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An explicit inversion formula 
for the exponential Radon 

transform using data from 180 ~ 

Hans  Rul lgs  

Abs t r ac t .  We derive a direct inversion formula for the exponential Radon transform. Our 
formula requires only the values of the transform over an 180 ~ range of angles. It is an explicit 
formula, except that it involves a holomorphic function for which an explicit expression has not 
been found. In practice, this function can be approximated by an easily computed polynomial of 
rather low degree. 

1. I n t r o d u c t i o n  

The  set of' all o r ien ted  lines in the  p lane  can  be  ident i f ied wi th  the  space S 1 x R 

by  assoc ia t ing  the  pa i r  (O,s)ES 1 •  w i th  the  line L(O,s)--{xCR2;x.O=s}. A 

p a r a m e t e r i z a t i o n  of th is  line is t hen  given by  the  m a p p i n g  t~--~ sO+~O • where  0 • is 

ob t a ined  by  r o t a t i n g  0 counterc lockwise  t h rough  a r ight  angle.  

Let  f be  a smooth ,  c o m p a c t l y  s u p p o r t e d  funct ion in the  p lane  R 2. The  R a d o n  

t r ans fo rm of f is the  funct ion  R f  on S 1 x R defined so t h a t  Rf(O, s) is the  in tegra l  

of f a long the  line L(O, s). If  # is a real  number ,  the  exponen t i a l  R a d o n  t r ans fo rm 

R , f  is defined by  the  weighted  in tegra l  

F (1) R,I(O, s) = f(sO+tO• "t dr. 
O 0  

Note  t h a t  the  o rd ina ry  R a d o n  t r ans fo rm is ob t a ined  as a special  case of the  expo-  

nent ia l  R a d o n  t r ans fo rm when # = 0 .  

Bo th  the  R a d o n  t r ans fo rm and  the  exponen t i a l  R a d o n  t rans form,  as well as 

the  st i l l  more  genera l  a t t e n u a t e d  R a d o n  t rans fo rm,  arise in app l i ca t ions  to  medica l  

imaging,  see [2]. I t  is t hen  of in teres t  to  inver t  the  t rans form,  t h a t  is to  de t e rmine  the  

funct ion  f f rom measu remen t s  of i ts  t r ans fo rm.  For  t he  o rd ina ry  R a d o n  t r ans fo rm,  

an expl ic i t  inversion formula  was found by  J. R a d o n  in 1917, [6], and  a genera l i za t ion  
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to the exponential Radon transform was derived by O. Tretiak and C. Metz in 
1980, [71. A further generalization to the at tenuated Radon transform was recently 
discovered by R. Novikov, see [5] and [3]. An iterative algorithm for inversion of 
the exponential Radon transform, which only requires R,f (O,  s) to be known for 0 
on half of the unit circle has been published by F. Noo and J. M. Wagner, [4]. 

The goal of this paper is to find an explicit inversion formula, solving the same 
problem as the algorithm of Noo and Wagner. More precisely, we consider the 
following problem. 

P r o b l e m .  Let D c R  be a compact set, let # be a real number, and let $1= 
{OESI;01>_O} be the right half of the unit circle. Find an explicit formula for 
computing f ,  given the values of R , f  on $1+ • R,  where f is any smooth function 
with supp f c D .  

We will present an essentially explicit formula meeting the requirements of this 
problem. For the purpose of numerical computations it is not clear that  this formula 
offers any advantages over the algorithm given in [4]. We hope that  nevertheless an 
explicit inversion formula might be of some interest. 

2. S t a t e m e n t  o f  resu l t s  

The adjoint of the exponential Radon transform is known as the dual Radon 
transform and is denoted R~. It takes functions on S i x  R to functions on R 2 and 
is given by the formula 

(2) R~g(x) = Ji,1 g(0, x-0)e "x '~ dO, 

where dO denotes arc length measure on the unit circle. Computation of R~g is 
also known as backprojection. The first step ill our inversion formula is to compute 
lg~,9 , where g OR~f/Os on S+ 1 x R and 0 on the other half of S 1 • R. 

T h e o r e m  1. / f f e 6 ~ ( R 2 ) ,  then 

(3) , ~ OR~fos (0, x.O)e -"x'~177 dO = 2 o~ f ( x x + t ,  x2)-" cosht #t dr, 

where the singularity at t = 0  in the integral on the right-hand side is treated as a 
principal value. 

Let ch,  denote the distribution 

cosh #t 
ch.(t)  t 
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with a principal value at the origin. (Later, we will also use ch~ to denote the 
meromorphic function defined by the same expression.) The next step is to find a 
compactly supported distribution u such that  the convolution u*chu restricted to a 
given compact set is a point mass 50 at the origin. This is t ransformed into a problem 
about functions of one complex variable by means of the following definitions. 

Let p be a function, holomorphic in the whole complex plane except on some 

subset of the real line. Define B+~ and B _ ~  to be the boundary values of F on the 
real line from above and from below 

(4) 

provided that  these limits exist as distributions, and let B2qo=B+qo+B ~ and 
B A ~ = B + c R - B  qo. 

