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Differentiability properties 
of Orlicz-Sobolev functions 

Angela Alberico and Andrea Cianchi 

1. I n t r o d u c t i o n  and  m a i n  r e s u l t s  

In this paper  we are concerned with the pointwise behaviour of functions in 

certain classes of weakly differentiable functions. 
The ancestor of all modern results dealing with pointwise properties of non- 

smooth functions is certainly the Lebesgue differentiation theorem, which asserts 
that  if ft is an open subset of R ~, n > l ,  and u is a locally integrable function in f~, 

then lim~_~0+ 3CB,.(x) u(y) dy exists and is finite for a.e. xEf~, and 

(1.1) lim ~ "  l u (y ) -u (x ) l  dy = 0 
~-+0+ .] B~,(x) 

for a.e. xCf~. Here, B,r(x) is the ball centered at x and having radius r, and 
f z  u(y)dy stands for ( 1 / I E I ) f z  u(y)dy, when E is a measurable set with finite 
Lebesgue measure IEI. A point x where (1.1) holds will be called a Lebesgue point 
for u, or a point of approximate continuity for u. (This terminology is borrowed 
from [AFP], where a comparison with a slightly weaker definition of approximate 
continuity due to Federer can also be found.) The function defined as the limit 
of the averages of u at those points where such a limit exists, and 0 elsewhere, is 

usually referred to as the precise representative of u. Hencefbrth, we shall assume 
that  every locally integrable function is precisely represented. 

It  has been long known that  Sobolev functions fulfill (1.1) in a stronger sense, 
in that  the exceptional set of those points where (1.1) does not hold is consider- 
ably smaller. The size of this exceptional set can be properly est imated through 
the notion of capacity. Indeed, one of the fundamental  fine properties of Sobolev 
functions tells us that  any element u from the Sobolev space Wlko~(~2) of functions 

endowed with kth order weak derivatives in L~oc(f~) satisfies 

(1.2) lira ~" lu(y)-u(x)lPdy=O 
r+0+ J B,.(z) 
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for every a: in ft outside a set of Ck,p-capacity zero (see e.g. [AH 1 and [Z]). 
The theory of fine properties of Sobolev functions is strictly related to an analo- 

gous theory for the Bessel potential spaces LP~ (1~ ~) (and also for the Riesz potential 
spaces), consisting of those functions which are the Bessel potential of order c~ER of 
some function in LP(R~); we refer to [AH 1 and [A11 for a comprehensive treatment 
of this topic. In fact, inasmuch as W<P(R ~) =Lk(RP ~) for every pE (1, oc) and every 
integer k > l ,  any property of Sobolev spaces can be derived as a special case of a 
corresponding property of potential spaces. 

Fine properties of functions from potential spaces L A ( R ~  where the role of 
the Lebesgue space LP(R ~) is more generally played by the 0rlicz space La (R  ~) 
associated with a Young function A, were studied in [CS] in terms of 0rlicz capaci- 
ties. Results in a similar spirit for functions from first-order 0rlicz Sobolev spaces 

1,A Wlo c (f~) are contained in [MSZ]. Related results can also be found in [AHS2]. Let 
us emphasize that,  unlike the classical Sobolev spaces, Orlicz-Sobolev spaces and 
Orlicz potential spaces do not agree in general, unless the defining Young function 
satisfies additional assumptions. Let us also mention that  a theory of capacity in 
Orlicz spaces requires some regularity of the involved Young function (see e.g. [AB], 
[CS] and [AHS1]). 

All the above-mentioned results in the Orlicz space setting deal with the Le- 
besgue points of functions, i.e. with their (approximate) continuity properties. Our 
aim here is to further investigate the regularity of Orlicz Sobolev functions and to 
initiate a study of their differentiability properties. 

A classical theorem by Rademacher [R] states that  any locally Lipschitz contin- 
uous function in an open subset [2 of R ~ (and hence any function from the Sobolev 

l o 0 ~  space Wlo' ~ ( ) )  is differentiable at a.e. point in ft, and that  its classical gradient 
agrees with its weak gradient a.e. in ft. An extension of this result ensures that the 

1,p ft same conclusion remains true even for functions from the Sobolev space Wlo c ( ) ,  
as long as p > n  (see e.g. lEG, Section 6.2, Theorem 1] and [MZ, Theorem 1.72]). 
Counterexamples show that  exponents p<n cannot be allowed; in fact, for these 

1,p values of p, functions from Wlo o (ft) need not even be continuous at any point of f~, 
nor bounded in a neighborhood of any point of ft ([$1, Chapter V, 6.3]). 

1,p When functions from Wlo c (ft), with l<p<~, are taken into account, a substi- 
tute for these results holds, provided that the notion of classical differentiability is 
replaced by that  of differentiability in L v* sense, where p* =np/(n-p), the Sobolev 
conjugate of p. Precisely, if uEW, lo'cV(ft) for some p~ [1, n), then 

(1.3) lira ~ u(y)-tt(x)-(_Vu(x),y-z} P*dy=0 ,  
r-+0+ ~(x) r 

for a.e. x~ f t  ([EG, Section 6.1.2, Theorem 2], [Z, Theorem 3.4.2]). Here, ( . , . }  
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denotes scalar product, and Vu is the gradient of u. In fact, any such function u 
enjoys a slightly stronger property: it is a.e. approximately differentiable in L p* , in 
the sense that  

(1.4) lim /B  u ( y ) - u ( x ) -  (Vu(x), y - x }  p* 
~-~o+ ~.(~) [ y - x  I dy = O, 

for a.e. x r  
1,Tz The borderline Sobolev space Wlo c (~) has been considered by D. Admns in 

[A1], [A2], where, in the spirit of Trudinger's embedding theorem, it is shown that,  
for every function u from this space, a constant cr exists such that  

(1.5) 
t 

lim / B . ( x ) ( e x p ( l U ( y ) - u ( x ) - ( V u ( x ) ' y - x } l )  ~ - 1 )  d y = 0  

for a.e. z e f / ,  where n ' = n / ( n - 1 ) .  
Properties (1.2) and (1.4) are special cases of general theorems for the Sobolev 

spaces W~)(f t ) ,  where the set of points of approximate differentiability of order 
me[0,  k] with ( k - m ) p < n  is shown to be the complement in Q of a set of Ck-m,p- 
capacity zero. These theorems go back to [FZ] for the case where k = l ,  and to 
[BaZ], [Me] and [CFR] for general k_> 1. Another notion of differentiability of func- 
tions, resting upon the concept of thin set, is that  of fine differentiability (see [M1] 
and [M2]). Fine differentiability properties of Sobolev functions follow via potential 
theory techniques. In particular, both approximate differentiability and fine differ- 
entiability of Sobolev functions can be recovered as a consequence of the ultra-fine 
differentiability property of potentials proved in [A2]. 

