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Jensen measures and analytic multifunctions 

Evgeny  A. Pole tsky(1)  

Abs t r ac t .  This paper describes plurisubharmonic convexity and hulls, and also analytic 
multifunctions in terms of Jensen measures. In particular, this allows us to get a new proof 
of Stodkowski's theorem stating that multifunctions are analytic if and only if their graphs are 
pseudoconcave. We also show that nmltifunctions with plurisubharmonically convex fibers are 
analytic if and only if their graphs locally belong to plurisubharmonic hulls of their boundaries. In 
the last section we prove that minimal analytic multifunctions satisfy the maximum principle and 
give a criterion for the existence of holomorphic selections in the graphs of analytic nmltifunctions. 

1. I n t r o d u c t i o n  

A n a l y t i c  mul t i func t ions ,  i n t roduced  by" K. Oka  in 1934, have found qui te  a 

few of app l i ca t ions  in recent  years .  The  ma in  d r iv ing  force of th is  deve lopmen t  

was Stodkowski ' s  t heo rem ([$1], see also Sect ion 7) t h a t  cha rac te r i zed  ana ly t i c  mul-  

t i fune t ions  in m a n y  different ways. Th is  resul t  p rov ided  app l i ca t ions  of ana ly t i c  

mul t i func t ions  to  o p e r a t o r  theory,  un i form a lgebras  and  o ther  subjec ts .  

One of the  most  impress ive  achievements  in th is  a rea  was the  new proof  of the  

corona  theo rem by B e r n d t s s o n - R a n s i b r d  [BR] and Stodkowski  [$2]. T h e  proof  used 

th ree  m a j o r  facts  a b o u t  ana ly t i c  mul t i func t ions  over the  uni t  disk: 

(1) every  po lynomia l l y  convex ana ly t i c  mul t i func t ion  has  a ho lomorph ic  selec- 

t ion; 

(2) every ana ly t i c  mul t i func t ion  is con ta ined  in a po lynomia l l y  convex ana ly t i c  

mul t i func t ion  wi th  the  same b o u n d a r y  values; 

(3) the re  is an ana ly t i c  mul t i func t ion  whose b o u n d a r y  values  sa t i s fy  the  con- 

d i t ions  of the  corona  theorem.  

For  ana ly t i c  mul t i func t ions  over the  uni t  ba l l  in C ~, n>_2, (1) does  no t  hold,  

(2) loses i ts  relevance,  and  only (3) is s t i l l  t rue  [$2]. 

Recent  years  have also seen the  surge of in te res t  in Jensen  measures  (see, for 

example ,  [CCW], [CR], [R3] and  [Pl]) .  T h e y  also h a p p e n  to be  useful in m a n y  

(1) The author was partially supported by an NSF Grant. 
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applications. Many notions of complex analysis and pluripotential theory can be 

expressed and studied in terms of Jensen measures. 

This paper uses Jensen measures to study analytic multifunctions and related 

objects. Another recent approach was developed by Ransford in JR2]. In Section 2 

we present basic facts about plurisubharmonic functions and Jensen measures. In 

many cases it is sensible to replace polynomial convexity and hulls by their plurisub- 

harmonic analogs. Section 3 describes these notions in terms of Jensen measures. 
Jensen measures are defined through the space of plurisubharmonic functions on a 

domain. In Section 4 we show that in some cases, for example when the domain 

is pseudoconvex and the measure is supported by a plurisubharmonically convex 

compact set, the dependence on the domain is irrelevant. All this preparatory work 
is needed for the next sections. 

In Section 5 we prove Theorem 5.1: a multifunction K over a plurisubharmoni- 

eally convex set F is analytic if and only if every Jensen measure on F can be lifted to 
K as a Jensen measure. Our definition of analytic multifunctions follows Aupetit 's  

paper [A]. Stodkowski calls them weakly analytic. Section 6 contains a standard 

result describing smooth analytic multifunctions. The famous Stodkowski's theorem 

gets a new proof using Theorem 5.1 in Section 7. 
Theorem 8.1 ties together the notions of plurisubharmonical convexity and 

analytic multifunctions. It states that a multifunction is analytic if and only if its 

restriction to every line belongs to the plurisubharmonic hull of its boundary values. 
The last section deals with minimal analytic multifunctions. In particular, we show 

that such multifunctions satisfy the maximum principle. 

2. P l u r i s u b h a r m o n i c  f u n c t i o n s  a n d  J e n s e n  m e a s u r e s  

Let us denote by A the measure d0/27c on the unit circle {z=ei~ 0<0<2~r}. 

For a complex manifold M we denote by "r/(M) the set of all holomorphic mappings 

f of a neighborhood Wf of the closure U of the unit disk U C C into M. 
An upper semicontinuous function u on an open set VC C '~ is plurisubharmonic 

if for every zEV and a vector v c C  ~ there is r > 0  such that 

1 ~27r 
(1) ~(~) < ~ ~(~+e~~ dO 

for all t < r. 

A probability Borel measure # on V with compact support is a Jensen measure 
with barycenter zCV if 

/ *  

u(z) < / u d~ 
J 
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for every plurisubharmonic function u on V. We will denote the set of all such 
measures by J~ (V). 

