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Geodesic inversion and Sobolev 
spaces on Heisenberg type groups 

Francesca Astengo and Bianca Di Blasio 

A b s t r a c t .  Let  c~ be  t he  geodesic invers ion on a Heisenberg  type  group N wi th  homogeneous  

d imens ion  Q, and  denote  by S the  jacobian  of c~. We prove tha t ,  for - ~ Q <  < *EQ, t he  opera to r s  

Ta: f~--~S 1/2-~/Q (foe) are b o u n d e d  on cer ta in  homogeneous  Sobolev spaces  ~ a  (N) if and  only 
if N is an  Iwasawa N-g roup .  

1. I n t r o d u c t i o n  

The class of Heisenberg type groups was introduced by Kaplan in [8] as a class 
of two-step nilpotent Lie groups whose s tandard sublaplacians admit  fundamental  
solutions analogous to tha t  known ibr the Heisenberg group. I t  includes all Iwasawa 
N-groups associated to real rank one simple Lie groups. The formalism of Heisen- 
berg type groups provides a unified way for studying many problems on real rank 
one simple Lie groups tha t  can be reduced to problems on the associated Iwasawa 
N-group [3], [4], [5]. 

In [3] it was proved that  the Iwasawa N-groups are characterised among all 

Heisenberg type groups by a Lie-algebraic condition, the so called J2-condition; 
moreover it was proved that  the geodesic inversion cr on N is conformal if and only 
if the J2-condition holds. 

In this paper  we study some properties of the action of the inversion cr on 
functions. We consider the operators T~ defined on C~(N) by the formula 

T~f=S 1/2-~/Q(focr), fEC~(N) ,  -EQ<c~<EQ,1 1 

where S denotes the jacobian of the map or. Clearly the operator Ta extends to an 
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isometry on LP(N), for 
1 1 c~ 

p 2 Q 
We prove that  the j2-condit ion holds if and only if the operators T~ are bounded 

on suitable homogeneous Sobolev spaces 7-/~(N), defined in terms of the s tandard 
subiaplacian on N. An important  application of our result is an elementary proof 
of the uniform bouudedness of certain representations of real rank o n e  simple Lie 
groups on 7-U(N) (see [10], [11], [12] for the first papers on this subject). The ap- 
proach used in this paper  appeared in [2], where M. Cowling attacked this problem 
for the real, complex and the quaternionic cases before the introduction of Heisen 
berg type groups. Additional results concerning uniformly bounded representations 
can be found in the paper  by Cowling and the authors [1]. 

The authors would like to thank Michael Cowling for many  useful conversations 
and for suggesting the subject of this paper. 

2. t t e i s e n b e r g  t y p e  g r o u p s  

Let n be a two-step real nilpotent Lie algebra, with an inner product  ( - , .  }. 
Write n as an orthogonal sum n=t~| where 3 is the center of n. For each Z in 3, 
define the map Jz: t~-+D by the formula 

<JzX, Y>=i[x,Y],z), x , Y ~ .  

Following Kaplan [8], we say that  the Lie algebra n is H-type if 

(1) a~ =-IzI2I,, zca,  

where Iv is the identity on g. A connected and simply connected Lie group N 
whose Lie algebra is an H- type  algebra is said to be an H-type group. The Iwasawa 
N-groups associated to all real rank one simple groups are H-type.  Note that  from 

property (1), it follows that  3=[v, v], and moreover the dimension of ~ is even. We 
denote by Q the number  do +2da. 

In Section 5 we shall need the following properties of the map J.  These prop- 
erties are proved in [3, Section 1]: 

(2) 

JzJz, + Jz, Jz = -2<z, z'>, 
<azX, Jz, X'> + <Jz,X, JzX'> = 2(z, z'> (x,  x'>, 

[x, JzX] = IXl=Z, 

X, X '  E t~, 

XEt~, ZE3, 
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where Pj~xX' is the projection of the vector X '  on the space J3X={JzX:Zcs} .  
Since N is a nilpotent Lie group, the exponential mapping is surjective. Let X 

be in ~ and Z be in ~; we denote by (X, Z) the element e x p ( X + Z )  of the group N 
and by log(X, Z) the element X + Z  of the Lie algebra n. 