In the present paper we focus on first order Orlicz-Sobolev spaces, and we 
establish optimal theorems of Rademacher type and of approximate differentiability 
type in this setting. In particular, we provide a unified framework for the classical 
results (1.3) (1.5). Moreover, in their strongest form, our conclusions also slightly 
sharpen these results. 

Our proofs rely upon Sobolev spaces techniques, and are related to a method 
presented in [$1] and [EG] for ordinary Sobolev spaces. Hence, apart from the 
Lebesgue differentiation theorem (1.1), tools from harmonic analysis or potential 
theory are avoided. This is of basic importance, since, as already pointed out, 
Orlicz-Sobolev spaces and Orlicz potential spaces are not equivalent in general. 
Of course, a study of differentiability properties of functions from Orlicz potential 
spaces would be of independent interest, but this goes beyond the scope of this 
paper. 
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We begin our discussion on exhibiting a sharp assumption on A ensuring the 
1,A a.e. differentiability of functions from Wlo c (f~), which extends the condition p > n  

1,p for the ordinary Sobolev spaces Wlo o (ft). The relevant assumption is that  A grows 
so fast at infinity that  

[+~176 
(1.6) J k , A ( t ) J  dt < +oc. 

1,A Condition (1,6) is known to be necessary and sumcient for Wlo o (ft) to be contin- 
uously embedded into the space of locally bounded ([M, Par. 5.4], IT1], [C1]) and 
also continuous ([C1]) functions. Here, we prove the following result. 

T h e o r e m  1.1. Let ft be an open subset of  R ~ and let A be a Young funct ion  

satisfying (1.6). I f  ueWilo'cA(ft), then u is differentiable a.e. in ft and its classical 

gradient agrees with its weak gradient a.e. in ft. 

R e m a r k  1.2. A theorem by Stein [$2] ensures that  any weakly differentiable 
rG1 function whose gradient is in the Lorentz space L1o c (ft) (a space strictly contained 

in Ll%c(ft)) is a.e. differentiable in ft. Since 

Ln,  1 Lloc(ft),  oc(ft) = U 
d satisfies (1.6) 

(see [KKM]), then Theorem 1.1 turns out to be equivalent to the result of [$2]. 
We present here a direct proof of Theorem 1.1, which, in particular, provides an 
alternative approach to Stein's theorem. 

Assume now that  

( t  ~1/(,~ 1) 
S §176176 \ 17 ( D ) d t  = + o o  

1,A With condition (1.7) in force, the a.e. differentiability of functions from Wlo ~ (ft) is 
not guaranteed anymore, as demonstrated by the following proposition. 

P r o p o s i t i o n  1.3. Let ft  be an open subset of R ~ and let A be a Young func-  
1,A t ion satisfying (1.7). Then there exists u ~ W l o  ~ (ft) such that u is nowhere differ- 

entiable in ft. 

On the other hand, under (1.7) results in the spirit of (1.3), (1.4) and (1.5) 

can be shown to hold, where the role of the function t p*, or e < '  - 1 ,  respectively, is 
played by the Sobolev conjugate A~, of A defined by 

(1.8) A,,(t)=AoH~I(t) f o r t > O ,  
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where H n  1 is the (generalized) left-continuous inverse of the function H~: [0, oc)-+ 
[0, oc) given by 

( { r ( ~ l / ( r ~  1) dt)l/rJ fo r r>0 .  
(1.9) H n ( r ) = \ j 0  \ A ( t ) ]  - 

Obviously, for H,~, and hence A~, to be well defined, A has to fulfill 

(1.10) f (~ ) l / (n  1) 
Jo\A( t ) ]  dt < +oc .  

However, this is by no means a restriction, since Wllo'~A(a) is unchanged if A is 
modified near 0; thus, we may always assume that (1.10) is satisfied on replac- 
ing, if necessary, A by an equivalent Young function near infinity. Under custom- 
ary regularity conditions on ~, L A'r' (f~) turns out to be the smallest Orlicz space 
into which wI 'A( f t )  is continuously embedded ([C3]; see also [C2] for an equiva- 
lent formulation). A corresponding Sobolev Poincar6 type inequality suitable for 
our applications is recalled in Theorem 2.1, Section 2. The relevant results about 
L A" differentiability are contained in the next two theorems. In the statements, 
L A'~ (B~(x)) denotes an averaged Luxemburg norm--see Subsection 2.1. 

T h e o r e m  1.4. Let f~ be an open subset of R n and let A be a Young function 
1 A  satisfying (1.7) and (1.10). Assume that ucW]o'; (f~). Then, for every a > 0 ,  

(1.11) lira /B A n ( l u ( y ) - u ( x ) - ( V u ( x ) ' y - x } I )  dy=O 
t-+O+ ~(x) ar 

for a.e. zErO, and hence 

(1.12) ~-~o+lim u(. )-u(X)-r(VU(x), . - x )  ~ar~(B,,,(x)) = 0 

for a.e. x'Ef~. 

T h e o r e m  1.5. Under the same assumptions as in Theorem 1.4, for every 
a>0 ,  

(1.13) lira ~ A , , ( [ u ( y ) - n ( x ) - ( V u ( z ) ' y - z } [ )  d y = 0  
~.~o+ ,(x) aly-x[ 

for a.e. x E ~ ,  and hence 

(1.14) lim u ( . ) - u ( x ) - i V u ( x ) , . - x }  ~A~ = 0  

for a.e. x E ~ .  
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Since An(t)  is equivalent to t p* when A ( t ) = t  p for some pE [1, n), Theorems 1.4 
and 1.5 recover (1.3) and (1.4), respectively. In the following corollary, Theorems 1.1 

1,A and 1.5 are applied to the borderline spaces W~o c (f~), with A( t )=t~ log~(e+t ) ,  
which have attracted much attention in recent years (see e.g. [FLS], [EGO], [CP] 
and [AHS2]). Obviously, the important special case (1.5) is included here. 

C o r o l l a r y  1.6. Let f~ be an open subset of R ~ and let A( t )=t~ log~(e+t ) ,  
1,A with a>_O. Let uCWlo c (f~). 