For a relatively closed set K c V  and z r  let J~(K, V) be the set of all measures 
in J~(V) supported by K.  If z E K  we define J~(K) to be the set of all measures t~ 
such that  # is in J~ (K, W) for every open set W containing K.  

We denote by C(V) the space of all continuous functions ~ on V with the 
topology defined by the seminorms 

II~IIK = s u p  I~(~)1, 
z E K  

where K runs over all compact sets in V. Any continuous linear functional # on 

C(V) can be represented as # ( ~ ) = f K  ~bd#, where K is a compact  set and # is a 
non-negative regular Borel measure on K (see [C, Proposition 4.4.1]). 

Since every continuous function on a relatively closed set K c V can be extended 

to a continuous function on V, the weak- ,  topology of J~(K, V) in C*(V) coincides 
with the weak-* topology in C*(K). In particular, the set J~(K, V) is metrizable 
in this topology when K is compact  (see [C, Theorem 5.5.1]). Evidently, the sets 

J~(K, V) and J z (K)  are convex and weak- ,  closed in C*(V). 
If f E ~ ( V )  then we define the measure AI as the push-forward of A (1/27r) dO 

by f ,  i.e., as(Z)=.f.a(E)=a(f-i(z)) for any set E c V .  The measure Af is a non- 
negative regular Borel measure on V and if u is plurisubharmonic and f ( 0 ) = z ,  
then 

J u d),s. u(z) 

Thus A S is a Jansen measure. We will call such measures analytic disk measures or, 
simply, disk measures. 

The following two theorems are proved in [P2] and [BS], respectively (see also 
[CR, Theorem 7.2]). 

T h e o r e m  2.1. If  cb is art upper" semicontin'aous functiort on art open set VC 
C *~, then the function 

D r  ed/~f : ]'E~/-L(V) and f(0)  = z }  

is plurisubharvnonic on V. 

T h e o r e m  2.2. The set J~o (V) is the weak-, closure of the holomorphic mea- 
sures #f  with f (0 )=z0 .  

W~e will frequently use their corollary. 
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Coro l lary  2.3. If r is an upper semicontinuous function on V, then 

~r = inf{ff r dt~: p e &(v)}.  

Proof. If r is continuous then the corollary follows immediately from Theo- 
rem 2.2. If r is upper  semicontinuous then there is a decreasing sequence of contin- 
uous functions 6j converging to r The functions :DCj form a decreasing sequence 
of plurisubharmonic functions converging to a plurisubharmonic function I9 6. If 
we let u(z) denote the right-hand side in the equation, then, clearly, :DO>u. If 

pCJ~o(V), then 

r = liin [ > lim (z0) =:De(z0) 
/ '  

d# ej d# Z)r 
j --+ o o  j - -  j --+ oo  

and this proves tha t  u=:Dr [Z 

3. P l u r i s u b h a r m o n i c  hulls  and  p s e u d o c o n v e x  sets  

If K is a set in V then the plurisubharmonic hull of K in V is the set K of all 
points zEV  such tha t  u(z)<0 whenever a plurisubharmonic functions u on V is less 

or equal to 0 on K.  We call K plurisubharmonically convex in V i f / ~ = K .  If V is a 
domain of holomorphy and K is compact  then "plurisubharmonically convex" means 
"holomorphically convex". If V is a Runge domain, then K is plurisubharmonically 
convex if and only if it is polynomially convex. 

T h e o r e m  3.1. A point zo~V belongs to the plurisubharmonie hull ~2 in V of 
a compact subset K of an open set V if and only if the set Jzo (K, V) is non-empty. 

Pro@ If IzEJ~o(K~V ) and u is a plurisubharmonie function on V such that  

u < 0  on K,  then u(zo)<O. Thus z0~K.  

Suppose that  there is a point z0CK and J~o(K,V) is empty. Consider an 
exhaustion of V by increasing open sets ~ such tha t  ~ @F)+] and both  zo and 
K belong to V1. The set J~o(V1, V) is weak-* compact and therefore there is a 
neighborhood V0 of K and a l > 0  such that  VocVI and #(Vo)<l -a l  for every 

measure # e  d~o (V1, V). 
We take a non-negative contixmous function 61 on V equal to 0 on K and to 

1/al on V\Vo. Then 

f 0 1  dlz 1 
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for every #CJ~o(V1 , V). Let us prove by induction that for all natural j there are 

non-negative continuous functions 4).] on V satisfying the conditions: 

(I) r on 
(2) for every p~Jzo(V,j, V) 

4)j de  > -~ + 2%:" 

We have already found 4)1. Suppose that  the functions r have been chosen for all 
l_<i<j .  Let us prove that  there exists a neighborhood W ~ Vj+I of V 5 and a number 

a5+1 >0 such that  for every #~J~0 (Vj+I, V) either #(~+I \W)>_a5+1 or 

/ r  1 
- 2 J + l  " 

If not, then we can find a sequence of #k E J~o(Vj+I, V) such that  #k(Vj+a \Vs)-+0, 
as k-+oc, and 

/ 4)5 dp, k < ~ ~ 2J+~ 

Since the set J~0(V.i+~, V) is weak-* compact we may assume that  measures #k 
weak-, converge to #CJ~0(Vj, V). Then 

/ / 4)J d# = lim Cj #k < 1 1 

and this contradiction proves our statement. 