By the Baker Campbell  Hausdorff formula, the group law is given by 

1 X '  Z '  ( x , z ) ( x ' , z ' ) = ( x + x ' , z + z ' + ~ [ x , x ' ] ) ,  x ,  ~ ,  z, c3. 

The group N is unimodular and a Haar  measure dn on N is dX, dZ, where dX and 
dZ are the Lebesgue measures on the real vector spaces t~ and 3 respectively. 

The Iwasawa N-groups are characterized, among all H- type  groups, by an 
algebraic condition, called the J2-condition. 

Definition. ([3]) We say that  n satisfies the J2-condition if, for any X in l~ and 
Z, Z '  in 3, such that  (Z, Z ~) =0,  there exists Z"  in 3 such that  

JzJz, x = J z , , x .  

In Section 5 we shall see that  this condition is strictly linked with the geometric 
properties of the inversion a on N. 

When N is abelian, cr is the classical inversion or: x~--~-Ix I 2z on R d~ ~ N .  In 
the general case it is the limit on the boundary N of the geodesic inversion on the 

D a m e ~ R i c c i  space associated to N (see [4] and [5] for further details). The map cr 
has been studied in [3]; it is given by 

o - ( X , Z ) : ( 1 3 ( X , Z )  1~z[(X,Z)X,-13(X,Z)-lZ), (X,Z) CN\{O}, 

where 

A(X,Z)= 1 2 ~lXl +Jz, A ( X , Z ) = l l x l 2 - J z  and 13(X,Z)=~IXI4+IZI 2. 

In [3] it is proved that  a is conformal if and only if the J2-condition holds, i.e., if 
and only if N is an Iwasawa N-group.  

Let t be a positive real number. We define the homogeneous dilation dt on N 
by 

5~(X,Z)=(tX, t2Z), (X ,Z)~N.  

It  is easy to check that  at is a group automorphism and that  the number Q=do  +2d  3 
is the homogeneous dimension of N.  A homogeneous gauge on N is the function 
131/4. Let E be the unit sphere with respect to this gauge, i.e., 
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there exists a unique C ~ measure dr] on E such tha t  the following polar coordinate  

integral formula holds: 

2/7 f(n)dn= f(dtr])tQ-S dtdrl, f EC2(N ). 

I E . I  d, r U ?da We fix o r thonormal  bases t 5J3=1 and t k.]k=l of ~ and a, respectively. For 
X _ v ,  do X in v and Z in a, we write - z -~ j = l  xyEj and Z = ~ { ~ _ I  zkUk. Given a vector V 

in n, we denote by V the left-invariant vector field associated to it, hence we write 

if/f (n)= d t=of(nexptV)" 

We shall refer to vectors in D as horizontal tan9ent vectors. 
It  is easy to check that ,  for a smooth  function f on N,  

k(JukX,  Ey)O~kf(X, Z), 1 Ejf(X, Z) =O~jf(X, Z)+~ 
(3) 

Ukf(X, Z) = O~kf(X , Z), 

where j = l ,  ..., d ,  and k = l ,  ..., da. 
From now on we shall write 

J k = J u k ,  k 1 , . . . , d  a. 

Finally, we use the "variable constant  convention",  according to which con- 

s tants  are denoted by C, and these are not  necessarily equal at different occurrences. 
All "constants" are positive. 

3. F r a c t i o n a l  p o w e r s  o f  t h e  s u b l a p l a c i a n  

In this section, we recall some properties of homogeneous  distr ibutions which 
we will use in the next sections. For fur ther  details, the reader can refer to [2] 

and [6]. 
Let d be in C. A function f on N is said to be homogeneous of degree d if 

f~ t E R  +. 

Since BoSt=t4B, any homogeneous  funct ion f of degree d satisfies 

f(7/,) = ~'~(~)U(?Z) d/4, 1/~ C J~ \  {0}, 
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where ~ is homogeneous of degree 0. 
We say that  a distribution K on N is a kernel of type c~ if it coincides with a 

homogeneous function f~v of degree c~-Q on N\{0}.  In what follows, we shall use 
the same notation K for the distribution K and the associated function fK. 

