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A large data existence result for the stationary 
Boltzmann equation in a cylindrical geometry 

Leif Arkeryd and Anne Nouri 

Abstract. An Ll-existence theorem is proved for the nonlinear stationary Boltzmann equa- 
tion with hard forces and no small velocity truncation only the Grad angular cut-off in a setting 
between two coaxial rotating cylinders when the indata are given on the cylinders. 

1. I n t r o d u c t i o n  

General Ll-solutions for stationary, fully nonlinear equations of Boltzmann 

type, have so far been obtained by weak compactness techniques. Examples are ex- 

istence results far from equilibrium for the stationary Povzner equation in bounded 

domains of R ~, as obtained in [3], [15], and general Ll-solutions of the stationary 

nonlinear Boltzmann equation in a slab, as studied in [2] and [4 I. Also half-space 

problems for the stationary, nonlinear Boltzmann equation in the slab with given 

indata can sometimes be solved by such techniques; see [g] for a collision operator 

truncated for large velocities and for small values of the velocity component in the 

slab direction. For more complete references the reader is referred to the above 
cited papers. 

For bounded domains in R ~, a general existence result was obtained in [6] 
for the stationary Boltzmann equation under a supplementary truncation for small 

velocities. The removal of the small velocity cut-off for the nonlinear, stationary 

Boltzmann equation with large boundary data, remained an open problem in more 

than one space dimension. The present paper studies that problem in a particular 
R 2 case, a two-roll configuration without any small velocity truncation, using a 

generalization of the techniques from the slab case. Also recall that  the close to 

equilibrium Rn-situation is better understood, since there more powerful techniques 

such as contraction mappings, can be used. In that case a number of existence 
results are published, see [11], [12], [13], [14], [17] and others. In particular, see [7] 
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and [16] for the present two-roll problem close to equilibrium. 

The set-up for the two-roll problem is as follows. Consider the stationary 
Boltzmann equation in the space f~ between two coaxial cylinders, 

(1.1) v'Vzf(x,v)=Q(f , f ) ,  x e~ ,  v c R  3, 

for axially homogenous solutions f .  We may then take f ~ c R  2 as the annulus 
between two concentric circles of radii rA<rB. The nonnegative solution f(x,v) 
represents the density of a rarefied gas with x the position and v the velocity. 
Solutions are here understood in the weak sense, which is somewhat stronger than 
the renormalized one or equivalently the mild, exponential, i terated integral form 
(cf. [9] and [1]). The operator Q is the nonlinear Boltzmann collision operator with 
angular cut-off, 

where v'-v-(v-v.,cJ)aJ, vt.=v,+(v-v.,c~)~. The function B is the kernel of the 
classical nonlinear Boltzmann operator for hard forces, 

Iv v.lZb(O) w i t h 0 < / ~ < 2 ,  bcLZ+((0,27r)), b(O)>c>Oa.e. 

The solutions considered, are axially and rotationally uniform functions with respect 
to the space variables. Denoting by (r, 0, z) and (v~, vo, v~), respectively, the spatial 
coordinates and the velocity in cylindrical coordinates, the solutions are thus func- 
tions f(r, v~, vo, v~). As boundary conditions, functions fb are given on the ingoing 
boundary cgf~ + at A and B, equal to fA>O and f B > 0  defined on {(rA,v);vr>O} 
and { (rB, v) ;v~. < 0}, respectively. Solutions f (r, v) to (1.1) are sought with profiles 
fA and fB on the inner and the outer cylinders, i.e. 

(1.2) f(rA,v) kfA(v), vr>O,  f(r, ,v)=kfB(v),  v~.<O, 

for some positive constant k. The test functions F are taken in L ~ ( f f t •  a) with 
v- V~F E L ~ (f~ • R 3), continuously differentiable along characteristics, with com- 

pact support in a •  a, and vanishing on {(ra,v);v~.<O}U{(rB,v);v~.>O}. Here 
fi3=R3\{v;v .=0}. 

The main result of this paper is the following result. 
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T h e o r e m  1.1. Suppose that 

~,.>0 v"( l+ lv l2+l~  fA(v))fA(V) dv 

+f Iv,.l(l+lvl2 +log § fB(v)) fs(v)  dv < 0 0 .  

Jv 
Then, for any m>0,  the equation (1.1) has a weak L~-solution f,~ satisfying (1.2) 
with k=k,~>0,  and 

/7: (1.3) f , ~ ( r ,  v)r(l+ rvr) ~ dv dr = m .  
A 3 

The weak compactness arguments in the proof below do not provide continuity 
for the map rn~-+k,~. Connected to this, the theorem does not state the existence 
of a solution with arbitrary indata. Instead a particular moment is fixed, leaving 
only the profile of the arbitrary indata free at the boundary. 

