 
be approximated by finite compositions of automorphisnls of C ~ which fix H (cf. 

the proof of Theorem 2.5 in [13]). [] 

In this way Proposition 2 is completely proved. 

Remark. It  is an open question whether every holomorphic vector field in C ~, 
which vanishes on the set L : =  {z E C~ :Zl ... zn =0}, can be locally uniformly approx- 
imated by Lie combinations of complete vector fields vanishing on L [13]. If this 
would be So, then the above proof shows that  Proposit ion 2 is also true for every 
union of C-linearly independent complex hyperplanes in C ~, n_>3. To see this, 

choose, for example, the starting embedding 

: :  (exp(- b, exp(,1), . . . ,  

It  remains an unsolved problem (for us) if there exists a proper holomorphic em- 
bedding of C into C 2 whose graph avoids both coordinate axes. 

We are also able to answer the open problem, posed after Proposition 1, in the 
bounded case. 

P r o p o s i t i o n  5. If K is a polynomially convex compact se~ in C +~, then for any 
discrete set C of points in C ~ \ K  there exists a proper holomorphic embedding H 
of C into C ~ avoiding K and passing through any of these points. In addition, for 
a given point c~C and X c C ~ \ { 0 }  we can choose H such that H ' ( H - I ( c ) ) = X .  In 
particular, the Lempert function and the Kobayashi pseudometric of C'~\ K vanish. 

Proof. The proof is a modification of the proof of Proposition 2 in [5]. 
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We may assume that  X = ( 1 , 0 ,  ... ,0) and that  K does not intersect the first 
coordinate axis. Note that  there exists a smooth non-negative plurisubharmonic ex- 
haustion function %o on C ~ that  is strongly plurisubharmonic on C ~ \ K  and vanishes 
precisely on K (cf. [1]). For any c>0,  put 

G+:={~ec~:r  and K~:={~eC+: r  

In particular, h~ is polynomially convex. By Sard's theorem we may choose a 
strictly decreasing sequence (cj)j>_0, bounded from below by a positive constant, 
such that  the boundary of Gj:=G~ is smooth for any j and K0:=K~ 0 does not 
intersect the first coordinate axis. In particular, Kj :=K~j has finitely many con- 
nected components. 

Claim. The inclusion KjC~j(Kj_I) holds for any automorphism 9j of C ~ 
which is close enough to the identity map on Kj-1. 

Let now C=(al)Z_>l with ( t l=c .  Set H0(.r162 0, ... , 0) and Q0=0. In view 
of the claim and the proof of Proposition 2 in [5], for any j > l  we mEv find, by 
induction, numbers @j>_@j-l+], Q GC, and an automorphism ~j such that for 
Hj=~joH{ 1 o n e  ha s :  

(a) H} ( r  and Hj(r l<l<_j; 
_ - - ~ } ,  (b) I ~ ( r  if Ir and KjC{zECn:IzI<I(xj[ 1 . 

(c) IHj(r l(~)l_<6j<9-J if lCl<gj; 
(d) Hj(C)NKj=O. 
It is easy to check that  the limit map H:=limj-~oc Hj exists and that  it has 

the required properties except properness. The last one can be provided by the 
choice of 5j. Note that  the only modifications that  have to be made in the proof 
of Proposition 2 in [5] are the choice of the Cj with the additional property that  
~ ( r  is the identity matrix and the replacing of the set 

F :-- {~ c c~:  I~1-< 1~51- �89 } uHj_I{< ~ c :  I<1-< ~} 

by the set 

if 

F : = K j u ~ j  ~{r 

1 

Proof of the claim. Since Kj has finitely many connected components Kj,1, ..., 
Kj .... we have that dist(h'~, 0Kj_I) >0. Then we find r > 0  with dist(Kj,  OKj_l)>r 
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and some ball Bl with radius r belonging to Kj,z, l < l < r n .  It  follows that  KjC 
r if 

: �9 K _I) _< r. 

Indeed, suppose the contrary, i.e., ~j(a)EK 5 for some a r  5 1. We may assume 
that  ~ ) j ( a ) � 9  . Denote by bl the image of the center of B1 under ~5. Then 
there exists a pa th  ~ in Kj,1 joining ~j(a) and bl. Note that  ~[I(7)AOK j 1r 
0. If c~21(7)NOKj_I  , then ~(c) �9  Hence r>>_l~j(c)-cl>_dist(Ks,OKS_~); a 
contradiction. [] 

Note that  if F is a proper subset in C 2 such that  for any point in C 2 \ F  there 
exists a non-constant entire curve 7: C - + C 2 \  F which passes through this point, 
then the interior of F is pseudoconvex, since C 2 \ 7 ( C )  is pseudoconvex [12]. More- 
over, if F is compact and for any point a � 9  there exists a proper holomorphic 
mapping ~: C - + C  2 with a � 9  then F is rational convex [4]. The same 

does not hold in higher dimensions. For example, if F and G are two proper closed 
subsets of C k and C z, respectively, then for any point in C k+t \ (F  • G) there exists a 
proper holomorphic embedding of C into C k+z avoiding F x G and passing through 
this point. 

The next proposition is in the spirit of the above relnark and it generalizes 
Proposition 1 in [8]. 