Let us take a non-negative continuous function Cj+~ such that 4)j+I =@ on ~- 

and @+1=1/aj+1 on V\W. Evidently 4)5+i will satisfy all conditions listed above. 

Let 4)=limj~oo r The function 4) is continuous and non-negative on V, equal 

t o 0 o n K ,  and 

/ 
1 and therefore zo ~-K. This for every #EJ~o(V ). Thus T)4)=0 on K and Z)4)(z0)_> ~ 

contradiction proves the theorem. [] 

C o r o l l a r y  3.2. A compact subset K in an open set V is plurisubharmonically 
convex in V if and only if the baryeenter of every Jensen measure p in V suppor'ted 
by K belongs to K. 

In general, the plurisubharmonic hull of a compact subset K in an open set 
V need not even be closed. To see this we use an example of J.-E. Forn~ess as 
it is exposed in IN, Example 2.9.4]. In the notation of [K] let K be the union of 
0D(0, 23) • { l / j } ,  j 2, 3, ..., and OD(O, 3) • {0}. Clearly, the union of D(0, ~.) x 

{ l / j } ,  j = 2 , 3 , . . . ,  belongs to K,  but the plurisubharmonic function u from the 
z)(0,1). example is equal to - 1  on K and to - 5  on 

However, the following form of the Kontinuitgtssatz holds. 
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C o r o l l a r y  3.3. An open set V is a pseudoconvex domain if and only if the 
plurisubharmonic hull of any compact set K in V is compact. 

Proof. To prove that plurisubharmonic hulls are compact we suppose that 

points zj C B2 converge to a point z0 CV. Then there are measures pj E J~j (K, V). 

We may assume that  pj weak-, converge to a probability measure # supported 
by K. 

To show that pEJ~o(K , V) we take a plurisubharmonic function u on V and 

find by [FN] a decreasing sequence of continuous plurisubharmonic functions uk 
converging to u. Then 

uk(zo) = j~o~lim uk(zj) < J~lim f u~dpj=./ukdp. 
Hence 

Thus z0 C K and K is closed. 

Let r be a continuous plurisubharmonic exhausting function on V. If K C  

{z:r  then ~ also lies in {z:~5(z)_<r}. H e n c e / (  is compact. 

To prove the converse statement we need to show that for any sequence of 

mappings f j  C ~ ( V )  such that f j (S )  lie in a compact set K in V the sets f j (U) also 
lie in a compact set. Then the statement follows from the Kontinuit/itssatz. But 

since f j (U)c_~ ,  which is compact, this is evident. [] 

The following theorem tells us that in the case of pseudoconvex open sets we 

need only one continuous plurisubharmonic function to describe a plurisubharmon- 
ically convex set. 

T h e o r e m  3.4. If an open set V is pseudoconvex, then a compact set K c V  is 
plurisubharmonically convex in V if and only if there is a continuous plurisubhar- 
monic function u on V that is equal to 0 on K and positive on V \ K .  

Pro@ The "if" part is trivial. To prove the "only if" part, for every point 

z E V \ K  we take a non-negative plurisubharmonic function v~ that is equal to 0 

on / (  and is such that v~(z)=a~>O. By [FN] there is a decreasing sequence of 
continuous phrisubharmonic functions v~,j converging to v~. Since the functions 
v~,j converge uniformly to 0 on K, we can find k such that  1 Vz,~<~a~ on K. Let 
u~=max{vz,l~-�89 The function u~ is continuous, equal to 0 on K and u~(z)> 

a z .  

Let us take a sequence of open sets Vj, - o c < j < o c ,  such that: Vj~Vj+I,  
o o  o c  

[Jj ~ Vj V and Nj -oo V j=K.  Since the sets Vj+I\Vj are compact we can find 
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finitely many  points zk i n  Vj§ such that  the function ~tj=maxk Uzk is positive 

o n  Vj+I \  D .  Let bj=2 IJ] Ilnjll~ljl. Then the function 

O0 

j ~ - - O O  

is continuous, plurisubharmonic, equal to 0 on K and positive on V \ K .  [] 

4. T h e  re la t iv i ty  o f  J e n s e n  m e a s u r e s  

Clearly Yz (K) C J~ (K, V) C J~ (K, Cn).  We are interested in cases when Yz (If)  = 
Jz (K, V). Let us start  with a lemma which guarantees the extension of plurisub- 

harmonic functions. 

L e m m a  4.1. Suppose that K is a compact set in an open set V such that there 

is a continuous pIurisubharmonic function u on V equal to 0 on K and positive on 

V \ K .  I f  v is a plurisubharmonic function defined on a neighborhood W c V  of K 
and bounded below on K ,  then there is a plurisubharmonic function v' on V which 

coincides with v on K .  

Proof. Suppose that  v > A > - o c  on K.  We take a neighborhood W'  of K that  
compactly belongs to W. Let B < o c  be the supremum of v on 0 W '  and let C > 0  
be the infimum of u on OW'. Then the function 

u' 2 B - A u + A  
C 

is smaller than  v on K and greater than  v on OW'. Hence the function v'  equal 

to the maximum of u '  and v on W'  and to u'  on V \ W '  is plurisubharmonic on V. 
Moreover, v '  v on K.  [] 

T h e o r e m  4.2. Suppose that K is a compact set in an open set V such that 

there is a continuous plurisubharmonic function n on V equal to 0 on K and greater 

than zero on V \ K .  I f  a point z o ~ K  then Jzo(K, V ) - J ~ o ( K  ). 