Entropy related quantities are widely used to study kinetic equations and ki- 
netic formulations of conservation laws. In the context of stationary kinetic prob- 
lems, it is often the entropy dissipation term that provides the most useful control. 
That  was the case in the Povzner and Boltzmann slab papers [2], [3], [4], where this 
term was an important  tool to obtain existence results for (1.1) under (1.3) via weak 
LLcompactness.  In the present paper the same approach is generalized from the 
slab case to cylinders. Approximations of the problem at hand are first constructed 
in Section 2, similarly to those earlier papers. Starting from those approximations, 
Section 3 is devoted to taking the approximations into true solutions through a 
sequence of limit steps. 

2. A p p r o x i m a t i o n s  

Without loss of generality we can restrict the discussion to the case m = l .  
Denote by f . = f ( x , v . ) ,  f '  f (x ,v ' ) ,  and H,=f(z,v' .) .  Let s>l /c~>0,  and let 
X~(v,v.,0J) be a C~176 such that  0_<X~_<I is invariant with respect to the 
collisioi~ transformation J(v, v., w)=(v ' ,  v~., w), as well as to an exchange of v and 
v., and such that  

1 1 1 
X•(v,v. ,w)=l,  if Ivr.l_>s§ 1, Iv.~.l > s + - ,  Iv'~[ > s + - _  and Iv'.~.l > s + - , _  

Q L) ~ L9 
X;(v,v. ,w)=O, i f lvr l<s,  or Iv.rl<_s, or Iv'~l<s, or Iv'.~l<s, 

and define X~:=)/~. Set ?7~(v)=1 if Iv~.l>s and ~ ( v ) = 0  otherwise. Denote by 

QS( f , f ) ( r , v )= 3xs2XS(v,v., ) ( f  s  
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L e m m a  2.1 .  

which .form a solution to 

(2.1) 

(2.2) 

(2.3) 

For any 0 < s < 1, there are a function f~ and a real number k ~ > 0 

Moreover, 

(2.4) 

and 

(2.5) 

s f * + v . V x f  s =Q~( f* , f~ ) ,  

f f  (x, v) ks fb(x, v), 

2 , ( l  +lvl)~ f f  (x, v) dx d v =  l" 
X R a 

(x,v) E f~•  3, 

(z, v) C Of~ § 

0 < k s < c ~  s215 dxdv<-elk~ '  

f[~ / / 8J 8! SB~ . . . .  f f .  d x d v d v ,  daJ<c2k~, xRGxS2 X td J, f ~ f : ) l o g  f ~ f ~  

where ~=(v,., vo), and co, Cl and c2 are positive constants independent of s. 

Proof. 0nly  the main lines of the proof are given, similar arguments being 
developed in [6]. 

Let 0<j ,  p, n, p ~ N  and a>  1 be given, as well as a positive C ~176 regularization 
l) of b. Let K be the closed and convex subset of L * ( f t •  a) •  defined by 

K = { f  < L*+(ft x R3) ; L • R3 x S ( l + l v l ) g f ( x ' v ) d x d v = l '  

f ( z ,  v) = 0 for IVr. [ < s}  x [0, ca]. 

Here 
e(14-8rc2najt~llolL, /3)2r 'u 

ca f~• YU(l+lvl)~( fb(x s+( z ' v ) v , v ) A j ) d x d v '  

fb is the ingoing boundary value fa ,  fB, and 

s+(x,v):  i n f { s < R + ; ( x - s v ,  v) EOQ+}, f b A j = m i n { f b , j } .  

Similarly, take 
s (x, v) := inf{s ~ R+ ; (x+sv,  v) ~ 0f~ }, 

where 0f~- denotes the outgoing boundary. 
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Define the map T on K by 

T(f,k) = faxI~ )C(l +[vl)ZF(x,v)dxdv' f~?• x~(l+lvl)ZF(x,v) dxdv ' 

where F is the solution to 

(2.6) 

s F + v . V x F = s  X;;~P'~BuI14@(z,v' ) f*~o ' 
~ •  . 1~ 7~-~ (~' ~*) 

3 

-F(x,v)  f*qoe (x,v.) 
1~ f*~o 

J 
F(x,v)=fb(x,v)Aj,  (x,v) cOa +. 

j 

dr. dco, (z, v) ~ f~ x R a, 

Here, 

1, min{p, Iv -v .  I z } "} s .(v,  v.. co) = m a x { ;  9(0). 

The fhnction ~w~(v,v.,co) is taken in C ~ ,  such that  O<~/w~_<l, invariant with 
respect to the collision transformation J(v, v., co)= (v', v'.,-co), and invariant under 
an exchange of v and v.. Moreover, it satisfies 

n 2 1 v v . .co 1 
)~P~(v,v.,co) 1, i fv2+v.2<_~ -, p <  ~ and Iv-v.l>_-,p 

v v. 1 1 xPn(v,v.,co) O, if v2+v2. >n 2 or _ _ . c o  < 7 -  or Iv-v,l<--. 
- i v - v , ]  2 p  - 2p 

The functions We are mollifiers in z defined by 

~Q(x)=o2~(ox), 0 < ~ c C ~ ( R 2 ) ,  ~ ( x ) = 0 f o r l x l > l ,  /a2gP(x) dx=l.  