Let A be the subIapIacian, defined by 
d. 

j = l  

where/~y are the left-invariant vector fields given by formula (3). The operator A 
is a densely defined, essentially self-adjoint, positive operator on L2(N).  Hence it 
has a spectral resolution given by 

/7 A = ~ dAx. 

Moreover 0 is not an eigenvalue of A, as proved by Folland [6, Proposition 3.9]; 
therefore if c~ is in C, we may define the operators A s by the formula 

A s = - -  ~oo ;~ dAx. 

P r o p o s i t i o n  1. ([6, Theorem 3.15, Propositions 3.17 and 3.18]) The operators 
A s have the following properties: 

(i) the operator A s is closed on L2(N) for every a in C; 
(ii) if  f is in Dom(A~)ADom(A~+Z), then A~.f  is in Dom(A z) and A Z A ~ f =  

A~*+f3f; in par~ticular, A - a = ( A a ) - l ;  
(iii) if 0 < R e ( @ < Q ,  there exists a kernel Tr of type c~ such that if f is in 

Dom(A ~,/2), then A - ~ / e  f = f  *7~ .  

4. L o r e n t z  and  S o b o l e v  s p a c e s  

Let f be a measurable function on the group N. The nonincreasing rearrange- 
ment of f is the function f* on R + defined by 

f * ( t ) = i n f { s E R + : [ { n E N : l f ( n ) l > s } l < t } ,  tcR +, 

where IEI denotes the Haar measure of a measurable subset E of N. The function 

f* is nonincreasing, nonnegative, equimeasurable with f and right-continuous. For 

any given measurable function f on N, we define 

IIfHLP'~= (sl/Vf*(s))q s J ' l < p < c e ,  l < q < o c ,  

and 
I l f l lLV,oo=sup{sl /Pf*(s):sER+},  l < p <  oo. 
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Definition. Let l < p < o c  and l < q < o c .  The Lorentz space LP'q(N) consists of 

those measurable functions f on N such that  I[fllL~,~ is finite. 

It  is easy to check that  LP,P(N) coincides with the usual Lebesgue space LP(N), 
with equality of norms. Moreover, if ql<q2, then L p'q~ (N) is contained in L p'q2 (N) 
and, if l < p ,  q<oo, the dual space of L;,q(N) is L p''q' (N), where 

1 1 1 1 

A good reference for Lorentz spaces is [7]. We recall a few facts from tha t  

paper. 

L e m m a  2. ([7, p. 273]) Let p and r be in (1, oo). Then there exists a constant 
C(p,r), depending only on p and r, such that for every f in LP'2(N) and g in 

I l f*gl l  _< C(p, r)[/gllL",  [IfllLp, , 
~dohere 

1 1 1 
- + -  = - + 1  
p r q 

and l < p < q < o o .  

L e m m a  3. ([7, p. 271]) Let p andr be in (1, oc). Then there exists a constant 
C(p,r),  depending only on p and r, such that for every f in LP'2(N) and m in 

IImf[tLq,2 < C(p, r)HmIIL,.~ llfl[Lp,~, 

where 
1 1 1 q 
q p r 

and l < q < p < o o .  

Definition. For real c~, we define the homogeneous Sobolcv space 7t~(N) to be 
the completion of the space of smooth functions with compact  support  on N with 
respect to the norm 

Ilf[tn~=l[A~/2fllL 2, f e U d ( N ) .  

The spaces 7/~ (N) and 7-/ ~ (N) are dual with respect to the pairing 

( f , g ) = L  f (n)g(n)dn,  f E ~ ( N ) ,  g E ~ - ~ ( N ) .  

We have the following Sobolev immersion properties. 
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P r o p o s i t i o n  4. I f  -1Q<c~_<0 and 

1 1 (~ 
p - 2  Q'  

then L p'2(N) is contained in 7i ~(N),  and moreover 

ll/ll~" -<C(a)llfllL~,2, Z E?i~(N) . 

