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Asymptotic values of strongly normal 

Kar l  F.  B a r t h  and  Phi l ip  J. R i p p o n  

Dedicated to the memory of Professor Matts  Ess4n 

functions 

Abs t r ac t .  Let f be meromorphic in the open unit disc D and strongly normal; that is, 

(1-lzl2)f#(z)--+o as Izl-+l ,  

where f #  denotes the spherical derivative of f.  We prove results about the existence of asymptotic 
values of f at points of C OD. For example, f has asymptotic values at an uncountably dense 
subset of C, and the asymptotic values of f form a set of positive linear measure. 

1. I n t r o d u c t i o n  

Let D denote  the  uni t  disc { z : l z [ < l } ,  6" deno te  the  uni t  circle { z : l z l = l } ,  and  

denote  the  ex t ended  complex  plane.  Let  the  funct ion  f be meromorph ic  in D.  

A curve F : z ( t ) ,  0 < f < l ,  in D is a boundary path if ]z(t)l~l as t - ~ l .  The  set F N C  

is cal led the  end of P. We say t ha t  f has  the  asymptotic value aCC if the re  is a 

b o u n d a r y  p a t h  F : z ( t ) ,  0 < t < l ,  such t h a t  

f (z( t ) ) -+a as t ~ l. 

W h e n e v e r  the  end of P is con ta ined  in a subset  E of C, we say t h a t  f has the  

a s y m p t o t i c  value a in E; if the  end of F is a s ingle ton  {(},  t hen  we say t h a t  f has 

the  (point) a s y m p t o t i c  value a at ( .  

Recal l  t h a t  f is sa id  to be normal if the  funct ions  

f ( r  where  6 ( z ) = e  ~~ z+a ) t l+gz/ '  lal<l, 0~R, 

form a no rma l  fmnily or, equivalent ly,  if 

(1.1) c=sup(1-1z l2) f#(z)<oc,  where  f # ( z )  - If'(z)l 
~ D  l + [ f ( z ) l  2" 
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The quantity c is the order of normality of f .  See [14] and [18] for properties of 
normal functions. For example, the modular function is normal because it omits the 
three values 0, 1 and oc. By a theorem of Bagemihl and Seidel [4], all asymptotic 
values of non-constant normal meromorphic functions are point asymptotic values, 
and all such point asymptotic values are angular limits, by a theorem of Lehto and 
Virtanen [16]. Also, non-constant normal analytic functions are in the MacLane 
class ~4 since they have point asymptotic values at a dense set of points in C; see [4] 
and [17, p. 43]. However, there exist normal meromorphic functions in D with no 
asymptotic values. See [16, p. 58] for an example based on a modification of the 
modular function. 

The class A/0 consists of functions meromorphic in D such that  

(1.2) (1-izl2)f#(z)-+o a s  

Such little normal functions have been characterised in various ways; see [2], 
and also [10], where they were called strongly normal. To our knowledge, no results 
have been published about the existence of asymptotic values for general functions 
in No. For various subclasses of Af0, however, a great deal is known about the 
existence of asymptotic values, as we now indicate. 

It was noted in [1, p. 31] that  the hypothesis (1.2) means that  the spherical 
radius of the largest schlicht disc around f(z) on the Riemann image surface of f 
tends to 0 as Izl-+ 1. In particular, every univalent flmction is in Y0. Such functions 
have angular limits at all points of C apart from a set of logarithmic capacity zero. 

If f is meromorphic in D and 

(1-lzl2)f#(z) as ~ 1, 

where c>0,  then fEA/o. It follows from a result of Carleson [9, p. 61] that such 
functions f have angular limits at all points of C apart from a set of (an appropriate) 
capacity zero. 