The function T maps K into K. Indeed, from the exponential form of F, 
obtained by integration of (2.6) along characteristics, 

F(x, v) > fb(x-- 8 + (X, V)V, v)eAj exp (--88+(x, V) 
\ 

1+ f*Fo 
J 
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for ( x , v ) E f ~ x R  3. Hence, 

And so, 

s 1 
X R 3 C3 

By a monotone iteration scheme applied to (2.6), it is easy to see that T is well 

defined. As in [6], the map T is continuous and compact for the strong L i topology. 

Hence the Schauder fixed point theorem applies. A fixed point 

1 

(f, k~,j,~,,p,o,,), with k,,j,,~,p,Q,u = faxaa  X*( l-c Ivl)gF( x, v) dx dv' 

satisfies 

s f+v .Vx f  f ~  ~ 1+ f lq  f*9%(x'v*)' 

o J 

f * ~ e  ) (2.7) - f ( x , v )  f*wo(x'v*) dv. dw, (x,v) e a •  3, 
1-~ 

J 
f(x, v) = ks,j,n,p,o#,fb(x, v)Aj, (x, v) e OfF, 

s  ' 
• R 3 

with O< [%,j,n,p,O,l~ < C 3. 

Again following the proof in [6], a strong L 1 compactness argument can be used 
to pass to the limit in (2.7) when L) tends to infinity. It gives rise to a solution f of 

xss f (x,v,)~ff(x,v,,) 
sf+v'Vx'f=/Ra• 1+'{ 1 + _  

3 2 

(2.8) - f ( x , v )  l ~ f ( x , v . ) )  dv. dco, (x,v) ~ •  3, 

3 
f(x, v) = ks,j,~,,v,,fb(x, v)Aj, 

x,(l+lvl)~f(x,v)dxdv=l" 
• R a 

(2.9) (x, v) C OfF, 

(2.10) 
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Here 0< ks, j ,n ,p, l~ <C3, since the norm of F is bounded from above. 
For ~ a unit vector in the plane, let f~v denote the line segment which is the 

orthogonal projection of f~ onto a line in R 2 orthogonal to % For any xEf~, denote 
by x~ its orthogonal projection on f~v. The length of f ~  is If~l--2rB. It follows 
from (2.10) that  

/ ~ { , ; x ~ + ~ c a } s  ~S(l+,v.,)~f(x~+T%v.)dv. dx~dT 1. 

Hence there is a subset ~v of fl.y with I~1 < 1 ~lf~l such that  for 2<_lvl_<4, ~/l~l='y, 
it holds that  

?~+(,~,v)/Raxs2XsXP~B~ f-@(x~+sv, v*) dv*dwds 
1+: :  

J 

~+(,~,'T) axS  2 1+%-  
2 

By the exponential form of (2.8), (2.9) and (2.10), 

l>fl~l~* fx (l+lvl)~f(x'v)dxdv 
~101>l cf~ 

2<[~1_<4 

k e -(2~+~tgl~*) [1~,.1>_~ ~ (l+lvl)Zfb(x-s+(x,v)v,v)Aldxdv. > s,j,n,p,t~ 
dl~l>l  ~ c ~  

2<1v1<4 

Hence the family (ksd,~,p,,) is bounded from above by a constant co, uniformly with 
respect to s, j ,  n, p, and >. Denote the solution of (2.8) by fJ. Multiplying (2.8) by 
1 + log (fJ / 1 + fJ/j), then integrating the resulting equation over f~ • R 3, and using 
Green's formula, implies that  

S ~ x R  a fJ(l+logfJ)(x,v)dxdv<_c<oo, 

uniformly with respect to j .  And so, as in the time-dependent case (cf. [8]), the 
weak LLlimit  f of fJ when j tends to infinity, satisfies 

sf+v.Vxf  = [  X~P~B,(f(x,v')f(x,v'.)-f(x,v)f(x,v.))dv.&o, 
J R a x S  2 

(x, v) �9 f ~ x R  3, 

(2.11) f(x, v) = k ..... p,,fb(x, v), (x, v) �9 OQ +, 

~• ~(1+ Ivl)~f(x, v) dx dv = 1, 
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with 0< ks,n,p,~ <co. Here 0< k~,~,p,~ is a consequence of Green's formula. 
Given s>0,  write f~,P," for f in (2.11) to stress the parameter dependence. 