Pro@ If c~-0, the proposition is clearly true. If c~ is in (- �89 0), by item (iii) 
of Proposition 1, we have for f in C ~  (N), 

A ~ / 2 f = f . 7 4  ~, 

where 74 ~ =f tB -(~+Q)/4 and t2 is homogeneous of degree 0 and smooth away from 
the identity. Since 174-~(n) I--<CB-(~+Q)/4(n), we obtain 

(74 _< t c (o, 

Now we compute (/3-(~+Q)/4) *. For t > 0  we have 

(/3 (~+Q)/4). (t) = inf{s C R+:  I{n C N :  IS-(a+Q)/a(n)l > s}l <_ t} 

{ f 8-1/(Q§ t}~C~_(l__oe/Q) " 
= i n f  s E R  +:a0 u Q - l d u <  

It follows that  74_~ is in L~,~(N) when 1 / r = l + a / Q .  If 

then l < p < 2  and 

1 l a 
p 2 Q' 

1 1 1 
p + - = ~ + l . r  

Therefore, by Lemma 2, we obtain 

IIA~/2flIL ~ = Iif '74 ~ IIL~ _< C1174 ~IIL", ~ IIfllL~,~, 

as required. [] 

By duality, we obtain the following result. 
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C o r o l l a r y  5. If 0 < a <  1 gQ and 

1 1 a 

p 2 Q' 

then 7{ ~ ( x )  is contained in L p'2(N), and moreover 

Ilfllc~,~ <<_c(a)[Iflln~, f eTl~(N)  �9 

We need the following characterization of Sobolev spaces, proved by Folland in 
the nonhomogeneous case for c~>0; his proof can be adapted without substantial 
changes to the case of homogeneous Sobolev spaces of any order. 

If f is in ~ ( N ) ,  we shall write E j f  for the distributional derivatives of f .  

Theo rem 6. ([6, Theorem 4.10]) Let ct be real. Then f is in 7-t~+l(N) if and 
only if for every j - l ,  ... ,do we have that E j f  is in 74~(N); moreover the norms 

do Ilflln~+l and E j=l  I]EJf]l~ ~ are equivalent. 

The following multiplier theorem was proved in [2] for the real, complex and 
the quaternionic Iwasawa N-groups. 

Theorem 7. Let jt4d(N) be the space of functions in C~(N\{0}) ,  which are 
1 < 1 homogeneous of degree d, where d is in C and Re(d)_<0. /f  - s Q < a _ f l < ~ Q ,  m is 

in Add(N) and a - f l=Re(d ) ,  then pointwise multiplication by m defines a bounded 
operator" from 7t ~(N) to N~(N).  

Pro@ For m in Add(N), denote by A(m) the operator defined by A ( m ) f = m f  
for every measurable function f on N. We divide the proof into four steps. 

(i) If a < 0  and fl>0, then A(m) is bounded froln ~ ( N )  to ~ ( N ) ,  for m in 
Add(N) with Re(d)=a- f l .  

(ii) If -1<_(~=~<_1, then A(m) is bounded on Tiff(N), for m in Md(N) with 
ae(d) =0. 

(iii) If 0 < a = / 3 <  1 gQ, then A(m) is bounded on 7/~(N), for m in Add(N) with 
ae(d) =0 

(iv) By duality and complex interpolation A(m) is bounded from 7/~(N) to 
~ ( N ) ,  for 1 1 -gQ<a<[~<~Q,  Re(d)=a- /3  and m in A/Id(N). 

Let us proceed with the proof. 
(i) The case where a=/3--0 is trivial because if Re(d)=0 any function in 

1 % 1 Jvla(N) is bounded. Let - ~ Q < a O < _ / 3 < s Q  , but ar If m is in Add(N), with 
Re(d) =a - /3 ,  then 

Im(  )l _< c N\{0}. 
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Proceeding as in the proof of Proposition 4, one can check that  m is in L ~'~(N) 
for 1/r=-Re(d) /Q.  Moreover, for every f in C~(N) ,  by Lemma 3, Proposition 4 
and Corollary 5, we have 

Ilmflln ~ <- Cl]'mfl]L~,: <-- CIIrrdlL ~,~176 ]If IlL', ~ <-- CIImllL',~ IlfllJr 

where 
1 1 ct 1 1 1 1 fl 

-- a n d  -- - 

q 2 Q p q r 2 Q 

We conclude that is bounded from to 7/"(N) for in Add(N) with 
Re(d) = a - f t .  