The little Bloeh class B0 consists of functions analytic in D such that  

(1-1z]2)lf'(z)l-~O as Izl--+l, 

and these functions evidently lie in J~0- Also, it is easy to see that  if fEBo and 
9 has bounded spherical derivative in C (for example, if g is a rational function), 
then gofCAfo. There exist functions in B0 which have finite angular limits almost 
nowhere on C, but all such functions must have finite angular limits on a set of 
Hausdorff dimension 1, by a result of Makarov; see [19, Chapters 8 and 11]. More- 
over, Rohde [21] has shown that  if f is in B0 and f has almost no angular limits 
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on C, then for all a C C  the function f has angular limit c~ on a set of Hausdorff 
dimension 1. Also, Gnuschke-Hauschild and Pommerenke [13] have shown tha t  for 
functions in 130 the set of point asymptot ic  values of f has positive linear measure. 

In a recent paper  [7], the authors showed that  a locally univalent meromorphic 
function in No must have asymptot ic  values at points of an uneountably dense set 
( that is, the set nleets each non-trivial arc of C in an uncountable set) and that  

the set rp(f, 7) of point asymptot ic  values of f in any non-trivial arc 7 on C is of 
positive linear measure. Here we show, by a different method,  that  the hypothesis 

of local univalenee can be omit ted in these results. 

T h e o r e m  1. Let f be in No, let (~cC and let 7 be a non-trivial arc in C. I f  
the set of points of ~/ at which f has asymptotic value c~ is at most countable, then 
f has angular limits at a subset of "y of positive measure. 

As will be clear from the proof of Theorem 1, if we add the hypothesis that  ' f  
takes values arbitrari ly close to c~ near each point of 3", then the conclusion can be 
strengthened to ' f  has angular limits with values in any given neighbourhood of a, 
at a subset of 7 of positive measure' .  

We have the following corollary of Theorem 1. 

C o r o l l a r y  1. Any f in Ho must have angular limits at an uncountably dense 
subset of C. 

Note that  Corollary 1 is false if we assume that  f is just normal. For example, 
the modular function has angular limits at only countably many points of C; see [17, 
p. 56]. 

Corollary 1 shows that  a non-constant meromorphic function f in Af0 must 
belong to the meromorphic MacLane class A.~, introduced in [5]. In view of the re- 
sults of Makarov and Rohde about/30, mentioned above, it is natural  to ask whether 
'uncountably dense' can be replaced by 'Hausdorff dimension 1' in Corollary 1. 

Our next result also implies Corollary 1. Here FF( f ,  7) denotes the set of 
angular limits of f in the arc 7. 

T h e o r e m  2. Let f be non-constant and in No, and let ~/ be a non-trivial arc 

in C. Then F p ( f ,  7 ) = F r ( . f , ' / )  has positive linear measure. 

As in Theorem 1, if we add the hypothesis tha t  ' f  takes values arbitrarily close 
to c~ near each point of -y', then the conclusion can be strengthened, in this case to 
'Fp( f ,  ~ / ) = F r ( f ,  "y) has positive linear measure in any given neighbourhood of c~'. 

The plan of the paper  is as follows. In Section 2 we prove a topological lemma 
concerning the existence of asymptot ic  values of continuous functions and in Sec- 
tion 3 we prove several lemmas about  functions in A/0. Section 4 contains the proof 
of Theorem 1 and Section 5 contains the proof of Theorem 2. 
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2. A t o p o l o g i c a l  l e m m a  

In [15] Hayman proved tha t  certain functions which are meromorphic in C, 
with relatively few poles, have asymptot ic  value oc. A key lemma in his proof 
states that  if f is meromorphic in C, then at least one of the following is true: 

(a) there is a pa th  F tending to oc such that  f(z)--+oo as z -+oc  along F; 
(b) there is a nested sequence F~ of Jordan curves such that  dist(P~, F1)-+oc 

as n ~ o o  and f is bounded on U~_l Fn; 
(c) there is a pa th  F tending to oc on which f is bounded. 
This result was extended to continuous functions in C by Brannan [8], and to 

continuous functions u: R~r~--~ [0, oc], m > 2, with a strengthened version of case (c), 
by one of the present authors [20]. Here we need a variant of this last result, which 
we state in C though the proof extends readily to R "~. We shall apply this result 
to real-valued functions on bounded simply connected domains in C, using the fact 
that  such domains are homeomorphic to C. 