Multiplying (2.11) by l + v  2 and by log fn,p,~, then integrating both resulting equa- 
tions over ~ x R 3 and using Green's formula implies that  

s /~  (1A-v2A-logf~'P't~)f~'P'"(x,v)dxdv<oo, 
• R 3 

uniformly with respect to n, p, p, and/~. And so, when b tends to b, n and p tend 
to infinity, and p tends to zero, the weak limit f~ of ff~'P'ff satisfies 

(2.12) 

(2.13) 

sf~ +v.V~f~ : s 2 1 5  ?~Sj~(/J f.J _ fs f:) dr, dw, 

f f  (x, v) = k~ fb(x, v), 

xS(l+Pvi)~f~(x,v)dxdv 1, 
• R 3 

(x,v) E f ~ •  3, 

(x, v) E 0f~ +, 

with kS<_Co . Moreover, ks>0 and 

]~12 fS(x, v) dx dv <_ c~, 
• R 3 

for some c1>0, unifornfly with respect to s. Indeed, multiplying (2.12) by l + v  2 
and integrating it over f tx  R 3 leads to 

s ..~• (1 + v2)f~(z, v)dx dv+ v~- Iv'n(z)l(1 +v2)f(x' v)dx dv 

(2.14) =k~ foa+ v'n(x)(l +v2)fb(x' v) dxdv 

< c ~  0a+ v'n(x)(l+v2)fb(x'v)dxdv" 

It follows from (2.13) and the left-hand side equality in (2.14) that  k~>0 for 
s > 0. Then, denote by (Vx, v v, Vz) the three components of the velocity v in cartesian 
coordinates with (Vx,Vu) parallel to ft. Multiply (2.12) by vx and integrate it 
over f ~ •  3, where f~a is the part of ft with xl<a. Set Sa:={xEft;xl=a} and 
0ft~:=0[-tNf~. This gives 

8 ~  ~uxfS(x,v) dxdv@ f V2xfS(a, x2,x3,v) dx2dx3dv 
a x R  3 .J Sa xR 3 (2.15) 

-fro vxv'n(x)fS(x'v)dxdv=O" 
~ a  X R 3 
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Integrating (2.15) over [--rB, rB], leads to 

vxf (x,v)dxdvS2rBs (l+v2)fs(x,v)~xdv 
• 3 x R  3 

+ VxV.n(x)F(x, v) dx dv cla < clk ~, 
e - - v  B ~ a X R  3 

by (2.14). analogously, .]~• v~f~(x, v)dx dv is bounded from above, uniformly 
with respect to s. And so, the boundedness in (2.4) follows. Finally, Green's formula 
for f~ log f~ implies that, for some c2 >0, 

8 8 S (2.16) X B ( f  f .  - f s f S ) l o g  dxdvdv,  dw<_c2k s, 
• 

uniformly with respect to s. This ends the proof of Lemma 2.1. [] 

L e m m a  2.2. There is a constant c3 such that 

/R v]ff(r,v)dv<_c3k ~, a.e. rE(rA,rB). 
3 

Proof. Multiplying (2.1) by l+v 2 and integrating over f~xR 3 leads to 

(2.17) ~'.~<olV.nl(l+v2)f(rA,V)dv+./~.~>oV.~Kl+v2)f(r,,v)dv<_ck ~. 

In cylindrical coordinates, f~ is a solution to 

sfS+v<~r +11 / 20 f  s Ofs]  (2.18) 
r . 

Multiplying (2.18) by-v~ and integrating over ( rA,r ) •  (0, 27r)•  3, gives by (2.4), 
(2.14), and (2.17) that 

/,3 r'~f~(r, ~) d'-</~ r~ f (~ ,  v) d~ s/2/Rtv~ff(t,v)dvdt 
+ / ; . / R  vgf~(t,v) dvdt 

<ck~+cs ( l+v2) f f ( t , v )dv td t  
A 3 

< c3k ~ 

for some constant c3. [] 
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L e m m a  2.3. Let (~ be the angle of aperture of the cone starting at (rB,0) 
(in cartesian coordinates), with axis Ox (where 0 denotes the origin), and tangent 
to the circle of radius rA. For any x in ~, denote by Cx the cone with axis Ox, 
summit on the outer cylinder, and tangent to the inner cylinder. Denote by Cx 
the homothetical cone with 1 ~ as angle of aperture. Then for any 5>0, there is a 
constant c5 >0 such that 

1 
f f (x ,v)>csksfA(v) ,  a.e. x E ~ ,  vT>O, VECx, 5<IvI< ~, 

1 
f f (x ,v)>cskSfB(v) ,  a.e. x e ~ ,  v~.<O, veO~, ,~_</,,1_< ~. 

Proof. It follows from (2.1) written in exponential form with the collision fre- 
quency y, that  

1 i f (x ,  v) > cksfb(x--s + (x, v)v, V)e--(8/5)2TB--JO-'~+(~' ~) ~(f~)(x+t~,v)dr, 5 __< IVl <__ ~. 

Then, 

/~ ~(fS)(x +tv, v) dt <--c /i+(x,~) fR  3 'v-v*'~ fS(x +tv, v*) dv* dt 

<-cs /_~ Ii~3(l + 'v*')~ f f  (x +tv, v*) dv*dt 

_< c5 (1+ Iv, I)~ f f  (x+s~, v,) dr, ds, 

where ~=v/iv]. And so, by the change of variables s~+r=lx+sw], with Jacobian 
]Ds/Dri--lx+swi/i(w ,x+sw)] uniformly bounded from above by the definition of 
the cone C~, 

. ( f f ) (x+tv ,  v)dt <_c5 ])Z f f ( r ,v . )dv ,  rdr<_cs. [] 
8+ (X,V) J'FA J R  

3. P a s s a g e  t o  t h e  l imi t  

For proving the existence Theorem 1.1, it remains to pass to the limit in (2.1) 
(2.3) when s-+0. 