Proof. We have to show that  Jz0 (K, V)C Jzo (K).  Let v be a lower bounded 
phr i subharmonic  function on a neighborhood W of K.  By Lemma 4.1 there is a 
plurisubharmonic function v'  on V equal to v on K.  If >EJ~o(K,  V), then 

f v d, -- / ~' d~ _> ~'(~0) = ~(~0). 

Hence #E Jzo (K).  
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If  v is any  p lu r i subha rmon ic  funct ion on a ne ighborhood  W of K ,  t hen  we 

take  the  sequence of lower b o u n d e d  p lu r i subha rmon ic  funct ions  v j - m a x { v , - j } .  

Clearly,  vj"~v. If  #EJ~o(K,V),  t hen  

/ y d .  lira lira 
j-~oc .7 j--+ oo 

Hence # C J ~ 0 ( K ) .  [~ 

The  corol lar ies  below follow i m m e d i a t e l y  f rom T h e o r e m s  3.4 and  4.2. 

C o r o l l a r y  4 .3 .  If  a compact set K in a pseudoconvex domain V is plurisub- 

harmonically convex, then for every point z ~ K  we have J~(K)=&(K,  V). 

C o r o l l a r y  4 .4 .  If u is a lower bounded plurisubharmonie function defined on a 
neighborhood W of a compact plurisubharmonically convex set K in a pseudoconvex 
domain V, then there is a pluris~tbharmonic function v on V which coincides with 
u onK. 

5. Analyt ic  mult i funct ions  

I f K '  is a set in C n, t hen  a multifunction K on K '  is a m a p p i n g  o f K  ' into the  set 

of n o n - e m p t y  compac t s  subse ts  of C"L For  our purposes  it is reasonable  to  ident i fy  

a m a p p i n g  K wi th  the  set { (z, w) c K '  x C '~ :  w C K(z) }, which is the  g raph  of K .  We 

will denote  the  g raph  of K also by  K .  If N = n + m  and  z=(zl ,  ..., zN )cC  N, t hen  

we define a p ro j ec t i on  p(z) - -z '=(z l , . . . ,  z,,~). A set K c C  N is a multifunction on K '  

if p ( K ) = K '  and the  sets  K(z ' )={zCK:p( z )=z ' }  are compac t .  If  @ is a funct ion  

on K ,  t hen  we define the  funct ion  

CK(z')= sup r 

OU /~/ .  

We say t ha t  a nml t i func t ion  K on K ~ is upper semieontinuous if for every open 

set W c C  ~ the  set { z ' ~ K ' : K ( z ' ) C W }  is re la t ive ly  open  in K'. A mul t i func t ion  

K is u p p e r  semicont inuous  if and  only if for every c ompa c t  set FCBI t the  set 

p - I ( F ) N K  is compac t .  I t  is easy to  see t h a t  if K is an uppe r  semicont inuous  

mul t i func t ion  and  a funct ion ~b is uppe r  semicont inuous  on K ,  then  the  funct ion 

~bg is also uppe r  semicont inuous .  

A funct ion  u on a compac t  set K c C  N is pluris~ubharmonie if ~a is u p p e r  semi- 

cont inuous  and  for every z ~ K  and  #CJ~(K) we have 

< [ 
J 
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If F ~ is a subset of K r, then we define the restriction of a multifunction K to F / as 

the set F = p - I ( F ' ) N K .  
An upper semicontinuous multifunction K is analytic if for every open set 

V containing K and every plurisubharmonic function u on V the function uK is 

plurisubharmonic. The function u can be assumed to be C ~ because any plurisub- 

harmonic function can be approximated by such functions. 

T h e o r e m  5.1. Suppose that K c C  N is an upper semieontinuous multif~nction 
on a relatively closed set K ~ in an open set V c C  ~. Then K is analytic i f p . J~ (K)=  
J~(K') for every z ~ K '  and every w~ K(z).  If  K is analytic and K'  is the union of 
relative interiors of compact subsets K} C K such that the restrictions of K to K} 
are also analytic, then p .J~(K)=J~(K' )  ]'or every z ~ K '  and every w~K(z ) .  

Pro@ To prove the first part we fix a point z~EK ~, a Jensen measure u~ 

J~6 (K~) and a plurisubharmonic function u on a neighborhood W of K. For some 

s > 0  we find a point zo~K(z~o) such that uK(zto)<U(Zo)+e. Take #cY~0(K ) such 

that p , p = u .  Then 

Since c is arbitrary we get the plurisubharmonicity of UK. 