First recall from [20] that  a set E in C is solid i f / ~ = E ,  where /~ denotes the 
union of E and its bounded complementary components; equivalently, E is solid if 
C \ E  is connected. The name full is also used for this concept. 

L e m m a  1. Let u: C--+[0, oo] be continuous, with a bounded metric on [0, oo] 
giving the usual topology there. Then one of the following holds: 

(a) there is a path F tending to oc such that 

(2.1) u(z) --+ oo as z ~ co along F; 

(b) there exist M < oc and a sequence K,~ of solid, compact, connected sets such 

that K1Ch~2 c . . . ,  dist(0BL,,, K1)-+oc as n-+oc and 

o o  

n < M on U OK~; 
~ - - 1  

(c) there exists Mo such that .for all M>_Mo there are ir~finitely many un- 
bounded components of { z : u ( z ) > M } .  

We remark that ,  since the function ~t is uniformly continuous on compact sets, 

we can take the sets K~, n = l ,  2, ..., in case (b), to be bounded by Jordan curves. 

Proof. To prove Lemma 1, we need some further notation and results from [20]. 
For each M in (0, o c) we let b/M denote the set of components of { z : u ( z ) < M } .  

Then, for U in b/M, we put ~ u= [ . J {V: Vcb / M  and U c V } .  The set f tu is solid, and 
u ( z ) = M ,  for zcOf tu .  It  is shown in [20, p. 313] that  if f ~ u - C  for some M and 
some U in NM, then case (b) holds. Thus we can assume that  

(2.2) f~u r C for each M ~ (0, oc) and each U C b/M. 
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It  follows from (2.2) that ,  for each ME(0 ,  oc), the set {z:u(z)>M} has at least one 
unbounded component.  We outline the argument; see [20, proof of Lemma 3] for 
more details. If  for some M, 0 < M < o c ,  there exists an unbounded ftu,  UENM, 
such that  f t u r  then C \ f~u  is a compact,  connected subset of C, so 0f tuU{oc} 
is a compact,  connected subset of C, from which it follows that  each component  

of 0f tu is unbounded and so lies in an unbounded component of {z:~,(z)>M}. 
On the other hand, if for some M, 0 < M < o o ,  all f~u, UCbtM, are bounded, then 
the complement of the union of these f ig is an unbounded, connected subset of 
{z:u(z) _>M}. 

We now" suppose that  case (c) is false and deduce that  case (a) holds. Then 
there is an increasing sequence Mj, j = l ,  2, ..., tending to oc with the property that  
there are only finitely many unbounded components of {z: u ( z ) >  Mj }, for j = 1, 2, . . . .  

For each j this finite number is non-zero, as noted above. 

Evidently there is at least one component  E~ of {z:~t(z)_>M~} which contains 
an unbounded component  of {z:u(z) _> My } for each j = 1, 2, . . . .  Then there is at least 
one component  E2 of {z :u (z )>M2} in E~ which contains an unbounded component  
of {z:u(z)>Mj} for each j 2, 3, .... Continuing in this way, we obtain unbounded 
components Ej of {z:u(z)>_Mj}, j = l ,  2, ..., such that  E1DE2D .... 

For j = 1, 2, . . . ,  let Gj denote the (unbounded) component  of {z: u(z) > M3 } such 
that  G j D E j + I .  Then G j D G j + I ,  for j = 1 , 2 , . . . .  Thus if zj~Gj and the pa th  F is 
of the form FIUF2U.. . ,  where Fj joins zj to zj+l in Gj, then we deduce that  u(z) 
tends to oc as z proceeds along F. For a general continuous function ~* we cannot 
conclude tha t  the pa th  F tends to oc, since F may accumulate at an unbounded, 
closed, connected subset of C on which u=oc .  To overcome this problem, we 
consider the set E = F .  Then E is an unbounded, closed, connected set with the 
property that  

u(z ) -+~  a s z ~ c c ,  zEE.  