(ii) Let m be in Add(N) with Re(d)=0 and let f be in ~ I ( N ) .  We shall prove 
that  m f  is in ~ I ( N )  by using Theorem 6, i.e., we shall verify that  /~j(mf) is in 
":H~ for every j = l ,  ..., d, .  We have 

Ej (m f)  = F,j (m) f  +mEj (f). 

Since f is in J- / I(N),  by Theorem 6 the funct ion/~j( f )  is in ?r176 Moreover the 
function m is in Ad~ so/~j(m) is in Ad-I(N).  Therefore by step (i) we obtain 

IIEj(mf)llL= IIF, jmlh ,o  Ilfl/   +llmllL  IIEYfllL  CIIfll *. 

Thus, by Theorem 6, A(m) is bounded on "Hi(N). By real interpolation and duality, 
A(m) is bounded on ~ ( N )  for c~ in I-1, 1]. Indeed, we have seen that  if Re(d)=0, 
then A(m) is bounded on "H ~ (N) and on ,]_/1 (N). Hence A(f/~) is bounded on 74 ~ (N) 
for every c~ in [0, 1] by real interpolation. By duality, A(m) is bounded on J4~(N) 
also for every c~ in [-1, 0]. 

(iii) Let 0<c~<�89 and let m be in Add(N) with Re(d)=0. For any posi- 
tive integer s, denote by D ~ a left-invariant differential operator of the form DS= 
fI~=l Ej~, where j~, ... ,j~ are in {1, ..., d,}. Let k be the positive integer such that  
c~-k is in [-1,0).  By Theorem 6 it suffices to prove that  Dk(mf)  is in "H~-k(N), 
for every f in ?-/~ (N) and for every differential operator D k of order k. By Leibniz' 
rule we have 

k 
S 

,s=0 

where D o is the identity operator. Note that,  for s=0,  1, ..., k, the function DSm is 
in AAd-~(N) and the function Dk-~f  is in ~ k+~(N), by Theorem 6. Therefore, 
by steps (i) and (ii), the function Dk(mf)  is in "H~-k(N) and a(m)  is bounded o n  
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(iv) Consider the case where 0<(~</3< 1 gQ and let m be in 2k4a(N) with 
Re(d)=c~-/3. Consider the analytic family of operators z ~ A ( m - ~ / a ) .  Note that  
rn -~ /d  is in 34 ~ ( N ) .  For Re(z)=0,  the operator A(rn - ~ / d )  is bounded on 
~H~(N), by step (iii). For Re(z)=1,  by step (i), the operator A(m ~ /d)  is bounded 
from "H~(N) to ~ ~  Therefore, by Stein's complex interpolation theorem [15], 
the operator a( rn  - ~ / d )  is bounded from "H ~ (N) to 7/(1 a~(~))~ (N) for 0_< ae(z)_< 1. 
For z=-d//3 we have (1-Re(z))/3=c~. Thus the operator A(rn) is bounded from 
?-t~(N) to 7/~(N). Duality or complex interpolation can be used for the case where 
- � 8 9  This concludes the proof of the theorem. [] 

5. I n v e r s i o n  a n d  S o b o l e v  s p a c e s  

Denote by S the jacobian of the inversion or, i.e., 

fN f (n )  dn=/Nf(~(n))S(rt)dn,  f EC~(N).  