To prove the second part we suppose that there is a point z ~ K  ~, a Jensen 

measure u~Y~;(K')  and a point zo~K(z~o) such that  the set p ,&0(K)  does not 

contain u. 
Let F '  be a compact subset of K '  containing the support of u and such that KF, 

is analytic. The set F=p -~ ( F ' ) ~ K  is compact and, therefore, the set H=p,  Jzo (F) 
is a weak-* closed convex set in C*(F'). Since u ~ H ,  there is a tunction r 
and e> 0  such that 

/ r  < inf f Od#-e .  
~eH J 

By the same letter r we will denote a continuous extension of r to V. Let 

~b=~op. By Corollary 2.3 the function 

= inf f~/Jdp U(Z,) 
~e&(w) J 

is plurisubharmonic on a neighborhood W of F and clem'ly u < r  on W. Since F is 

anMytic the function UF is plurisubharmonic on F ~ and UF<r  

We can find a neighborhood W of F such that 

u(z0)> inf f ~ d P - 2 = i n f  / r  -c-. 
- -  ~ C & 0 ( f )  ~CH 2 
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So  

But this contradicts the plurisubharmonicity of Up and, therefore, there is a 

measure #E J~0 (F)  such tha t  p , p = y .  Since, evidently, Jzo (F) C J,o (K),  our theorem 
is proved. [] 

Now our goal is to find reasonable si tuations when the condit ion on the set K '  
from the second par t  of Theorem 5.1 holds. We star t  with a basic lemma. 

L e m m a  5.2.  Suppose that a set K c C  N is an analytic multifunetion on a 
relatively closed set K t in an open set V c C  ~. I f  for a compact set F t c K  ~ there 
exists a continuous non-negative plurisubharmonic .function r on V such that F t=  
{z:~b(z)=0}, then the restriction of K to F'  is analytic. 

Proof. Suppose tha t  F ~ c K ~ is a compact  set and r is a continuous non-negat ive 
plur isubharmonic  funct ion on V such tha t  F'={z : r  Let u be a lower 

bounded  ptur isubharmonic  flmction on a ne ighborhood W of F = p  -1 (F ~) NK. Let 

a be the max imum  of u on F .  Take a ne ighborhood W1 of F compact ly  contained 

to  W ~ p  -1 (V) such tha t  u < b = a + l  on W 1. Then  take an open set W~ C g ~  p(W1) 
containing F t. As in the proof  of L e m m a  4.1 choose a continuous plur isubharmonic  

t r funct ion r on V which is smaller than  UK on F t and greater  t han  b on W~\W~. 
Let ~ (~lop a n d  a n  open set Y = p - l ( V \ V v ~ ) .  Let v be equal to m a x { u , ~ }  on W1 

and to  @ on Y. The  function v is p lur isubharmonic  on W1UY and VK=UF on F t. 
Hence Up is plurisubharmonic.  

If  u is not  bounded  below then let u r n = m a x { u , - m } ,  r e = l ,  2, .... Then  up 
is the limit of a decreasing sequence of p lur isubharmonic  functions (u,~)F and, 
consequently, also plurisubharmonic.  [] 

This lemma has two corollaries tha t  describe most  reasonable situations. The  
first one is applied to analyt ic  mult i funct ions on open sets. 

C o r o l l a r y  5.3.  I f  K is an analytic multifunction on an open set V c C  ~, then 
its restriction to any compact subset of V is also analytic. 

Proof. Let F t be a compact  set in V and let u be a p lur isubharmonic  function 

on an open ne ighborhood W of F = p - I ( F t ) N K .  For z~CF ~ we take a closed ball 

B=B(z~ ,  r) of radius r centered at z~ such tha t  p I ( B ) N K c W .  Since the closed 

ball satisfies the condit ion of L e m m a  5.2, the funct ion u~  is plurisubharmonic.  Since 

F ~ can be covered by such balls, UF is also plur isubharmonic.  [] 

The  second corollary has sense when we are talking about ,  say, analyt ic  varieties 
in pseudoconvex domains.  
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C o r o l l a r y  5.4. Suppose that a set K c C  N is an analytic multifanction on 
a relatively closed plurisubharmonically convex set K ~ in a pseudoconvex domain 
V c C  ~. Then K' is the union of relative interiors of compact subsets K~ c K  such 
that the restrictions of K to K} are also analytic. 

Pro@ Let ~ be a continuous exhausting function of V. The sets 

Fj = {z: ~(z) < r}nK'  

are plurisubharmonically convex and their interiors exhaust K'. The rest follows 
from Theorems 3.4 and 5.1. [] 

To prove that an upper semicontinuous multifunction K over an open set V is 

analytic it suffices to verify that for every point zEV, every vector v E C  ~ and every 

point wEK(z)  there is a Jensen measure ~ with barycenter at w such that p . u = # ,  

where # is the measure (27r)-ld0 on a circle z+rve i~ That  means that r can be 

lifted to J~(K) for all sufficiently small r>0 .  Note that the support of u lies over 

the line {z+vC:~EC}.  This implies a corollary. 

C o r o l l a r y  5.5. An upper semicontinuous multifunction K over an open set 
V c C  ~ is analytic if and only if its restriction to any complex line is analytic. 

The following theorem, due to Hartogs, is well known and its proof is brought 

here to demonstrate how Theorem 5.1 works. 

T h e o r e m  5.6. Let K be an analytic multifunction over an open set V c C  n 

such that the fibers K(z) are singletons for all zEV.  Then K is a graph of a 
holomorphic mapping. 