Furthermore, if ~ and ~b are holomorphie outside some compact set in the 
complex plane, define an entire iunction [p, ~b] by the formula 

(5) [~,r ~ ~ ( 0 r  

where F is a closed curve, depending on z, so large that  the integrand is holomorphic 
in the unbounded component  of C \ F .  

T h e o r e m  2. Let r < R be positive numbers, and let F be a ]:unction holomor- 

phic in C \ I - R ,  R]. I f  

(6) 

a'rtd 

1 

(7) [ch,, F] O, 

the,~ ~=B~F s~ti4/es 2(~*r fo~ Itl<,. 

Finally, we show that  it is possible to find functions F satisfying the hypothesis 
of Theorem 2. See Section 4 for some remarks on the computat ion of F.  

T h e o r e m  3. Let w((~) be a positive ]:unction on the interval [0, 1], and let 

G(~) be dej~ned fo~" ~ C \ [ - R ,  R] by 

f (s) G(~) = / J d~, 
J0 r 
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where for any positive real number c, we have chosen the branch of 1/ c~ZT-z 2 
which is holomorphic outside the interval [ - , / ~ , , / c ]  and satisfies z /  c,/7~z2-z 2 -+i, 
as z--+oc. For generic choice of r and R there exist a number a and an odd, entire 
function h such that 

satisfies the hypothesis (6) and (7) in Theorem 2. 

Remark. It is likely that  the conclusion of the theorem holds for all r, R and 
w, but we do not have a proof. 

Combining these results, we obtain an inversion formula for the exponential 
Radon transform. 

C o r o l l a r y  1. Let D c R  2 be a compact set, and let r>sup{ lx l  yll;x, yED} .  
Choose a number R > r  and a positive function w on the interval [0, 1], let F be the 
function constructed in Theorem 3 which satisfies the hypothesis of Theorem 2, and 
let u= B ~ F. I f  f is any function of class C 2 with supp f c D , then 

(10) f ( x ) = / _ ~ u ( t ) L  " OR#'f (o, Ol(xl+t)+O2x2)e "(~176 
Os 

for all z E D .  

3. P r o o f s  

Proof of Theorem 1. Let 00 denote the directional derivative in direction 0. 
Then it follows from the definition of the exponential Radon transform, that  

OR, f (0, s) = Oo f(sO+tO• ~t dt 
O S  o o  " 

and hence 

OR~f (O,x .O)e-#x~177 L I ~ 
Os ~ 

=L,L 
=/2L, 

Oof((x.O)O+tO• ~t-~x~177 dt dO 

0o f (x  + rO• )e ~ dT dO 

Oo f ( x + rO• )e ~ dO dr, 
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where we have made the change of variables T=t--x.O • For fixed x and % 0 is the 
tangent vector to the semicircle {x+rO • ;OES1}, so that  

Oof(x+rO ) dO f (x l  +% x 2 ) - f ( x l  --r, X2) 
r 

Combining these computations, it follows that 

~ OR'f(O,x.O)e ~*x~177 / ' ~  (f(x~+r'X2)--f(z~--r'Z2)e~*~dr 
Os ~ r 

=lira [ e"~+e-"~f(~+~,~)d~ 
e-+o Jl~_l> e 7- 

[] 

Theorem 2 is a direct consequence of the following identity. 

L e m m a  1. If 9~ and ~ are holomorphie outside a compact subset of the real 
line, then 

1 

Proof. Let z E R  and suppose that  qo(() and ~b(z-()  are holomorphic for ( 
outside the interval [a, b]. Then 

[g), g)] (z) = liin 1 (jfab fb a ~.o ~ ~( t - ic )r162  

1 

27ci 

1 

47ri 

1 
- 4~ri ((Be~*BLxr (BA~*Ber 

\ 
~(t + i e ) r  (t + ie) ) dr) 

~b 
- - -  (B ~( t )B+~r  B+~(t)B ~ r  

--/b(B2~(t)B:,V,(~-t)-BA~(e)B2~(~ ~)) dt 

Proof of Theorem 2. To prove the theorem, take 9~=ch, and "~b--F. Then 
B29~=2ch,  and Ba9~=-2rci6o. From the assumption that  [ ch , ,F ]=0  it follows 
that 

2 ch~ * u = Bz  ch~.  BA F = BA ch~ */32 F = - 2rci50 * B~ F. 

The conclusion follows from the assumption on BzF.  [] 
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Proof of Theorem 3. We must show that there exist a number a and an entire 
function h such that  

a 

satisfies (6) and (7). Note that  for p and ~ holomorphic outside the reai line, 

(12) 

provided that the products on the right make sense. Since B2G=t3Ah=O in ( - r ,  r), 
it follows that  in the interval ( - r ,  r), 

(13) 

x/r2 +(R 2 r2)a 

Hence, the condition (6) will be satisfied precisely if 

( 1 4 )  a = 

fO 4~2 w(cd 
x/r2 + ( t~2- r2)~ 

da 

It remains to determine h so that  (7) is satisfied. To prove the existence of h it is 
useful to reformulate the condition by means of the following lemma. 