In [3] it is proved that,  if the J2-condition holds, then S = B  Q/2. The expression 
of the density S in the general case is not known; however it is easy to prove that  
S is homogeneous of degree - 2 @  

For real c~, define a linear operator T~ by 

T~f(n) = S ( n )  1/2 ~/Qf(c@~)), n oN, 

for every measurable function f on N. 
It is easy to check that  the operator To is bounded on L 2(N). In this section 

we prove that  the operator T~ is bounded on "/-t~(N), for every 1 Q < ( x < l  5Q, if 
and only if N is an Iwasawa N-group (see Theorem 9). The proof uses the fact, 
proved in [3], that  the inversion cr on N is conformal if and only if the g2_condition 
holds. 

We recall that  a map #: N--+N is contbrmal if d# maps horizontal tangent 
vectors to horizontal tangent vectors, and restricted to the space of such vectors is 
a multiple of an isometry at each point. Actually, in the proof of Theorem 9, we 
use the fact that dcr maps horizontal tangent vectors to horizontal tangent vectors 
if and only if the Y2-condition holds. 

L e m m a  8. The map dcr maps horizontal tangent vectors to horizontal tangent 
vectors if and only if the J2-condition holds. 

Prvof. Note that  dcr maps horizontal tangent vectors to horizontal tangent 
vectors if and only if for every n in N and every V in u there exists a vector V~ in 



Geodesic  inversion and  Sobolev spaces  on Heisenberg  t ype  groups  61 

u such that  
V(foa)(n) = [V,{f](a(n)), f C CF(N). 

It is enough to verif) that  the latter condition holds for the vectors of the basis 
{E~do 

3 J j = l  o f  D. 

We have 

(4) 

d~ da 

i=1 k ~ l  

d~ da 

= E (/~J crE~)(n)(~if)(c~ (n)) + E Gj,k (n)Ozk f (~(n)), 
i=1 k = l  

where, for V in n, we denote by ~v the function on N given by ~v (n)= (log ~(n), V}, 
and for n =  (X, Z), 

1 d~ 
Gj,k(fg ) = (~Tj(TUk)(Ig)~- ~ E (U(X, z ) - l o r k A ( X  t Z)X, Si)(Ejo-Ei)(I~). 

i 1 

It follows that  the theorem is proved if we show that  

Gj,/~=0, j = l , . . . , d , ,  k 1,. . . ,da, 

if and only if the J2-condition holds. We claim that 

(5) Gj,~(x, z) = alxl2u(x, z)-2(&&x+xiz,  uk)-Pj, x(&&x),  E,) 

for every (X, Z) in N, and for every j 1, ..., d0 and k = l ,  ..., d a- 
It is easy to see that  if the j2-condition holds then this expression vanishes; on 

the other hand from this equality it follows that if Gj,k=O, then 

Pa, x (JwJzX)- ( z ,w)x=-aw&X,  x~t,, w,z~a. 

In particular for (W, Z}=0, the last equality implies that  JwJzX belongs to J3X, 
i.e., the d2-condition holds. 

We now prove the claim, i.e., equality (5). Let Av(X, Z)=(A(X,Z)X,V}. 
Using formula (3) (see also [3, pp. 27~28]) we have 

~j~(x, z) = (A(x, z)x, Ej) 

and 
~jAv(x, Z)= ~(X,E~)(X, V)+(3(X,Z)Es, V) ~ (Jrx,Ejj X, V). 
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From now on we shall write 

B = B ( X , Z ) ,  AX--A(X,Z)X and AX=A(X,Z)X.  

Since o-u,~ (X, Z ) = - B  lzk and uEi (X, Z ) = - B  -1 (dX, El), by (3) we obtain 

(Ejcruk)(X, Z) = ~-2(/~jS)Zk-- IZ l (JkX , Ej) 

=S 2(AX, E~>zk+~ 1 ~B (X, JkEj) 

and 

(6) =~-2(~4X, F~j)(,~X,E{> I x 

k l B - 1 / j  v El}. ~ [X,E:] -4, 

Therefore, since (Jk,,4X, ,,4X)-O, we get 

+z~ -~ [-�88 x>~j- �89 AE~> + �88 <J~AX, J[~,.~x>]. 