Pro@ Let f ( z )=K(z ) .  Since K is upper semicontinuous, the mapping f is 
continuous. We take a point z0 E V which we assume to be the origin, a vector 

v c C  m and a number r > 0  such that the disk {z:z--zo+@ and Ir is in V. For 
the measure >=(27r)- ld0 on a circle {z:z=zo+tei~ and 0 < t < r }  we denote by 

the lifting of > to 5[w0 (K), where wo=f(zo). Clearly, u = f . > .  If z = ( z l ,  ..., zN) and 

f=(f r~+l , . . . ,  fN), then by holomorphicity of zk 

0 = / z  d 1 2~ k t~= ~ L fk(tei~ ~~ 

for all k > n .  By Morera's theorem f~ and, consequently, f are holomorphic. [] 
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6. S m o o t h  analyt ic  mul t i funct ions  

Theorem 5.1 is rather  theoretic and hard to use to recognize analytic multi- 
functions. We now present a result that  allows us to do this. This result is known 

to specialists but we have never met it in the literature in an explicit form. 
A domain D c C  N is strictly n-pseudoconvex at a point zEOD if there is a C 2 

function 6 defined on a neighborhood V of this point such that  D A V - - { z : 6 ( z ) <  0}, 
Vr ~0 ,  and there is an n-dimensional complex space in the complex tangent space 

to 0D at z, where the Levy form of r is strictly positive. 
The open disk in C centered at z and of radius r is denoted by U(z, r) while 

its boundary is S(z, r). 

Lemma 6.1. Suppose that K c C  N is an upper semicontinuous rnultifanction 
over a domain V C C ~. Let D =p-~ (V) \ K.  If  D is strictly n-pseudoconvex at every 
point wEOD such that p(w)EV, then K is an analytic multifunction. 

Pro@ Let u be a plurisubharmonic function in a neighborhood of K,  z0 ~ 0D, 

p(zo)=z~ and UK(Z~)=U(Zo). We may assume that  z~=z0=0.  Let 6 be a function 
defined on a neighborhood W of z0 such that  D~W={z:6(z)<O},  V6(z0 )~0  and 
the Levy form H of 6 is strictly positive on a complex n-space T in the tangent 
space of OD at zo. 

It  is well known (see [Sh, Section 13.37]) that  there is a holomorphic mapping 
F of the unit ball B of C ~ into C N with the following properties: F(0) - -0 ,  the 
rank of F'(O) is n, F ' ( O ) ( C ~ ) = T  and F ( B ) c K .  

Let G=poF and let A={zEB:G(z)=O}.  If there is a component  A' of A 
passing through 0 and of positive dimension, then F(A') belongs to the fiber K 0 =  
K(0) and by the maximuin principle u is constant on F(A'). But F(z) belongs to 
the interior of K when z r  and, therefore, there is a point zCKo tha t  lies in the 
interior of K and n (z )=uK(0) .  For any vector v E C  ~ take g( f )=z+fv .  Then 

l f 0 2 ~  1 f 2~ UK(0) =u(z)_< ~ u(g(sei~ 2~ j ~ uK(se~~ 

for all sufficiently small s. 

Let us fix a vector v E C  ~ and let L be the complex line { ( v : ( E C } .  If there 
are no components A ~ of A passing through 0 and of positive dimension, then the 
analytic variety G-I(L) is one-dimensional near the origin. We take a complex 
locally irreducible curve C c G - l ( L )  passing through the origin. Then G(z)=g(z)v 
for every zcC ,  where g is a holomorphic function on C. Reasoning as in [Ch, 6.1] 

we find a neighborhood W of 0 in C, where 9 is a k-sheeted covering mapping of 
W \ { 0 }  over U(0, r ) \{0} ,  r > 0 .  Then (see [Ch, 6.1]) there is a holomorphic mapping 
f of the unit disk U onto W such tha t  g(f(rei~ ik~ 
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The function g(~)='a(F(f (~)))  is subharmonic on U. If 0 < s < r  and s=s( t ) ,  
0 < t <  l, then u~c(se~~ >_ft(tei~ Therefore, 

5/0 1/2 = <  (te dO < - -  dO. 
- -  - -  27c 

We have proved that  for every point z E V  and every vector v E C  '~ the function 
UK satisfies the subaveraging inequality (1). Thus u ~  is plurisubharmonic and K 
is an analytic multifunction. [] 

C o r o l l a r y  6.2. Suppose that K c C  n+l is an upper" semicontinuous multifunc- 
tion over an open set V c C  ~ such that all connected components of D = p - I  (V) \ K 
are pseudoconvex. Then K is an analytic rnultifunction. 

Pro@ Each connected component Dj of D has a smooth strictly pseudoconvex 
exhausting functions Cj. Let K ~ , = p - l ( V ) \ ~ j { z : r  By Lemma 6.1, K~ is 
an analytic multifunction. Hence K = ~ , , > 0  K,, is also an analytic multifunction. [] 

7.  S t o d k o w s k i ' s  t h e o r e m  

In this section we prove the part  of the seminal Stodkowski's theorem that  is 
most essential for pluripotential theory. 