[f a < n - 1 ,  then, for every o>0 ,  

(1.15) ,,~O+JB~(~)k , l i r a  4 ~ ( e x p (  crly_x I ' Y--X}I) n/(n-l-a) --1) dy---O 

for a.e. xEf~, and hence 

(1.16) lira u ( . ) - u ( x ) - < V u ( x ) , . - x }  ~ ..... /(.,~ 1 ~)(B.~r = 0  

for a.e. xr Here, Le• ) stands ,for the Orliez space associated with the 
Young function e ~ - 1 with q>_ 1. 

I f  c~=n 1, then, for every ~>0,  

r 

(1.17) lira ~ / ( e x p ( e x p ( l U ( Y )  u ( x ) - ( V u ( x ) ' y - x } l ) n ) - e ) d y = O  
,.~o+ j m(x) \ \ \ < y -  xl 

for a.e. xEf~, and hence 

(1.18) lim ~ ( ' )  U(X) -- (Vr"(X) '  " - - ~ )  ~exp expn' (UT" (X)) ~-+0+ I ' - x [  = 0  

for a.e. z ~ f L  Here, L expexpn (.Br(X)) stands for the Ol'licz space associated with 
the Young function e ~ p  ( e x p ( S ) )  - e .  

I r a > n - l ,  then u is differentiable a.e. in. fL 

We now address the problem of whether conclusions (1.3)-(1.5), and, more 
generally, (1.11), can be somewhat sharpened. Consider first (1.3), involving the 
norm in LP* (f~), the Lebesgue space into which WI'P(f~) is continuously embedded 
when f~ is a sufficiently smooth open subset of R ~. This embedding is optimal, as 
long as Lebesgue (and also Orlicz) range spaces are allowed, but it can be improved 
if Lorentz spaces are employed. Actually, WI,p(f~) is continuously embedded into 
the Lorentz space Lp*,p(f~), a space strictly contained in Lr'* (f~), whenever l < p < n .  
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Moreover, Lp*,p (~2) is known to be the smallest rearrangement invariant range space 
for Sobolev embeddings of Wlm(gt) ([CP], [EKP]). Thus, one may expect that  a 
result in the spirit of (1.3) holds with the LP*-norm replaced by the LP*'P-norm. 
This is indeed the case, and it follows as a special instance of Theorem 1.7 below. 
This theorem relies on a version for Orlicz Sobolev spaces W I'A (ft), recently proved 
in [C4], of the Sobolev embedding into Lorentz spaces, which involves certain spaces 
of Orlicz Lorentz type and yields the best possible rearrangement invariant range 
space--see Theorem 2.3, Subsection 2.3. Here, a key role is played by the Young 
function DA,~ associated with any Young function A satisfying (1.10) as follows. 
Let a: [0, +oc)--+ [0, +oc] be the non-decreasing left-continuous function such that  

A(t)-~ a(r) dr fort_>0, 

and let d: [0,+oo)-+[0,+oc) be the left-continuous function whose (generalized) 
left-continuous inverse obeys 

d- l (s )  = -1(~) \~ ( r )J  dr a(t)~V for s > 0 .  

Then 

/0 (1.19) DA,n(t)= d(r) dr for t > 0. 

Let us notice that  A always dominates DA,~, and is in fact equivalent to DA,~ if 
and only if A(t) is strictly below U (see [C4, Proposition 5.2] for a precise statement 
of this fact). For instance, if A(t)=t p with l<p<n,  then DA,~(t) is equivalent to 
t p, but if A(t) is equivalent to t n near infinity (and satisfies (1.10)), then DA,n(t) is 
equivalent to t ~ log-~(e+t)  near infinity. 

T h e o r e m  1.7. Let f~ be an open subset of R ~ and let A be a Young function 
satisfying (1.7) and (1.10). Let uEwI'A(~). Then there exists a constant ~>0 
such that 

L IB,-(~)I 1 '~ 
(1.20) lim DA,,~(zls / ( u ( . ) - u ( x ) - ( V u ( x ) , . - x ) ) * ( s ) ) d 8 = O  

r ~ 0 +  

for a.e. xCfL Here "," stands for the decreasing rearrangement. 

Remark 1.8. Theorem 1.7 strengthens Theorem 1.4, since a constant k, de- 
pending only on n, exists such that, for any measurable subset ft of R ~ and any 
Young function A satisfying (1.7) and (1.10), 

f ,  [ klf(x)[ (1.21) L 
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for every measurable function f in fL Thus, in particular, Theorem 1.4 could be 
deduced from Theorem 1.7, via (1.21). We are not going to prove inequality (1.21) 
for a general A; let us just mention that  it can be established by the methods of 
[C4, Theorem 4.1]. Instead, we illustrate the situation in the classical setting where 
A(s)=s p with pC [1, n). Let uEWl,P(ft) .  Then (1.20) yields 

(1.22) lim Iin( - ) - n ( x )  - {Vu(x) , - -x}  II zp* ,p(,,.(x)) = 0 
r ~ O  + 

for a.e. xC~2. Since a constant c, depending only on p and n, exists such that  

Ilfll~p*(m(x)) ~ erllfll~*,~(..,.(x)) 

for every fELP*'P(B,.(x)), then (1.22) implies (1.13). Equation (1.22) contains 
however more accurate information, due to the strict inclusion of L p*'p(Br (x)) into 

Let us also notice that,  when A(t) is equivalent to t n near infinity, and hence 
Dd,~(t) is equivalent to t'~log ~(e+t) near infinity, then (1.20) is related to the 
embedding of [BW] and [H]. 

The remaining part of the paper is organized as follows. Section 2 contains 
the necessary background from the theory of Orlicz spaces and, more generally, 
rearrangement invariant spaces, as well as some preliminary results about Sobolev 
Poinca% type inequalities in Orlicz Sobolev spaces. Proofs of the results stated 
above are presented in Section 3. 

2. Background  and prel iminary results  

2.1. Rearrangements  and rearrangement  invariant spaces 

Let ft be a measurable subset of R ~. Given any real-valued measurable function 
u in ~, we denote by u*: [0, +oc)--+[0, +oo] its decreasing rearrangement, defined as 

I{xc : b(x)l >t}l >5} for 

It is easily checked that  u* is non-increasing and right-continuous in [0, +oc),  and 
that  n* and u are equidistributed. Note that  the support of u* is contained in 
[0, It21]. The function u** is defined by u * * - ( 1 / s )  fo u*(r) dr for s>0.  

The signed decreasing rearrangement u ~ of u is the function from [0, I~1] into 
R given by 

ffx a:u(x)>t}l >s} for [0, 
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A rearrangement invariant space-- briefly, an r.i. space X(~)  is a Banach function 

space whose norm I1 [ix(n) satisfies 

(2.1) II~llxcn> = II~llxcn), if u* = v * .  