Since u is uniformly continuous on compact  sets, we can choose a decreasing con- 
tinuous function & [0, oc)-+(0,  �89 such that  if 

U I -<1 < aft(I)}, 
(6E 

then 

~ , ( z ) ~ c c  as z-+co, zCE~. 

To complete the proof, we use the fact that  the set E5 must contain a pa th  tending 
to oc; see [20, Theorem 2]. [] 
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3. Propert ies  of  Af0 

We recall the following results of Dragosh [12, Theorem 1 and Theorem 2], 
which were proved using the Lehto-Virtanen ma• principle; see Section 4. 
Here and in what follows we put  

6 ( x ) -  1+(1+x2)1/2 e x p ( - ( l + x 2 ) l / ~ ) ,  
X 

which is a decreasing function on (0, cx~). 

T h e o r e m  A. Let f be meromorphic in D with order of normality c, 0 < c < ~ .  
Let ~/ be an open subare of C and let %~ be a sequence of arcs in D which converges 

to ~/ in the Hausdorff metric. Put  Mn=SUpzc.~ ~ If(z)l.  I f  f is unbounded near any 
point of % then 

(3.1) lim inf M,~ > 6 (c). 
7%-+00 

Dragosh used Theorem A to give a sufficient condition for membership of the 
class s of functions f non-constant and meromorphic in D such that  the level sets 
of f 'end at points'. To be precise, let d(r, ;~) denote the supremum of the diameters 
of the components of the set 

< 1}, where A > 0  and 0 < r <  1 

Then f ~ s  if, for each A>0, we have 

d ( r ,A) -~0  a s r - + l ;  

see [17] and [5] for more details of this notion. 

T h e o r e m  B. Let c*-~0.663 be the unique solution of the equation 6(c)=1. I f  
f is meromorphic in D with order of normality c<c*, then f c s  

Next, we state a result about functions in the class ~2~, given in [5, Theorem 2]. 
Here we need the notion of a tract of f for ~ ,  which is a family of components D~ 
of {z:lf(z)l>)~}, ),>0, such that  Da2 c D A 1  , for A2>/~1, and ~x>0 Da=0 .  The set 
E=~)a>  0 Dx is called the end of the tract, and the function f has asymptotic value 
oc at each point of E.  

T h e o r e m  C. Let f be in s and suppose that 7 is a non-trivial arc of C such 
that no level curve of f ends at any point of 7. Then exactly one of the following 
statements holds: 

(a) for each interior point ~ of ~/ there exists a path Fr in D ending at r such 
that f is bounded on I J{F<:r 

(b) there exists a tract of f for oc with end containing % 

We use Theorems A, B and C to prove the following result about A/0. 
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L e m m a  2. Let f be in Afo. Then 
(a) if f is bounded on a sequence 7T* of arcs in D which converges in the 

Hausdo~:ff metric to an open arc 7 in C, then f is bounded near each point of 7; 
(b) there is a dense set of points in C, each of which is the end of a path in D 

on which f is bounded. 

Proof. To prove part  (a) suppose that  f is unbounded near some point ~0 of 7. 
For some M >  1, we have 

(3.2) Ms = sup If(z)l <_M<oc. 
z~Tn 

Since fEN'o,  we can choose a boundary neighbourhood Do of r in D such that  

"To =CNODo C7 and 

(3.3) (1 -1z l2 ) f# ( z )<c ,  z ~ D o ,  

where c is so small that  5 ( e )>M.  

Let 0: D-+Do be conformal and put 9( t )=f (r  Then, by the Schwarz Pick 
lemma, 

(i -Itl 2) lr l _< i -ir , 

SO 

(1-1ti2)ge(t)<(1-1r162 t D. 

Thus the order of normality of 9 is at most c. Now, for n--l,2, ..., choose a com- 

ponent 7" of 7~ND0 in such a way that "7~ tends to % in the Hausdorff metric. 