L e m m a  3.1. 
sup k 8 = k 0 < o c .  

0<8<1 
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Pro@ It follows from Lemma 2.3 that 

1<1v1<2, fS(r,v)>cl;SfA(v), a.e. rE(rA,rB), Vr> 1, vEC, ~ _  _ 

so that 

and 

1 = 5-(S(l+lvl)Zf*(r,v)dvdr>ck s, 
A 3 

1 
k ~ < ko := - .  [] 

C 

L e m m a  3.2 .  

lim inf h* > 0. 
s - - e 0  

Pro@ We shall prove Lemma 3.2 by contradiction. If liminf~_+0 k~=0, then 

there is a sequence (sj)j~ 1 tending to zero when j--+ec, such that kj :=k so tends to 

zero when j -+oc .  Fix e<<l. Prove that  for j large enough, fJ:=f*o and ~J:=~~J 

satisfy 

fff~TR YcJ(l+lvl)/~ fJ(r 'v)dvdr <5c,  
A 3 

contradicting 

f "~i/R ~J( l+  Ivl)~f ~ (r, v) dv  dr  = 1. 
A 3 

By Lemma 2.2, given c ' > 0  there is c>0  such that 

(3.1) f ,  2 2 v2fJ(r'v) dv<e [ v~fJ(r'v) dv<-ckj" 
I.,.I > ~/7~+~ z aR~ 

Let us next prove that for A>>10, 

(3.2) x / ~ + ~  >x ( l+lvl)~fJ(r 'v)dv&<2c'  
s<lvT.l<x/7~ +v~ /lO 

by splitting the integral into two pieces, 

and 
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For each of these two pieces, construct j-dependent v.-set 17. CC and w-set FCS 2, 
with measures bounded from below by a positive constant, such that 

Hence, for any L > I ,  

(l+lvl)~f j(r, v) < c(l+lvl)~fJ(r, v) f~ ~v . )  
j l 

<_ eL(Iv ~. I ;3 + Ivt.,~ ];~) fJ (r, v') f (r, v. ) 
kj 

cX  s 
+ ~ Iv -v .  [Zb(O)(fJ (r, v ) f  j (r, v.) - fJ (r, v ' ) f  j (r, v~.)) 

fJ(r, v)fJ(r, v.) 

And so, using (3.1) 

cL c 
~+~z~>~ ( l + ] v ] ) / 3 f J ( r , v ) d v d r < ~ + ~  <e, 

2 2 s < l v ~ . l < ~ / 1 0  

and 
~ eL c 

s<lv,r 1<;~/lO 

by first choosing L large enough, and then A large enough. Similarly 

C 
2 ( l+lv[)ZfJ(r ,v )dvdr<cLkJ+log  L~ <c, ~ +v~ <A 

s < l v ~ . l < ~ / l o  

by also choosing j large enough. This completes the proof of Lemma 3.2. [] 

The family ( ~ f s )  is weakly precompact in L 1 ((rA, rB) • Ra). L e m m a  3 .3 .  

Proof. First, 

11 x~ fS ( r ' v ) rdrdv<l"  
,,,]>s 

It follows from the proof of (3.1) and (3.2), that it is enough for c~>0 to consider 
Iv] < l / &  There, let us prove the equiintegrability of (xsf  ~) by contradiction. Sup- 
pose that for some c>0, there is a sequence (fJ)~-I from the family (fs), and a 
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sequence of subsets Aj of {(r,v);Ivr.[>s j and Iv i< l / d ]  such that  IAjI<I/j and 
]'A~ <<i fJ (r, v) dv dr > s. Consequently, 

(r,~)cAj ff(r,v) dvdr>-~. 

For (r,v)cAj such that  fJ(r,v)> is .  2, choose v.~C with 10/5<[v.[<11/5. In the 
v.-volurne thus created, there is a subvolume IF. of measure uniformly bounded 
from below by a positive constant, such that  for v. in this subvolume, there is a 
set F c S  2 again of positive measure uniformly bounded from below, such that  for 
(v.,co)�9 •  and using Lemma 2.3, v / and v~. satisfy 

1 , 1 fJ(r,v')<c, fJ(r, vl.)<c, 

fJ(r,v) <e(f f(r ,v) fJ(r ,v .)  fJ(r,v')fJ(r,v~.)), 

and 
f~(r, ~)fJ (r, ~v.) 
fJ(r, ~')fJ (r, ~:) 

Moreover, Iv-v. i>l/5.  And so, 

>O. 

(3.3) 
fJ (r, v) < cX3 Iv-v.  IZb(O)(fJ (r, v)f  j (r, v.) - fJ (r, v')f  j (r, v~.)) 

log j  

fJ(r,v)fJ(r,v.) 