The associate @ace X'(ft) of X(~ )  is the r.i. space defined as 

X~(~) = {v : v is a real-valued measurable function in f~ and 

/ a l u v l d x < o o f o r a l l u E X ( ~ ) }  

and is endowed with the norm 

J~ luvl & (22) Ilvllx'(~) =sup  
~#0 II~llx(~> 

As a consequence, the HSlder type inequality 

(2.3) ~ luv I dx _< II~llx,(n), 

holds for every n~X(~)  and ~zX ' (~) .  
The fundamental function Fx of X(~)  is defined in [0, I~1] as 

~x(t)--I lxzl lx(~)  for tE  [0, I~1], 

where E is any measurable subset of ~ such that  ]E I =t .  The fundamental functions 
of X(f t )  and of X'(fI)  are related by the equality 

(2.4) ~x(t)~x,(O = t  for t c  [0, I~l]- 

We refer to [BS] for more details on these topics. 

2.2.  Or l i cz ,  L o r e n t z  a n d  O r l i c z - L o r e n t z  s p a c e s  

Let ~ be a measurable subset of R n, and let A be a Young function, as defined 
in Section 1. Then the Orlicz space LA(~) is the set of all real-valued measurable 
functions u in ~ such that  
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is finite. The expression I1 ][LA(~) is called the Luxemburg norm; clearly, LA(12) is 
A an r.i. space equipped with this norm. The space Lloc(f~ ) is defined as the set of 

those functions which belong to LA(ft ~) for every compact subset f~ of f~. When 

]f~l<~,  we define the averaged norm I1' a s  in (2.5) with f~ replaced by f~ .  
Notice that  the Lebesgue spaces LP(ft) are recovered as special instances of Orlicz 
spaces with A(s)=s p, if l_<p<ec, and with A(s )=0  for 0 < s < l  and A ( s ) = + o c  for 
s > l ,  if p - + o c .  In both cases, II, IIc~(a) agrees with the usual norm in LP(f~). 
Notice also that  

( 2 . 6 )  I I ~ E I J L A ( ~ )  - -  

for every subset E of f~ having finite measure. Hereafter, A 1 denotes the (gener- 
alized) right-continuous inverse of A. 

The associate space of LA(f~) is, up to equivalent norms, LA(ft), where A is 
the Young conjugate of A defined as ft(s)=sup{rs-A(r):r>_O} for s_>0. In fact, 
one has 

(2.7) IIvlIL~(~) ~ IIvlI<LA>'(~) < 211VlIL~(~) 

for every veLA(f~). 
A function A is said to dominate another fimction D near infinity if positive 

constants k and so~ exist such that  D(s)<A(ks) for s>_so~. If this inequality holds 
for every s>0 ,  then A is said to dominate D globally. The functions A and D 
are called equivalent near infinity [resp. globally equivalent] if they dominate each 
other near infinity [globally]. If A and D are Young functions, then the inclusion 
LA(f~)C_LD(fl) holds if and only if either If~l-oc and A dominates D globally, or 
If~] <oc  and A dominates D near infinity. Hence, 

D (2.8) LAc(f~) C Lloc(f~ ) if and only if A dominates D near infinity. 

Lorentz spaces represent another example of r.i. spaces. Recall that,  if either 
l < p < o c  and l<q_<oc, or p = q = o c ,  the Lorentz space LP'q(ft) is the space of real- 
valued measurable functions u in G such that  the quantity 

( 2 . 9 )  IInlIL~,~(~) = IIs ~/p 1/%*(s)llLq(O,,~,) 

is finite. Such a quantity is a norm in LP'q(~) if q<_p. In general, it can be turned 
into an equivalent norm after replacing u* by u** in the right-hand side of (2.9). 
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The averaged norm I1" II~p,~<~) is defined accordingly, with I1' I1~<0,1~1) replaced by 

II �9 il~(0,1~,) in (2.9). 
Various notions of Orlicz Lorentz spaces have been introduced in the litera- 

ture, in the at tempt  of providing a unified framework for Orlicz and Lorentz spaces. 
Here, we need to work with spaces from a family of Orlicz Lorentz spaces consid- 
ered in [C41 and defined as follows. Given any qC(1, c~] and any Young function 
D satisfying f~176 (if q<oc) ,  we call L(q, D)(ft) the r.i. space of 
those real-valued measurable functions u on ft such that  the norm llUllL(q,D)(a)= 
IIs-I/%*(S)IIL~(O,I~I) is finite. Plainly, the Orliez spaces LA(ft) and the Lorentz 
spaces LP,q(ft), with q<_p, are recovered as special cases of the spaces L(q, D)(ft). 

2.3.  O r l i c z - S o b o l e v  spaces  

Let ft be an open subset of R ~ and let A be a Young function. The Orlicz- 
2obolev space wl 'A(f t )  is defined as 

W l ' a ( f t )  = {tt:U C LA(ft), U is weakly differentiable in f~ and IVul E La(f t )} .  

1A The space Wlo' ~ (ft) is defined accordingly. Furthermore, we denote by WoLA(f~) 
the subspace of Wl'A(ft) of those functions u which vanish on Oft, in the sense 
that  the continuation of u outside ft by 0 is a weakly differentiable function in R n. 
A Sobotev Poincar~ type inequality with sharp Orlicz range norm is given by the 
following result. 

T h e o r e m  2.1. Let B be any ball in R ~. Let A be a Young function satisfying 
(1.10) and let AN be the Sobolev conjugate of A defined by (1.8). Then a constant 
kl(n),  depending only on n, ezists such that 

(2.1o) I lu -n~ l l~ , , (~ )  < kl(n)ll I W / I I ~ ( ~ )  

for every weakls differentiable function u in B such that IVu{ 6LA(B).  Here, u e =  
f B u(x) dz, the mean value of u over B. 

A proof of inequality (2.10) is given in [C2, Theorem 2] (for a much larger class 
of ground domains ft), with An replaced by the Young function A~ given by 

// (2.11) A~;, (8) n ' - - i  1 ,~' ~'~' = r (~n ( r ) )  dr for~_>O, 

~(s) =n, f0 s ~(t) t-UjG~, dt for s > 0 .  

Thus, Theorem 2.1 follows from this result and the next lemma, a combination 
of [C4, Lemma 2.4] and [C3, Lemma 2]. 
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(2.12) 

and 

(2.13) 

L e m m a  2.2. Let A be a Young function. Then 

/§ ~ ~l/(n 1) 
\ A~(t) / dt < +oc if and only if 

\ A(t) /] dt < +oc if and only if 

/ + ~  ~ dt < +co 

fo dt < +oc .  