Using properties (2), we shall treat the terms in the square brackets separately. 
Fox" the first term, we have 

= x ( J ~ x ,  J k x > ~ j  = - �88  -�88 ( gkAX, X)x5 - ~  IX l ~ ( J~ x,  X > x j -  

For the second term, we have 

-�89 }]XI2(J~AX, E~)+�89 JzE~) 

+�89 JzEs) - x [ ( JkJzX,  JzEj) 

+ �89 (JzJkX, JzE]) - (gzX, Ej>zk 
1 4 

- (~Ixl _x - ~]Z] )(X, JkEj)--�88 JkEj) 

For the third term, we have 

x (g~JzX, J[x,z~]X} �88 (J~AX, f[x,~A X> : ~ IX [~ (J~X, J[x,~AX> - 
:• E ~6 IX14<[ X, y], u~>-~<J~JzX, J[x,~j]x> 
= - ~ IX I ~ (x ,  ~ E ~ > -  �88 (g~ Jzx, JtX,E~IX>. 
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Now we compute 

B2Gj,k (X, Z) = �88 IXI2zjzk + <JzX, Ej}z~ + �89 JkE]}-  l lXl2zkzj 
1 4 1 ~lZI )(X,&Ej)-~IXI2(JzX,&Ej> +(~_/iXl _1  2 

+ �88 IXl2z~x] -<JzX,  Ej}zk-  LAg IXI 4 <X, JkEi} 

- } <A&x, J[x,E~]x> 
= �88 Z}X, E j > -  l<JkJzX , Jfx,EjlX} 

- ~lxl2(&jzX+(Uk, z>x, Ej>- �88 Ixl2(&JzX, Pj~xEj) 
=llx12{&&x+xiz ,  uk> P~x(&&x),Es>. 

Equality (5) follows and the proof is complete. [~ 

We shall use this lemma in the proof of the following theorem. 

T h e o r e m  9. The operator T~ is bounded on t i  ~ (N) for" every c~ in ( -  �89 �89 
if and only if the J2-condition holds. 

Proof. The operator To is clearly bounded on ~t~ Suppose that  
the J2-eondition holds. By Theorem 6, to show that  T~f is in ~ ( N ) ,  it suffices 
to prove that  Ej(T~f) is in U s I (N) for every j = l ,  ... ,d0. 

First consider c~=1 and let f be in H i ( N ) .  By formula (4) in the proof of 
Lemma 8, we have 

~ j ( T l f ) = ( E j S  1/2 1/O)(focT)§ 172 1/QEj(foa) 
d~ 

= (EjNU2-1/Q)(focr)§ E(Ej~E~)(Eif)ocr. 
i=1 

Remember that  S is homogeneous of degree - 2 Q ,  so tha t  S1/2(EjS1/2-1/Q)oo - is 

homogeneous of degree -1 ,  and by Theorem 7 we conclude that  

I[(EjS1/2-1/Q)(Ioo-)IIL 2 = IIS1/2((~jS1/2-1/Q)oo-)IIIL ~ < CIIflln*. 

Analogously, since S1/Q((EyE~)oct) is homogeneous of degree 0, we obtain 

IIS 1/2 1 /Q(Ej (TE~) ( (E i f )ocr ) I IL2  = I I s l / Q ( ( E j c r E ~ ) o ( 7 ) E i f l I L 2  

<_ CIIEiflIL= <_ Cll f l l~.  

Therefore T1 is bounded on ~ I ( N ) .  
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The case where 0<(~<1 follows by complex interpolation arguing as in Theo- 
rem 7. 

We write [0, �89 [h-1, h) and proceed by induction on h. We have just 
proved that  T~ is bounded on 7t ~ (N), when c~ is in [0, 1). 

Now suppose that  T~ is bounded on 7t~(N) when c~ is in [h 1, h) and let c~ 
be in [h, h + l ) .  We have 

P 
Ej(T~f) - S 1/2 a / Q - I ( E j S ) ( f o ( T ) - - s l / 2 - a / Q  E ( E j ( T E i ) ( E i f ) o o "  

i-1 

= T o z - I [ S I + I / Q ( ( E j S ) ~ 1 7 6  E l f  . 