Integrate (3.3) over X := { (r, v, v.,  co); (r, v) E Aj, v, C V. and co �9 F}. Hence, 

s c /xXJlv_v.l~b(O)(fj(r,v)fJ(r,v.)_fO(r,v,)fj(r,v,.)) 

• log f j  (r, v ) ( r 2  v._)) dr dv dr. dco 
fJ (r, v')fJ (r, v'.) 

c ~ XJlV_V.l[~b(O)(fj(r,v)fj(r,v.)_ j t j , f ( r ,v ) f  (r,v.)) 
-< logj  xa3xs2 

• fJ(r, v)fJ(r, v.) drdvdv, dw 

C < - -  
- l o g  j 

This leads to a contradiction when j -+oc .  [~ 
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By Lemma 3.3 there is a sequence (fJ)~=l from the family ( i f )  and a func- 
tion f ,  such that  l i m j _ ~ ) i J f J = f  weakly in LI((rA,rB)• It follows from 
Lemma 2.2 and the proof of (3.1) and (3.2), that  the limit f satisfies the moment 
condition (2.3). So Theorem 1.1 holds, if f~AB fR3 QJ• fJ)qo(r, v)dv dr have the 

?'B limits f~a fRa Q+(I, f )p( r ,  v)dv dr. For this we first prove the following four lem- 
m a s .  

L e m m a  3.4. 

lira sup f ~J(l+lvl)Z fJ(r ,v)dvdr=O, 
r SC(rA,rB) JS • 3 

[sl<~ 

uniformly with respect to j. 

Pro@ Analogously to the proof of Lemma 3.2, for each ( r , v )ES•  3, de- 
termine subsets 17. of C and F of S 2 of positive measures, such that  for each 
(v.,~)eV. • 

Iv-~.l~e(l+lvl), Iv$1~clvr, I~s IvLp~cl~l, Ivs 

and for any L > 1, 
(3.4) 

xJ (l +lvl)~ fJ (r, v) <_ eL(Iv'~.l~ +lV'.rl~) fJ (r, v')fJ (r, v'.) 

cx j ~ J J , j , + i~-s  b(O)(f ( r , v ) f J ( r , v . ) - f  ( r , v ) f  (r,v.)) 

fJ(r, v)fJ(r, v.) 
• fJ(r, v')fJ(r, v'.)" 

So by Lemma 2.2 

~S C xR* )(J(l+lvl)Z fJ(r' v) dv dr <_ cLISI-~ logL'  

The result of Lemma 3.4 follows, by first choosing L large enough, and then ISI 
small enough. [] 

L e m m a  3.5. Given rl>O , there is an integer jo such that for j>jo and outside 
of a j-dependent set in r of measure smaller than ~], 

lim f ~J(l+tvl)~ fJ(r ,v)dv=O 
.~ -+  o o  2 2 

uniformly with respect to r and j. 
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2 2 Pro@ For each (r, v) with x/Vo +v  z >A, choose v. in a subset of C of measure 
uniformly bounded from below by a positive constant, so that  for a subset of cJES 2 
of uniformly positive measure, 

elY;. I > Iv'l > ~V/V~+V~, fJ(r,v') <_ 1, 

clv'.~ I > Iv'.[ > ~ + V z  2 , ff(r,v'.) <_ 1, 

and for any L > 1, 

y.J ( l + lvl)  ZJ (r, v) < c2J ( l + lvl)  fJ (r, v) fY (r, v.) 
<_ cL[v;lZ f j (r, v') fJ (r, v'. ) 

+ ~ ]v-v .  lab(O)(fJ (r, v) f  y (r, v.) - fJ (r, v ') f f  (r, v~.)) 

• log f j  (r, v) fJ (r, v.) 
fJ(r, v')fJ(r, v~,)" 

It follows from (2.5) that  uniformly in j ,  

JR xJlv-v*l~b(O)(fJ(r'v)fJ(r'v*)-fJ(r'v')fJ(r'v~*)) 
6XS2 

• l o g  f j  (r, v ) f  j (r, v . )  dv dv.  da < c v 
fJ(r, v')fJ(r, vt) 

outside of a set S} c (rA, rB) of measure r]. Hence, 

/x/  ~ c L c v 
+,~>A (l+lvl)zf j(r 'v)dv<- ~ logL '  xESjc"  

The result of Lemma 3.5 follows, by first choosing L large enough, and then A large 
enough. [] 

L e m m a  3.6. Given A>0 and a>0,  there is an integer jo such that for j>jo 
and outside of a j-dependent set in r of measure smaller than e, 

l ira 

uniformly with respect to r and j. 

Pro@ Given 0<r/2<~], r and j ,  either 

~ < a  2J ( l + lv])~ fJ (r' v) dv <_ ~2, 
Iv,.[<l/i 
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or  

In the latter case, 

J ~ < ; ~  2J (l +]v[)F~ fJ (r, v) dv > r] 2. 