For an upper  semicontinuous multifunction K over an open set V C C n let us 
introduce the function 

aK(Z) = -- inf log Iz--wl 
~c~:(p(z)) 

o n  D = p - I ( V ) \ K  

T h e o r e m  7'.1. Let K be an upper semicontinuous multifanction in C n+l over 
an open set V c C  n. Then K is analytic if and only if the function 5K is plurisub- 
harmonic. 

Proof. By Corollary 5.5 it snffices to prove the theorem over a domain V c C .  
Then D C C 2. For a domain D C C 2 the following result is valid: if the function 

d(z ,  w)  = - inf log I w ' - w  I 
(z,w')@OD 

is plurisubharmonic on D, then O is pseudoconvex (see [81]). 
So if 5/~(z, w) is plurisubharmonic, then every connected component of D is 

pseudoconvex and K is analytic by Corollary 6.2. 



348 Evgeny A. Poletsky 

To prove that  the function 5K(Z) is plurisubharmonic in D when K is analytic 
we note that  ~ ( z , w )  is upper  semicontinuous on D and subharmonic in w. So 
we have to show tha t  for every point (z0, w0)CD, that  we assume to be (0, 0), and 
every v C C  2 such that  p(v)r we have 

1 ~2~ 
M (o, o) <_ ~ M (rye ~~ dO 

when r is sufficiently small. We may assume that  v=(1 ,  a). Let us take a point z0= 
(0, b )EK such that  dK(0, 0 )= - -  log Ibl. Let r~ >0  be so small that  the line w - a z = O  
does not meet K when [z I_<rl. If  #=(2~r ) - ld0  is the measure on the circle (re i~ 0), 
r<rl ,  then there is a Jensen measure ~ supported by K with baryeenter at z0 such 
that  p , p = # .  The restriction K ~ of K to U(0, r l )  is also an analytic multifunction. 

The function u(z, w ) = - l o g  Iw-az[ is plurisubharmonic in a neighborhood of K '  
and, therefore, 

The theorem is proved. [] 

8. P l u r i s u b h a r m o n i c a l l y  c o n v e x  a n a l y t i c  m u l t i f u n c t i o n s  

In general, an analytic multifunction K need not to be plurisubharmonically 

convex even if p(K)  and all fibers K(z )  are plurisubharmonically convex. For ex- 
ample, the multifunction K = { (z, w) E C2: ]wl 2 < l + ] z  12 } over U is analytic because 

the domain (U • C ) \ K  is pseudoconvex. But it is not plurisubharmonically convex. 
Also when n_>2 the polynomial hull of a set F over cgD need not to be an 

analytic multifunction. As an example take the graph in C3={(zs ,  z2, z3)} of the 
function z a = R e z l  over the unit ball /3 in C 2. This set is plurisubharmonically 

convex in B • C because it is the set of zeros of the plurisubharmonic function 
I z 3 - R e  zll a. Also note that  it is the plurisubharmonic hull of the restriction of the 
graph to cgB. 

However, the following theorem holds. For points z and v in C '~ and r > 0  let 
U(z, v, r) be the disk { z + @ :  ](I _<r} and let S(z, v, r) be the circle { z + @ :  I(I =r} .  

T h e o r e m  8.1. If  an upper sernicontinuous multifunction K over an open set 
V c C  ~ is analytic, then .for every open set W containing K,  every z ~ V  and every 
v E C  n the restriction of K to U(z, v, r) lies in the plurisubharrnonic hull in W of 
the restriction of K to S ( z , v , r )  when U ( z , v , r ) ~ V .  

The converse theorem also holds when, additionally, the fibers K( z )  are pIuri- 
subharrnonically convex in C N-~. 
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Proof. If K is analytic, zoCV, v~C ~ and U(zo,v,r)~D, then we consider 
the Jensen measure #=(27c)-~d0 supported by S(z, v, r)={z+rei~ By 
Theorem 5.1, for every wEK(z) there is a measure uEJ~(K) such that  p . u = # .  
Hence u is supported by the restriction of K to S(zo, r,v). By Theorem 3.1, w 

belongs to the plurisubharmonic hull in W of this restriction. 
To prove the converse s ta tement  we consider a continuous plurisubharmonic 

function u defined on a neighborhood I f  of K.  Fix a point z0 E V. To prove that  
uK is plurisubharmonic we may assume that  u > 0  on K(zo). Since the fiber K(Zo) 
is plurisubharmonically convex in C N-~,  by Theorem 3.4 there is a continuous 
plurisubharmonic function ~ on c N - ~ p - l ( z o )  equal to 0 on K(zo) and positive 

outside. The function Ol(Z)=~(z-p(z)+zo) is plurisubharmonic and continuous 
on C N. Let us take a neighborhood W ~ of K(zo) in C x - ~  and a closed ball 

B ~ V  centered at z0 and of radius r0 such that  K B G W H = B x W ~ W  and u > 0  
on KB. The function u' equal max{u,C~l} on W H and to ~bl on p-a(B) \W" is 
plurisubharmonic on p 1 (B) for an appropriate  constant c > 0  and u ~ - u K  on/3 .  