P r o p o s i t i o n  6. If  F and G are two sets in C k and C l, respectively, then 
for any countable set C of points in C ~+t with dist(C, FxG)>O, there exists a 
holornorphic immersion of C into C k+l avoiding F• G and passing through any 
point of C. 

Proof. The idea for the proof" comes from the proof of Theorem 2 in [11]. 
For any point c in C k+z denote by c ~ and c n its projections onto C k and C l, 

respectively. Set c :=dis t (C,  F x G ) > 0 ,  C':={cCC:distU, C k \ F ) > s }  and C " : = C \  

C .  We may assume that  both  sets are infni te  and enumerate them, i.e. C=(a5 )5>0  
and C'-(bj)5>o. Denote by Dn(c , r )  the polydisc in C ~ with center at c and 
radius r. Note that  Dk (a}, e) C C ~ \ F  and Dz (b], e) c C 1 \ G  for any j_> 0. Define 

Aj := {z E C : Re z _< - 3  and I I m z - T j l  _< 3}, 
O O  

A o : = { z E C : R e z > _ - l } \ U { z c C : R e z > 5  and I I m z - 7 j l < l } .  
j 1 

j > l ,  

Choose a number tE (0, 1) such that  

texp( - ) 
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For l < m < k ,  combining the extensions of Arakelian's theorem in [3] and [11] gives 
an entire function f,~ such that 

If.~(z)-ao,~-�89 < � 8 9  zEAo, 

[f.~(z)-as,~-�89 <�89 t ) e x p ( - ~ z l ) ,  zEAo, j>_l, 

j ;n(2)=a0,m, fr~(-2)=bo,m, .[,~,,(-7+i7j)--aj,m, f,~(7+i7j)=bj,,.~ 

for j_> 1 ( . ~  is the branch with ~ /1 -1  and cj,.~ denotes the ruth coordinate of 
the point ca. ). Note that [fm(z)-ao,,~]<c if zEAy. For k+l<m<k+l we choose 
analogously an entire function f~,~ such that 

If,~(z)-bj,,m l g t e x p ( - a x / 7 ~ ) l < l g ( 1 - t ) e x p ( - ~ T T ) ,  - z c  Aj, j >_l, 

f .~(2)=a0 ,~ ,  / , ,~( -2)=b0 .... f,~( 7 + i T j ) = a y  ..... f~(7+irj)=bj,.~ 

for j_>l. Then the mapping (fl,  ..., fk+z) will have the required properties if it is 
non-singular. To see this, note that applying the triangle inequality and the Cauchy 
inequality gives 

ct 

for l < m < k  and 

exp(- l r 

oo 

 cE0:={ eC:ae >0)\U{ cC:ae >4 and Ilm -Zjl <2}. 
j 1 

Then the choice of t shows that f,[~(z)r if l < m < k  and zEEo; a similar argument 
gives that f[,~(z);~0 if 

zCE:=LJ{zCC:Rez< 4 a n d l I m z  7j1_<2 ). 
j = l  

We analogously obtain that f;~(z)r if k+l<m<k+l and -ZCEoUE, which im- 
plies that the mapping is non-singular. [] 

Note that, in general, the mapping in Proposition 6 cannot be chosen to be 
proper. For example, let F : = C \ D x ( 0 ,  1) and let f :  (fl,  f2) be a proper holomor- 
phic map of C into C 2 which avoids F • F.  Choose R such that max{ [fx (z)l, I.h (z) l} 
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>2 tbr Izl>R. Assume that  f l  is not a polynomial. Then by Picard's theorem there 
is a point a c C ,  laI>R, with I f l ( a ) l= l .  Thus If2(a)l>2. On the other hand, using 
that f ( C )  N (F  x F)  =(~ implies that  If1 (a) l< l, a contradiction. In conclusion, one 
of the functions f l  and ]) is a polynomial and the other one is a constant smaller 
than 1. 

It follows fi'mn Proposition 6 that  if F and G are two closed proper subsets of 
C k and C t, respectively, then the Lempert  function of C k + t \ ( F  x G) vanishes. The 
next proposition implies that  the same holds for the Kobayashi pseudometric. 

P r o p o s i t i o n  7. If  F and G are two proper" closed sets in C a and C ~, respec- 
tively, then for" any point cECt~+l \ (FxG)  and any vector X c C  k+z there exists a 
holomorphie mapping of C into C k + l \ ( F •  with f ( 0 ) = c  and f f ( 0 ) = X .  

Proof. We may assume that  c ' ~ C k \ F  and Dl(0, 1 ) c C I \ G .  The statement is 
trivial if X~=0. Otherwise, we may assume c ~ =0 and the ball in C a with center at 
the origin and radius (e+ 1)v/k belongs to C a \ F .  After a unitary transformation of 
C a we may also assmne that X~=(r,  ..., r) for some r>0 .  Note that  Dk(0, e + I ) C  
C a \ F  and if l e"~- l [>_e+l ,  then Rez>>_l/r. By Arakelian's theorem, there exists 
an entire function .]%~ such that  f ,~(0)=0, f~ (0 )=X,~ ,  and [f ,~(z) l<l  if R e z >  
1/r, k + l < m < k + l .  Setting �9 ,r~ .f,~(z).=e - 1  for l < m < k  implies that  the mapping 
( f l , . . . ,  fk+t) has tile required properties. [] 
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