~ <)~ 
Iv~l<l/i 

fJ (r,v) <~72i/4~r)~2+~ 

fJ  (r,v)>~2i/47c,k 2+~ 

For each (r, v) such that  if(r, v)>~2i/47c;~2+~, using (2.3) and Lemma 2.3, consider 
subsets K~ c C and F C S 2 of measure uniformly bounded from below, such that  

2J (l § fJ (r, v) dv < - -  
2 '  

~J (l +lvl)~ H (r, v) dv > -- .  
- 2  

Iv-v.l>_clv[, fJ(r,v.)>_c, Iv;l>_l, fJ(r,v')<_c', 
j t Iv'.TI _> 1, f (r,v.)<c', v. EV., w~F. 

Hence, for such r, v, v., and cz, and for i large enough, 

~J ( l + lvl)Z fJ (r, v) <_ c~J (1 + Ivl)~ fJ (r, v) fJ (r, v. ) 

< cxJ Iv--v. I~b(O)(fJ(r, v)fJ(r ,  v . ) - f J ( r ,  v')y(r,  vl.)) 
- l o g  i 

• log fJ(r, v)fJ(r, v.) 

It follows from (2.5) that  there is a constant c/~ such that  

a6• )/J Iv -v .  I@(O)(fJ(r, v)f  y (7", v . ) - f J  (7", v')fJ(r, v~.)) 

• fJ(r,v)fJ(r,v.) dvdv. dw 
fJ (r, v')fJ (r, yr.) 

is bounded by c ' ,  uniformly with respect to j ,  outside a j-dependent subset S} c 
(rA, rB) of measure e. Hence, 

f ~  e' c 2 'c 2< XJ(l+lv])ZfJ(r,v)dv<_logz+ 71 < 3~1, 
Iv~.l<l/i 

for / large enough. [] 



A large data  existence result for the s ta t ionary Bol tzmann equation 

L e m m a  3.7. The sequence of loss terms 

Qs-(fJ,fJ):=fs i~ x ~ l v - v .  19b(O)fU(r,v.)dv. dco 
3XS2 

is weakly compact in 

({ ')) L 1 (r,v) e(rA,rB)• a~d Ivl< 7 . 

Pro@ It follows from (2.3) and Lemma 2.2 that  

i,.,~)~ (,~,~-~)• Iv -v. I~b(O)f j (r, v)f j (r, v.) dv dr. dr 
Iv]<1/5 

f ~ <c l+lv.I)ZfJ(r,v.)dv, dr=c. 
J~'A J R 3  

It remains to prove that,  for any sequence of sets (Sj)j~_~ with 

so c {(r, v) �9 ( rA , , ' , )  •  ~ ; I~,-I > a and I~1 < l / a }  

and ] S j I < I / j  , 

(3.5) 

45 

f 
lira ] QJ (fJ,fJ)(r,v)dvdr O. 

J--+~ JSj 

First, for any sequence of sets Rj C (rA, rB) such that  limj-+oo IRJl=0, it holds that  

(3.6) .lim [ f~r-I>5 QJ (fJ,fJ)(r,v)dvdr=O. 
~ JRj Jf,,l<l/5 

Indeed, by Lemma 2.2 

• s  2Y(l+lv*l)zfn(r' v .)dr.)  dr 

-<ck~ Sa 2J(l+l~*l)~P(r'v*)dv*dr' 
j 3 
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which tends to zero when j--+oc by Lemma 3.4. Then, let 

{ 11 ,  Xj:= rE(rA, rB);meas{v;(r,v)ESj}>~- Sh:={(r,v) CSy;r~Xj}. 

Since Ixjl<l/~, 

(3.7) 

Given A>0,  

(3.8) 

lim fx  /R QJ-(fJ,fd)(r,v)dvdr=O. 
j~oo J a 

sj/v.,.l>zx xJ (v)(lq-Ivl)~fi (r, v) f i (r, v. ) dr. dv dr 
i 

fs  Y(v)(l fJ(r, v) dv dr, <_ czx ko J 

which tends to zero when j -+oc,  by Lemma 3.3. This also holds for 

(3.9) ~ /~ )~J(v)(l+lv.I)~fJ(r,v)fJ(r,v.)dv. dvdr 
j .~-I>zx 

by a similar argument. By Lemmas 3.5 and 3.6, 

.~v.,,,i < A ;~J (V.)(1 + [v.I)•fJ(r, v.) dv. 

tends to zero when A->0, uniformly with respect to r outside a j-dependent small 
set, that  is taken care of by Lemmas 2.2 and 3.4. Hence, 

(3.10) z~olim \(limsupj~oo/s'j flv,,,,,<A 5Cd(v)(l+'v')~ylj(v*)(l+'v*')~ 

x fJ (r, v)f O (r, v.) dv. dv dr) = O. 