Note that the functions Sl+I/Q((~jS)o~) and S ~/Q d~ -- l(ZjE{)o ) are homoge- 

neous of degrees -] and 0, respectively. Therefore, from the induction hypothesis 

and from Theorems 6 and 7, it follows that, for every j:], ..., do, 

d~ 

@C ~l/Q(i~l(EJ(TE{)O(T)Eif,,l_ta_l 
d~ 

i=1 

The case where - � 8 9  follows by duality, since T~=T*~. 
Conversely, we show that  the operator T~ is unbounded o n  ,]_~1 ( N )  when N is 

not an Iwasawa group. 
Let p be in C~(N) such that  p ~ l  in a neighbourhood 5/ of the identity 0. 

Suppose that  the J<condi t ion  does not hold and let fi be in N\b / such  that  Gj,k ( f i )#  
0 for some j and k, where Gj,k was defined in Lemma 8. Let - 4 < / 3 < - 2  and define 

f(n) =g)(~-ln)B(f~-ln)-(~+Q)/s, n E N. 

Note that  the function f is in ~ I ( N ) ,  because it is compactly supported and it 
behaves like B(gz 1. )-(~+O)/s in a neighbourhood of/~t a n d / 3 < - 2 .  

We now show that  Tlf is not in ~* (N) .  From formula (4) it follows that  

du 

/ ~ j ( T l f ) ( r t ) -  (EjS1/2-s/Q)(rt)f((7(n))+S(n) 1/2-s/0" E(Eyz~)(r~)(Eif)(a(n)) 
i--1 

da 

+S(n)1/2 1/Q E GJ,k(n)Ozkf(a(n))" 
h--1 
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As proved before, all the functions in the previous sum are in L2(N) except for 
S 1/2 ~/QGj,k(O~.f)oa. Indeed, since Uk=0~k is left-invariant and homogeneous of 
degree --2, the function IS 1/Q Gj,~oa(O~ f)]2 behaves like B(g~ -~- )-(Z+Q+4)/4 in a 
neighbourhood of ~, hence it is not locally integrable, s ince /~>-4 .  It follows that  
Ej(Tlf) is not in L2(N) so that,  by Theorem 6, T t f  is not in ~ I ( N ) .  [] 

6. U n i f o r m l y  b o u n d e d  r e p r e s e n t a t i o n s  

In this section, we assume that  the J2-condition holds, i.e., that  N is the 
Iwasawa nilpotent subgroup of a connected, real-rank-one simple Lie group. 

The group G of conforrnal transformations of NO{oc} is generated by trans- 
lations, rotations, dilations and the inversion ~ and it is isomorphic to the afore- 
mentioned simple group [9], [131, [14]. For g in G denote by w-~9 -1.n the action 
of g on NO{oc} and by Jg its jaeobian, i.e., 

Nf(n dn=/x  f(g l"n)ffg(n) dn, f �9 

Let a be a real number and define a representation 7r~ of G on C~(N) by the 
formula 

7r~(g)f(n)-- ffg(n)l/2-~/Qf(g-l'n), g~G, nCN, f e C F ( N  ). 

1 1 C o r o l l a r y  10. Let -gQ<a< ~Q, then vr~ is uniformly bounded on 7t~(N). 

Proof. Any element of G may be written as a product  of translations, rotations, 
dilations and inversions, and there is a bound on the number of factors required in 
the product. 

Let -gQ1 <a<lQ. When 9 is a (left) translation or a rotation then Try(g) acts 
unitarily on 7/~ (N), since 

J y - - 1  and Aa/2ovr~(g)=Tr~(9)oAa/2. 

When g is the inversion ~, then 

~(g) =T~ 

which is bounded on 7-/~ (N) by Theorem 9. 
Let g be a dilation 6t, for t real. We have 
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and  

Therefore  

/k~/2 ( fod t )  = t ~ ( A~/2 f )  odt. 

IITra(g) f l l .~t  ~ = rrLx /2(  (g)f)tt   = I I t Q / 2 - ~ A c ~ / 2 ( f  o d t ) l l L  2 

=IltQ/2(A~/2I)o~tl]L~ ]]flln~. [] 
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