Let L be the intersection of a complex line { z 0 + ( v : ( ~ C } ,  with V, and let 

F be the restriction of K to S(zo,v,r), r<ro. We take a point wEK(zo), where 
uK(zo)=u'(iv). Since the restriction of K to U(zo, v, r) lies in the plurisubharmonic 
hull of F in W, by Theorem 3.1 there is a Jensen measure ~EJ~(F,W). The 
measure # = p . u  is also Jensen and supported by S(zo,v,r). Hence #=(27r) 1dO. 
Now 

uK(Zo) =~t~(zo) ~t'('w) <_ j u' dP <_ / uK dt~. 

Thus uK is plurisubharmonie. [] 

The following result belongs to T. Ransford [R1]. If V is a domain in C N 

and F is a compact  set in OV, then the plurisubharmonic hull of F is the set /~ 
of all points zCV such tha t  ~(z)<_0 whenever a plurisubharmonie function u on a 
neighborhood of V is less or equal to 0 on F.  We will need the following well-known 
fact: if K c V  is a compact  set, K is the plurisubharmonic hull of K in V, z ~ K  
and W ~ V  is a neighborhood of z such tha t  K c V \ W ,  then the intersection of the 

plurisubharmonic hull of fi2AOW with W coincides w i t h / ~ S W .  

C o r o l l a r y  8.2. Let V be a smooth domain in C and let FCp-I(OV) be a 
compact set. Then the plurisubharmonic hull F of F in D=p-I (v)  is an analytic 
multifunction over V. 

Proof. Clearly, F is an upper  semicoutinuous multifunction. If w E F(z )  belongs 

to the plurisubharm0nic hull of F(z )  in C N - l ,  then there is a Jensen measure in 

J,~(F(z),  C N - l )  with barycenter at w. Hence ,wcF(z) and the fibers of" /~ are 
plurisubharmonically convex. 
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If U--U(z, r) ~ V  and G is the restriction of F to S=S(z ,  r),  by Theorem 8.1 we 

have to show tha t  F ( z ) C G .  But  this follows iramediately from the fact ment ioned 

above. [] 

9. Minimal  analytic multifunctions 

An analyt ic  mult i funct ion over a set F is minimal if it does not contain any 

analyt ic  mult i funct ion over F except itself. For example, graphs of holomorphic  

functions are minimal.  Since the intersection of a decreasing sequence of analyt ic  

mult i funct ions over the same set is an analyt ic  mult ifunction,  every analyt ic  multi- 

funct ion contains a minimal analyt ic  mult ifunction.  

If  K is a relatively closed set in an open set V c C  ~, z is a point  in K and 

W is a relatively open set in K,  then the harmonic measure w(z, W, K) of W with 

respect to ~:  is the suprenmm of p (W) ,  where p runs over all measures in A ( ~ : ) .  

We define Ix(K) as the set of all points wCK such tha t  w(z,W,K)>O for every 

relatively open ne ighborhood W of w in K.  It  follows tha t  I~ (K) is closed in K.  

We say tha t  a mul t i funct ion K over a domain  D satisfies the maximum principle 
if any plur isubharmonic  funct ion which is defined on a ne ighborhood of K and 
at ta ins  its max im um  on K at some point  w ~ K  is constant  on K.  

T h e o r e m  9.1.  Let K be an analytic multifunction over a domain V and let 
u be a plurisubharmonic function defined on a neighborhood of K. If u attains its 
maximum A on K at some point woEK, then the set L={wEK:u(w)=A}  is an 
analytic multifunction over V. 

Proof. First,  we note t ha t  I ,~(K)cL ibr every point  wEL. Indeed, if a point  

zoEI,~(K)\L, then u ( z ) < A - c  for some c > 0  and z in some neighborhood W of z0. 
There  is a measure #EJ~,(K) such tha t  #(W)>O. Hence 

u(w) < / u dp < A-cp(W). 

This contradict ion proves the s ta tement .  

Secondly, p(L)=V. Indeed, for z c V  let us take a measure #EJ~o(V) ,  where 

zo=p(wo), such tha t  # ( W ) > 0 ,  where W is some ne ighborhood of z in V. By The- 
orem 5.1 there is a measure uE J~o (K) such tha t  p . u = # .  Let F = s u p p  u. Clearly, 

F C I ,  w0(K) and we see tha t  zCp(I~o(K)). By the s ta tement  above, zCp(L). 
And, finally, if # E Jr  (V) and w C L with p(w)=z, then  by Theorem 5.1 there is a 

measure u C J,w (K) such tha t  p .  u = #. We want  to show tha t  u G Jw (L). It  was proved 
in [P1, Theorem 2,1] tha t  for a measure uCJ~(K) there is a compact  set X C K  
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such tha t  u C J ~ ( X )  and w ( w , W , X ) > O  for every relative open set W c X .  By the 

two constants  theorem X C L .  Thus uCJ~(L) .  By Theorem 5.1, L is analytic.  [] 

C o r o l l a r y  9.2.  I f  an analytic multifunction is minimal, then it satisfies the 
maximum principle. 

C o r o l l a r y  9.3.  Let K be an analytic multifunction over a domain D and let 

u be a plurisubharmonic .function defined on a neighborhood of K .  I f  u attains its 

maximum on K exactly at one point of each fibe~3 then K contains a holomorphic 
selection. 

Proof. The set L where u a t ta ins  its m a x imum is an analyt ic  mult i funct ion by 

Theorem 9.1. By  Theorem 5.6 this set is the graph  of a holomorphic  function. [] 
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