But (3.5) follows from (3.6) (3.10), and so the lemma holds. [] 

End of the proof of Theorem 1.1. It is a consequence of the weak compactness 
of Qd (fd, fd) and the inequality (2.5) that  (Qd+(fd, fd)) is also weakly compact 
in any nl({(r ,  v);iv~ I >8 and Ivl<l/~}).  This implies a (subsequence) limit when 
j--+oc in the weak form of equation (2.1) for any test function ~ with compact 
support and vanishing on {(r, v); Ivy] <8} for some 6>0. Let us prove that  

(3.11) .lira [ ~QJ-(fJ,fJ)(r,v)rdrdv ~Q (f,f)(r,v)rdrdv. 
3--+00 ' J R 3  A 3 d 
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First, 

9(v B~(fJ(r'v)fJ(r'v*)xJ+f(r'v)f(r'v*))rdrdvdv*dw 
.[>y. 

can be made arbitrarily small for If. large enough, since by Lemma 2.2, 

L, B~(fJ(r'v)fJ(r'v*)xJ§ 
.l>v. 

< c ~ . [ > v ~  XJ(v*)(l § v*)§ f(r' v*)) dv*dr' 

which by the proof of (3.1) and (3.2) tends to zero when V.--+~. For If. fixed, let 
{v. ;iv. I <- V. } be covered by U~ B•, where B~:= {v. ;iv. - w~] _< l /n} .  Using the av- 
eraging lemma (see [10]) and a diagonal process, fR~ Iv -w?  [Z~fj (r, v) dv converges 
a.e., hence for each n, and outside of an arbitrarily small set RC (rA, rB), uniformly 
with respect to i. Consequently, 

(IR  'v-w:*[f~ ~ff (r' v) dv) ( ~  XJ (v*) fJ (r' v* ) dv* ) r d r  

-+ ~ ~ ( ~  ,v-w~i~f(r,v)dv)(iB? f(r,v.)dv.)rdrdv, j--+~. 

Using Lemma 2.2, 

fR~ IB? (IR3 (Iv-- v* i~ -- Iv-- w~ '~)~ fJ (r' v) dv) fj (r' v* )r dr dv* -+ O' 

when n-+co. It follows that  

• • 

It remains to prove that 

(3.12) lim [ [~-B ~Q+(fJ,fJ)(r,v) rdrdv= ~Q+(f,f)(r,v)rdrdv. 
j--+c~ j R 3  J~'A 3 A 

For R >  0, let fR =weak_L 1 ]imj~oc (fJ lfj <R)- Split 

JR3 L:B ~(Q+(fJ,fJ)-Q+(f,f))(r,v) rdrdv 
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into Ii+I2+Ia+I4+Is, where 

J;C 11:= ~ a ~(Q+(fn ' f ) -Q+(f ' f ) ) rdrdv '  

I 2 : = ~  xJg~(r,v)BfJ(r, vt)fJ(r,v'.)rdrdvdv, dw, 
J(r,v')>R 

I3 := fr XJ~( r, v)B f f  (r, v')ff(r ,  v~.)r dr dv dr. dw, 
--Iv. l>v 

]/ 
Is:=f fJ(~,~')<R xJB~(r,v)fr rdrdvdv*d~ 

J v2+v2. <V2-l-1/52 

- / "  B~(r, v)fR(r, v')f(r, v'.)r dr dv dr. dw. 
Jv 2+v2.<V2+l/52 

Let c>0  be fixed. By the monotone convergence theorem, 

(3.13) 151 <e,  R>R1,  

for some RI>0.  Again arguing as in the proof of (3.1), (3.2) and (3.11), we get 

(3.14) Ir~l_<~, R>R~,  

for some R2>0. Comparing the gain term with the loss term and the entropy 
production term, it holds that for K >  1, 

IIaI<_K ~(r,v)BfJ(r,v)fJ(r,v.)rdrdvdv. dW+log~- ~ 
.I>V (3.15) 

J(ll C <~C, <_~d~ 2;(v.)(l+l'u.I)~H(~,~.)~d~d'~.+~og-- ~ _ 
.I>V 

for K, and then V large enough. Then, 

(3.16) Ihl _< 

for V large enough, by the integrability of (r, v, v., co)~-+Bw(r, v)f(r,  v')f(r, vt.). No- 
tice that f ~  is also the weak* L~176 of fJlfJ<R. Moreover, it follows from the 
averaging lemma that 

~_<v2+(1/62 ) ~ XJ B~(r, v') f j (r, v,) dv. dw 
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s t rongly converges in L 1 ((rA, rB) • {V ;IV l< R}) to 

f~.2<y2+(1/a2)_, 2 Bw(r', v ' ) f (r ,  v,)  dv, dw. 

Hence l imj~oo I 5 - 0 .  And  so, 

f[~ l im f F ( Q + ( f J , f J ) - Q + ( f , f ) ) ( r , v ) r d r d v = O ,  
2-+oo ,JR 3 A 

by choosing R and V large enough so tha t  (3.13)-(3.16) hold. The  limits (3.11), 

(3.12) are thus proved, which completes the proof  of Theorem 1.1. [] 
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