L e m m a  2. Let h and ~ be entire holomorphic functions, and let ~ be holomor- 
phic outside a compact set, with a zero of order k >0  at infinity. Then [z -1, h~] =O 
if and only if h= [z -1, r  + P for some polynomial P of degree at most k -  1. 

Proof. Note first that  for any ~ holomorphie outside a compact set, [z -1, Pl is 
the unique entire function with the property that  p - [ z  -1, ~]-O([z[  ~), as z ~ o c .  
From this it follows that  

is a polynomial of degree at most k - 1 .  [B 

Rewrite the condition (7) as 

(15) 
[l cl= ] 
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Since G has a zero of order 1 at co, it follows from L e m m a  2 tha t  this condit ion 

will be satisfied if 

Write  the r ight -hand side of (16) as -q)(h)-H, where H is an entire funct ion 

and (I) is a linear opera tor  on the space of entire functions. Let  K be a compact  

set containing the interval I - R ,  R] in its interior, and let A(K) be the Banach 
space of functions continuous in K and holomorphic  in the interior of K.  Since 

( c o s h ( # z ) -  1)/z is an entire function, the contour  of integrat ion in the definition of 

cosh( z ) - l , h a  =2~i ( h(z-()G(z-()d( 

can be chosen so tha t  the a rgument  of h always is in the interior of K.  From this 

it is clear t ha t  �9 can be extended to a bounded  opera tor  from A(K) to  A(K') for 

any compact  set K / c C .  If  K is contained in the interior of K/ ,  the restriction 

A(K')--+A(K) is compact ,  and it follows tha t  (I) is a compact  opera tor  on A(K). 
So unless 1 happens  to  be an eigenvalue of q), the equat ion h+~2(h) H has a 
unique solution hEA(B2). Since bo th  H and (I)(h) are entire f\mctions, it follows 

tha t  h is also entire. Since r takes odd tunctions to odd functions, even functions 

to even functions and H is odd, it follows tha t  h is odd. 

Finally, note tha t  q) depends analyt ical ly on r and R, and the norm of 

converges to  0, as r and _R approach 0. Hence, - 1  is not  an eigenvalue of (I) for 
generic choices of r and /~ .  In fact, numerical  experiments  seem to suggest tha t  the 

eigenvalues of (I) are always positive. [] 

4. N u m e r i c a l  t e s t s  

To use the inversion formul~ on numerical  data ,  it is necessary to choose a 

weight w, compute  approximat ions  for the corresponding a and h to find a funct ion 

F=(a/z+h)G satisfying the hypothesis  of Theorem 2, and then compute  a list of 

values of U=BAF. 

Choice of weight. Choosing w to be a piecewise linear f lmction makes the com- 

puta t ion  of G straightforward.  In order to make G fairly smooth,  it is advisable to 
make w(0) w(1) 0. 

Computation of a and h. The constant  a is found directly from (14). The  
function h is computed  directly from the equat ion (7) ra ther  than  (16). More 
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precisely, h is approximated by an odd polynomial. Choose a positive integer n, 
and let ch,  and G be the Laurent series expansions of eh~ and G up to terms of 

some finite degree, s~v 4n. Use the relations 

(17) 

I (--1)J@l( ~I__j)Z j§ 
EzJ,zk] = (_ l )k  ( _ L k )  zJ+k+l ' 

0, 

if j < 0  and j + k + l _ > 0 ,  

if/c < 0 and j + k + l _ >  0, 

otherwise, 

and the bilinearity of [ . , .  ] to compute an odd polynomial hn of degree 2n+1  such 
that  the Taylor series of 

vanishes up to terms of degree 2n. Note that  this expression is an even function, 
so we have n + l  linear equations in the n + l  unknown coefficients of h~. Then it is 

easy to show" that  if a solution h of (16) exists, h~ converges to h, as n-+oc.  

Computation of ~t. The distribution u is readily computed by the formula 

(18) // 
a• ,r2)/(R2-,r~)} ~/r2 + ( R 2 - r 2 ) a  t 2 da. 

Here 'u is t reated as a function rather  than a distribution. When computing the 
integral in (10) numerically, it is necessary to deal with the singularity of u at 
the origin. One simple-minded approach is to use the trapezoid rule on a set of 
nodes symmetric  with respect to the origin to approximate the principal value 
integral. More accurate results can be obtained by using the methods described in 

[2, Chapter  III]. 

A reconstruction was made with the values r 1, R - 1 . 5  and ten nonzero terms 
in the polynomial h,r,, see Figures 1 and 2. The test  object consists of circular discs, 
and the Radon t ransform was sampled at 200 values of 0 equally spaced over $1+, 
and 101 values of s equally spaced between 0.5 and 0.5. The width and height of 
the image are 1 and the at tenuation # = 3 .  
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Figure 1. Exact image and reconstruction obtained using the inversion formula. 
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Figure 2. Cross section of exact image (dotted) and reconstruction (solid) along the 
horizontal (left) and vertical (right) axes through the center of the image. 
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