If  (1.10) holds, then the Young functions A~ and An defined by (1.8) and (2.11), 
respectively, are globally equivalent with equivalence constants depending only on n. 
Moreover, the .function given by 

( s r  n' for 

satisfies 

(2.14) 1 ! A n l ( 1 / 8 ) - - - - I I (  �9 ) /n ~(~,~)( )llL~(O,~ ) fors~O, 

and is globally equivalent to A~ and to An, with equivalence constants depending 
only on n. 

Theorem 2.1 is a key tool in our proof of Theorem 1.4. The proof of The- 
orem 1.7 requires the stronger Sobolev Poincar6 inequality, involving norms of 
Orlicz-Lorentz type defined in Subsection 2.1, contained in the next result. 

T h e o r e m  2.3. Let B be any ball in R '~. Let A be a Young function satisfying 
(1.10) and let DA,~ be the Young function associated with A and n as in (1.19). 
Then there exists a constant k2(n), depending only on n, such that 

(2.15) 

for every weakly differentiable function u in B such that IVul cLA(B).  

A version of (2.15), with IlU--UBIIL(n,DA,,O(B) replaced by IlUlIL(n,DA,~0(B) and 

for functions u Cw~'A(B), is established in [C4] via symmetrization and interpola- 
tion techniques. The proof of Theorem 2.3 follows an analogous scheme. However, 
the first part of the proof, whose task is to reduce (2.15) to a one-dimensional 
inequality, is more delicate, due to the fact that  functions are taken into account 
which do not necessarily vanish on OB. The symmetrization argument in this case 
rests upon a form of the P61ya-Szeg6 principle (see e.g. [C1]), which tells us that  if 
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A is a Young function and ucw1,A(B), then u ~ is locally absolutely continuous in 
(0, IBI), and a constant k3('n), depending only on n, exists such that  

k~(~) )}(-~< ) 
(2.16) m i n l / W { ( ' ) ' [ B l - ( '  \ ds ( )  LA(0,1BI)<III VuIIILa(.)" 

Pro@ We have 

(2.17) IIU--UBIIL(~,DA,,~)(B) = II u~ UBIILC~,D<,dCO,ISl)" 

By the triangle inequality and the very definition of the norm in L(n, DA,~)(O, IBI), 

II~~ I1(~ ~ UB)XCO,IBI/2)IILCr~,DA,~)CO,IBI) 
+ 1] (~~ --UB)X(IBI/2,1BI)II c(~,DA,.)(0,1~k) 

(2.18) - - I1 ( )  1/n((~/~o__~)X<0,1Bt/=>)*(.)ll~.~<0,1~l) 
+11( )--l/n((~o--UB)X(IBI/2,iBD)*( " )IIL~,- <O,IBL)" 

Since u ~ is locally absolutely continuous in (0, IBI), it is easily verified that  

f I B 1 (  ~@~) ( - ~ / )  tiT" for s E (0, ,B,). (2.19) u~ X(~,IB}) (r) du~ 
JO 

Let 79(8) be the right-hand side of (2.19). The function 99 is non-increasing in 
(0, �89 and non-decreasing in (~IBI, IBI). Hence, 

(79X(O, IBII2))* (s) = 79(s)X(0,1m/2)(s), 
(2.20) 

(79~<t~t/2,t~t))* (s) - 79(IBI- s)xc0,t ~t/29 (s) 

for s>0.  From (2.18) (2.20) we infer, after a change of variable, that  
(2m) 

--1/n ]B} ~( 7" (_d ' .~  dv 
-< ()  x(o,l~l/~)()/.,o ,l~l)(~O-N[ \ d~. / LDA,~ (O,IBI) 

ro Im r 

Now, define the linear operator T, at a locally integrable function ~b on (0, IB]), as 

BI X(s,iBi)(r ) --1In 1" i/n' T T~b(s)=s  X(o,IBI/2)(s),10 - ~  ~(r)dr for s ~  (0, IBI) 
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If we prove that  a constant c, depending only on n, exists such that  

(2.22) IIT~I[L~A,n (O,'a) <-- e][~llL~c0,,BI) 

for every r IBI), then we deduce from (2.21) and from the Pdly~Szeg5 
principle (2.16) that  

]b~ (.)X/,~'(\ du~ LA(0,1Sl) 

(2.23) +c ( ) l / n ' ( - ~ ( ) )  ~(o,,~,) 

_< 2ck~(~)ll Iwl II~(.). 

Hence, (2.15) follows with k2(n)=2eka(n). As for (2.22), it is not difficult to show 
that  constants cs and c2, depending only on n, exist such that  

(2.24) 

for ~)CLI(0, IBI), and 

(2.25) 

IIr~l]Ll<O,lBI) ~ Ca II~llLl<0,1m) 

I]Tr <~ CU IIr 

for r  ~'1 (0, IBI). Thus, by the interpolation theorem [C4, Theorem 3.1], inequal- 
ity (2.22) holds with c=max{cl ,c2}.  [] 

3. P r o o f  o f  the  m a i n  r e su l t s  

Our approach exploits some recent developments in the theory of Orlicz So- 
bolev spaces, as well as techniques employed in IS1] and lEG] for ordinary Sobolev 
spaces. An underlying idea is to make use of the Lebesgue differentiation theorem 
applied to the gradient of a weakly differentiable function. In this connection, a 
basic result in the present setting is contained in the following lemma. 

L e m m a  3.1. Let ft be a measurable subset of R ~ and let A be a finite-valued 
Young function. Let f ELA(f~). Then there exists ) ,>0 such that 

(3.1) lim / B  A ( ' f ( Y ) - f ( x ) ' ) d y = O  
r~0+ ,-(x) A 

for" a.e. x~gt. 

A proof of Lenuna 3.1 closely follows that  of lEG, Corollary 1, Section 1.7.1]. 
We include it for completeness. Let us emphasize that  this proof, as well as the 
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proofs of the other results of this paper, does not rely upon approximation argu- 
ments. This is of fundamental importance, since any such approximation argument 
would require a A2 condition on the Young function A, an assumption which we 
never make in this paper. 

Pro@ Since fcL A, there exists A>0 such that fa A(4If(Y)I/A) dy<+o0. Con- 
sequently, for every t c R  and for every subset E of f~ having finite measure, 

~: ( 4 ~ )  , 

~ I." ('" ~" ,) ,,+ ~. (4 ~),., 
< 9-o0. 

Thus, A(21f(y)-tl/A)eL~or ) for every tCR. Let {ti}/~N be any dense sequence 
in R. By the Lebesgue differentiation theorem (1.1), a family {Ni}i~N of subsets 
of [2 exists such that, for every iEN, INiI=0 and 

.~.0m L.,.," (""~-'")" :'("'(?~" ) 
for every xEO\Ni. Hence, by setting N = U i E N  Ni, we have that iNI=0 and 

for every x~fl\N. Now, fix any xEfI\N and any r and choose tiCR such that 

Thus, by (3.2) and (3.3), 

limsup f A ( I f ( 2 ) ~  f (x ) ] )  dy<l imsu  p / ACf(Y~--QI-~ If(x)-t~l)dy 
r -~O+ J B ~ ( x )  - -  r -~O + J B , . ( x )  

,r,,.. L "("'(~-'")'~ 

< g .  

Hence, (3.1) follows, owing to the arbitrariness of s. [] 
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Proof of Theorem 1.1. Thanks to (2.8), after replacing, if necessary, A with 
another Young function still satisfying (1.6), we may assmne that  A is finite-valued. 

1A Let vEW]o' s (t2). By (1.6) and by [C1, Theorem lb], v is a continuous function. Fix 
any x~ f t  and any r > 0  such that  B~(x)~Ct. Plainly, 

(3.4) 
,,4x) 

for ycB~.(x). By lEG, Lemma 1, Section 4.5.2] (which is stated for vcCI(Br(X)), 
but continues to hold even if v is any continuous function from WLI(B~.(x))), a 
constant c0(n), depending only on n, exists such that  the right-hand side of (3.4) 
does not exceed 

Hence, 

J~(Y)-~(x)l <c~  - (s IW(~)l [~-yl~n&+s I~ x[ 1-~ d~) 

(3.5) -<2 o( 4(111-yl 

After denoting the measure of the unit ball in R ~ by w,~, we have 

1-~ ~ ~-,~ =~d~ ' / r ( .  ~-~/n' 

where the inequality is a consequence of" the Hard~Li t t l ewood  inequality (see e.g. 
[BS, Theorem 2.2, Chapter 2]) and the equality is due to the fact that  

(I -~r ~ ~)*(~) 1/~' -~/~' 
�9 ---- ~,d n B 

for s>O. Combining (3.5) and (3.6) yields 

r~(y)-v(~)l 1 ' ) 1 /~ '  (3.7) 

for y~B~.(x). By setting 

, , f ~  A(7) (3.8) F(t) = ~ t n & for t>O,  
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we have 

for ;~>0. 

Notice that,  by (2.12), F(t)<+oo for every t>0;  moreover, F strictly increases from 
0 to +oo as t goes from 0 to --oo. Hence, 

1 
(3.10) /l(" )-1/~' II~(O,IB.,.(~)]) -- [B,.(x)[1/~'F-1 (1)" 

l~rom (3.7) and (3.10) one gets 

4co(n)w,,~r 
(3.11) Iv(y)-v(x)l_< F-l(1) 111wl ][~A(.,,.<x>> 

for y~BT,(x). Now, let A be any positive number such that  fB.,,(x)A(IVvl/A)dy< 
+co. Let us set M = f , , , ( x  ) A(IVvI/A ) dy and 

(3.12) A ~ ( ~ ) -  Ar  for ~ > 0. 
M 

By the definition of the averaged Luxemburg norm, we have II IVvl/A[I LAM (,~.(~)) -< 

1. Moreover, if we let FM be the function defined as in (3.8) with A replaced by 
AM, then FM(t) (1/M)F(tM) for f>O, whence FMI(S)=(1/M)F-I(Ms) for s>O. 
Consequently, setting 

s 
L(S)=F_~(s) for s > 0  

and applying (3.11) with v replaced by (1/,k)(u(y)-u(x)-(Vu(x), y-x}) and with 
A replaced by AM yield 

(3.13) lu(y)-u(x)-(Vu(x),y-x)l < 4co(n)w~L(T [ A(IVu(y)-vu(x)[) dy) 
Ar - \y B~.(x) \ A 

for ycB,~(x). 
An application of the l'Hospita] rule shows that  limt~o F(Q/t=O, whence 

lim~_~0L(s)=0. By Lemma 3.1, for any fixed open set fFG~,  the averaged in- 
tegral on the right-hand side of (3.13) converges to 0 as r goes to 0 for a.e. xEfY if 
A is sufficiently large. Thus, (3.13) applied to r=ly-x[, ensures that  

(3.14) ~i~, b ( y ) - ~ , ( ~ ) -  ( w ( ~ ) ,  y - x )  l = o 
y-~0 W-xl  

for a.e. xcfff .  Hence, the conclusion follows. [] 
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Proof of Proposition 1.3. When A satisfies (1.7), as a consequence of [C1, 
Theorems la  and lb] and of Letnma 2.2, W ~'A (B~ (0)) is not continuously embedded 
into L ~ (B~ (0)). In particular, an inspection of the proofs of those theorems reveals 
that  a sequence of nonnegative spherically symmetric functions {uk}kcN can be 
chosen in such a way that  u~cw~'A(BI(O)), fB~(o) A(IVukl) dx_<l and e s s supuk=  

uk(0)_>4 k. Let us still denote by u~ the continuation by 0 of uk outside BI(0). 
Thus, uk is weakly differentiable in the whole of R% Let {xk}~eN be the sequence 
of points in R n with rational coordinates, and let u: R ~ [ 0 ,  +oc) be the function 
defined as u(x) ~k~=t(1/2k)u~(x--z~) for x c R %  

Since esssupuk(xk)>_(1/2k)uk(O)>_2 k, u is not essentially bounded in any 
neighborhood of any point of B1 (0). Hence, u is not equivalent to any function 
which is differentiable at some point of B1 (0). On the other hand, inasmuch as 

JBl(0) A(lu~l)dx<--fB~(o) A(IVu~I) dx for every k (see [T2, Lemma 3]), 

A(lu(x)l) dx < /B A(~_ ~--~luk(x--xk)l) dx lB,(O) 1(o) 

<_~-]~ A(bk(x--xk)l)dx<_ ~-=1, 
k = l  i (0)  k = l  

where the second inequality is due to the convexity of A. Thus, u ~ L A ( B I ( 0 ) ) ,  a n d  

since 

d IVu~(x-xk)l d x < Z ~  do) 
1(0) k= l  2 k 1 

oc 1 

k 1 

u is easily seen to be a weakly differentiable function in B1 (0) with 

yB (lVu(x)l) dx ~ 1. 
(o) 

Hence, uEw<A(BI(O)). [] 

The proofs of Theorems 1.4 and 1.7 require the next lemma, containing a weak 
version of (1.11). 
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L e m m a  3.2. Let t~ be an open subset of R n and let A be a Young function. 
E 1,A Assume that u Wlo c (ft). Then 

(3.15) 

,,(~) \ r O<s< l  st(X) 

.for a.e. xEO and for every r>O such that B.(x)~O. 

1 A 1,1 Proof. Let uEWlo' ~ (f~). Hence, in particular, uEWlo c (ft). Thus, for a.e. zC 
ft, u is absolutely continuous on a.e. ray issued from x (see e.g. [Z, Chapter 3, 
Exercise 3.15]). Fix any such z and let r be a positive number such that B~.(z)~t~. 
Then, for a.e. yEB~(x), the function s~+u(z+s(y-x)) is absolutely continuous in 
[0, 11. Moreover, 

d (3 .16)  ~u(~+s(y-x)) (W(x+s(y-~)),y-~) 

for a.e. sE [0, 1] (see e.g. [AFP, Theorem 3.108]). Consequently, 

/o 1 (3.17) ~(y)-~(x)-(W(x), y - x )  = ( W ( x + s ( y - x ) ) - W ( x ) ,  y-..) ds 

for a.e. yCB~(x). Hence, 

/m(..)A(lu(y)-u(x) I Vu(x) 'y-x}l)dy 

_</B.(,) A ( ~  1 ~lVu(x+s(y-x))-Vu(x)[ ly-xlds)dy 
--~ ff/B,.(x)J~O 1 A ( !  IVu(x+s(y-x)) Vu(x)l lY-XO dsdy 

(3.18) = /ol /s,~.(~) A(  l lvu(z)-Vu(x)l lz-xl) dzds 

< A(IW(~)-V~(~)l)d~d~ 
~-(~) 

< sup r A( IVu(z ) -Vu(x)D dz, 
0<s<:l J Bsr.(X) 

where the second inequality holds by Jensen's inequality. [] 
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Proof of Theorem 1.4. Fix any open set fY~fL Let xEfY and r > 0  be such 
1A that B~.(z)efY. Let vCWlo' ~ (f~). Then 

i ]B P~r a~,llllpL~.(.~.(x)) 

(3.19) < kl(,~)ll IWl 

2 

2 1 1 

JI-~HVHLA(Br(X)) ~ 1{1<liar(g2), ) A~l ( lJ~(x)l ) " 
Notice that  the second inequality holds thanks to the Sobolev Poinear6 inequality 
(2.10) and that  the last equality follows from (2.6). [C2, Inequality (3.26)] and 
Lemma 2.2 ensure that  a constant cl (n), depending only on n, exists such that 

(3.20) ] ~cl/n,~_l(l~Anl(l~ <Cl('rt) for t > 0 .  

k~/ kV/ 

Combining (3.19) and (3.2O) yields 

Assume for a Inoment that the quantity 

(3.22) /m.(~) A(lVvl) dy+ ffB~(~) A( ]~i) dy 

is finite, and call it M. For such a choice of M, define AM as in (3.12), and observe 
that,  if (AM),~ is the function associated with AM as in (1.8), then 

(AM)~(t) = ~An ~ for t_> 0. (3.23) 

Since 

II pwl IIL MCB . x )-< 1 and } LAM < 1, 
(Br.(x)) 
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then, after replacing A by AM in (3.21), one gets 

(3.24) IlVllL(aM),~(B~.(x)) <_ c2(n), 

where c2(n) k~(n)+2c(n)w~ 1/~. From (3.23) and (3.24) we deduce that 

/Br(x) An c3(~)rQ~r(x)A(IVvl)dz@ / A(lVl~ dz 1/n dy 
(3.25) JB~(x) \ r / 

< /B,.(x) A(IVvl) dY+ /B~.(~) A( ~- ) dy' 

l ~ 1/n where c3(n)=c2[n)w~ . Obviously, inequality (3.25) continues to hold even if the 
expression (3.22) is infinite. Applying (3.25) with 

�9 

and A>0, and setting 

N =/B,,(~ ) 

yield 

(3.26) 

Define 

(3.27) 

�9 /B A~( lu(y)-u(x)-{Vu(x)'y-x}[ ) 
,-(z) Ac3(n)rN1/n dy < N. 

0<s<l  st(X) 

Then we get from (3.26) and from Lemma 3.2, 

(3.28) /B~4~) An ( ]u(y)- u(x)-(Vu(x)' y- x} [ x )l/~ dy < r x) 

for a.e. xEfY. By Lemma 3.1, a number A exists such that lim~--~00(r,x)=O for 
a.e. xEfY. Fix any such x. Given any c>0,  there exists r~ such that r  if 
0 < r < r ~ .  Thus, by (3.28), 

(3.29) /B,.(x) An ( 'u(y)-u(x)-(Vu(x)' y- x}' ) Ac3(n)rcl/~ dy < c 
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if 0 < r < r ~ .  Choosing c<(cr/Ac3(n)) n in (3.29) yields (1.11). 
Finally, given any ~>0,  fix any x for which (1.11) holds. 

r~ > 0 such that  
Then there exists 

tB A~(  lu(y)-u(x)-(vu(x) 'y-x) l  ) dy<_ 1 

if 0 < r < r ~ .  Hence, 

~l~(" )--"~Z(X)--(VU(X), "--~) -[~ A n  
r (B,.(~)) 

<~ 

if 0 < r < r ~ ,  and (1.12) follows. [] 

Proof of Theorem 1.5. The conclusion will be derived from Theorem 1.4, via a 
discretization argument (see e.g. [AFP, Example 3.16]). Fix any open set fF�9 Let 

1,A xcfY and r > 0  be such that  B~(x)�9 Let u~Wlo o (f~) and let r be the function, 
non-decreasing in r, defined by (3.27). Let ca(n) be the constant appearing in (3.28). 
Given any ~>0,  we have 

L ~(~) A [ lu(y)-u(x)-(Vu(x) 'y-x}l)  dy 

oo 

z--~ J n r n 
~ : 0  ~.= ~(~) \=~.~ ~ ,~x)'~\ ~ 7 ~ ~ 7  ~- )'~' 

(3.30) _~ Z ~ A~ 
~=0 ~ , , r  ~ ,-= ~(~) r2-~c3(n)O(r2-~,x)~l~ 

=s ,~(=)A (lu(Y)-u(x)-(Vu(x)'Y-x)l)dy. 
By inequality (3.28) applied with r replaced by r2 -i for i=0,  1, ..., the last sum 

~ ' ~  2 i . . . . . .  i x) for a.e. does not exceed 2-,~=o Qtrz , xEFY , and this expression is smaller 
~ 2 ~'--' x ) = ( 2 n / ( 2 ~ ' - l ) ) 0 ( r , x ) .  Thus, than or equal to ?--,i=0 9t r, 

(3.31) L ( ) A~ I~(y)-~(x) ( W ( x ) , y - x ) l  dy<2~__ l r  
, . (x )  2~c3(,~)ly-xle(r, ~)1/'~ - 

for a.e. x~fY. Starting from (3.31) instead of (3.28) and arguing as in the proof of 
Theorem 1.4 yield (1.13) and (1.14). [] 
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Proof of Corollary 1.6. Assume first that  0_<ct<n-1.  Let A(t) be any Young 
function which is equivalent to t ~/(n-~) near 0 and is equivalent to A(t) near in- 

1,A 1,A finity. Then A satisfies (1.7) and (1.10). Moreover, Wlo ~ (ft)=Wlo r (f/). Thus, 
1 A  u CW~o' ~ (f~). It is easily verified that  the function exp(t ~/(~-x ~ ) ) - 1  and the func- 

tion A~(t) associated with A as in (1.8) m'e globally equivalent. Hence, (1.15) and 
(1.16) follow from (1.13) and (1.14), r~sp~ctively. 

Consider now the case where c~=n-1 ,  and let A(t) be any Young function 
which is equivalent to t near 0 and to A(t) near infinity. Since An(t) is globally 
equivalent to exp(exp( tn ' ) ) - e ,  the conclusion follows as above. 

Finally, if a > n - 1 ,  then A fulfills (1.6). Hence, by Theorem 1.1, u is differen- 
tiable a.e, in YL [] 

Our last task is the proof of Theorem 1.7. We shall need the following lemma. 

L e m m a  3.3. Let A be a Young function satisfqing (1.10). Then a positive 
constant k4(n), depending only on n, exists such that 

1 
(3.32) Ilxc0,t) IIL(n,D~,.)(o,~) ~ kn(n) - -  for ~ > o. 

Proof. By [C4, Inequality (3.1)] a constant e, depending only on n, exists such 
that  

.•(e• L(n,DA ~) (O,cx~) 
r -1In' r  dr -< ell~ll L~(0,~) ( 3 . 3 3 )  ) , 

for every ~'ELA(O,, oc). Thus, 

(3.34) 

IIf(.~ r-1/n'/~(r)l drllL(n,~A,,~)(O,~> 
c > sup 

~cL~(0,oo) II~llL~(o,~) 

= sup sup 
fr ~eL(n DA,n)'(O,ze) 

f o  ~* ( s ) ) ~  r -x/~' I~(r) l dr ds 

f o  Ir Jo ~*(s)ds dr 
sup sup 

~oEL(n,DA,~)'(O,oc) ~ELA(O,c~) H~911L(n,DA,,~)'(O,oc)II~)]ILA(o,oo) 

fl() ~/n' fo() <(s)d~rr~;(0,~) 
> sup 
-- ~eL(n,DA,n)t(O,oo) l[~llL(n,DA,n)'(O,oo) 
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Notice that the first equality relies on (2.2), and the last inequality is due to (2.7). 
We have from (3.34) that 

(3.35) ( . ) - l / n '  [ ( '  
) 

J0 

for ~EL(n, DA,,~)'(O, oo). Given t>0 ,  choose ~(s)--X(o,t)(s) and observe that 

/0 T r - l y  )qo,t)(s) ds=tr  1/< 

if r>_t. Thus, (3.35) yields 

(3 .36)  tll(')-l/n')~(t,oo)(')llLA(O,oo) ~Cl{)~(O,t)IIL(n,DA,..),(O,oo) for  t > 0 .  

Hence, by Lemma 2.2, a constant d,  depending only on n, exists such that 

t c t 

(3.37) IIX(O,t) llL(n,DA,~),(O,~o) ~ A~ 1 ( ~ )  for t > 0. 

By (2.4), the leftdmnd side of (3.37) equals IIX(o,t)IILr and (3.32) fol- 
lows. [] 

Proof of Theorem 1.7. For any fixed xE~,  any r > 0  such that B~.(x)G~, and 
given any vcWl'X(Ft), we start as in the proof of Theorem 1.4. Making use of 
inequality (2.15) instead of (2.10) we get 

_< Iwl 

(3.38) + I B , r  ~(~) 

2 
+ ~ I1~ II LA (B~.(~))II 111 L~(B~ (~0)II ] II L(~,D~,,,)(B,-(~)) 

2 IIx(o,IB,-(~),) llL(~,D~,,~)(0,~) 
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Inequalities (3.32) and (3.20) ensure that 

(3.39) x(0,t) II~(~,'A .)(0,~) < Cl(ft)]C4(,tt) for t > 0. 

Combining (3.38) and (3.39) yields 
(3.40) 

2 
vl L(~,DA ,,)(',r(x)) --< k'n(n)ll IVvl IILA(.r(x))+T/~ci(n)kn(n)llv/rll~A(B.r(x)). 

Now, let M denote the quantity (3.22), let AM be given by (3.12), and let DM be an 
abbreviated notation for DAM,n, the function defined as in (1.19) with A replaced 
by AM. Then an analogous argument as in the proof of Theorem 1.4 enables us to 
deduce from (3.40) that  

(3.41) II~IIL(~,.M )( .~ (x) ) ~ C4(ft), 

where c 4 (%) =/~4 (%) -H 2Wn 1/ncl. (%)]~4 (n). It is easily verified that 

M 

for t>0.  Thus, inequality (3.41) implies that  

(3.42) /OlB'r(X)'DAnf 8-l/nv*(8) dY+/Br(x) A(~) dy. 
By applying (3.42) with v(. )= (1 /a ) (u ( .  )-u(x)-(Vu(x), - -x ) )  and making use 
of Lemma 3.2, we get 

~0 IBr(x)]DA'n{k/S-1/n(I t ( ' ) -u(x)-(vl t (x) ' ' -x))*(8))  d s / X C  4(ft) 

< /  A(IW(y)-V~(x) l )  dy 
(3.43) J B~(~) k A 

+~"  A( 'u(y)-u(x)-(Vu(x)'y-x)' ) dy 
~(~) Ar 

<2  sup JB A(IVu(y)-Vu(x)') dy" 
- 0 < ~ < 1  ~ . ( x )  A 

By Lemma 3.1, a positive number A exists such that  the last expression converges 
to 0 as r goes to 0 for a.e. xEfL Hence (1.20) follows. [] 
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