Then ~-I(7'~) is a sequence of arcs in D tending to the open arc (/)-I(70) , and 9 is 

unbounded near 4)-I(~0), which is in r Since 19(t)I<3/s for tCr we 

deduce by Theorem A that 

lim inf M~ >_ 6(c) > M, 
n--+ o(3 

which contradicts (3.2). 

To prove part  (b) suppose that  7o is a non-trivial arc of C. We can choose a 
boundary  neighbourhood Do in D such that  7o=CNODo and (3.3) holds with c<c*. 
As in the proof of par t  (a), we take r D--+Do to be conformal, so g(t)=f(O(t))  is 
normal of order at most c. Thus gCs by Theorem B. Also, since g is normal, it 
cannot have a t ract  for oc with end containing an arc, by the theorem of Bagemihl 
and Seidel; see [4]. Hence, by applying Theorem C to g on the arc r 1(70), we 
deduce either tha t  a level curve of f ends at a point of 7o or that  f is uniformly 
bounded on a family of boundary paths F< with endpoints at interior points r in 7o- 
This proves part  (b). [] 

Next we need a result about the level sets of functions in No. 
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L e m m a  3. Let f be in No, let f~ be a simply connected Jordan domain in D 
such that each component of OftnD is part of a level set of the form {z: [f(z)l=A}, 
where 0<~<_~o, and let r be a conformal map of D onto f~. Then 

(a) the function g= . fo6EH0;  
(b) if there is some # > 0  such that the components of {z:l f(z) l>#} in ft are 

all compact, then f is bounded in f~ near Of~; that is, there is a compact subset K 
of Q such that f is bounded in f~\K. 

Pro@ To prove part  (a) suppose, for a contradiction, that  for some sequence 
t,~ in D, we have I t ~ l ~ l  and 

(3.4) (1-[t~12)ge(t~)>e>O, n =  1 ,2 , . . . .  

Without  loss of generality, we have t,~--~toEC and 6 ( tn ) -~z0ED.  If zoEC, then 
(3.4) together with the inequality 

(1-1t[2)g#(t)  ~ (1 -16 ( t )12 ) f# (~ ( t ) ) ,  t E D ,  

contradict the fact that  f EA/0. I f z 0 ~ C ,  then zoCOf~ND. Hence I f (z ) l=A for z near 
z0 on Oft, so Ig(t) l=A for t near to on C. Since f is analytic near z0, we deduce that  
g has an analytic continuation to a neighbourhood of to, which contradicts (3.4). 
Hence g EN0. 

To prove part  (b), note that  the function u=l.ql cannot satisfy case (a) or 
case (c) of Lemma 1 in D, since each of these cases implies the existence of non- 
compact  components of {z:lg(z)[>_#} in D for arbitrarily large # and hence non- 

compact components of {z:l f (z) l>#} in f~ for arbitrarily large #. Thus u=ig I 
satisfies case (b) of Lemma 1, so g is bounded in D near C by Lemma 2 and the 
remark following the s tatement  of Lemma 1, because gEN'0. Hence f is bounded 
in f~ near Oft, as required. [] 

4. P r o o f  o f  T h e o r e m  1 

Without  loss of generality, we m&v assume in the proof that  ( ,=oc ,  since we 
obtain a function in H0 by composing f with a rotation of the Riemann sphere 
taking c~ to oc. 

We shall assume that  f is in 3/o and has angular limits almost nowhere in -y, 
and then deduce that  f has asymptot ic  value oc at points of an uncountable subset 
of 7. The first step is to show that  there is at least one point in ~y where f has 
asymptot ic  value oo. By Lemma 2, part  (b), we can choose a cross-cut ~y' of D with 
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distinct endpoints in 7 on which f is bounded, say Ifl~2W. Then let D(7 ) denote 
the component of D \ 7  r such that  OD(7)NCCT. 

Since D(7) is homeomorphic to C, we can apply Lemma 1 to u=lfl in D(7 ). If 
case (a) occurs, then f has asymptotic value oc in 7, as required. Case (b) does not 
occur since, by Lemma 2, part (a), and the remark following Lemma 1, this would 
imply that  f is bounded near interior points of OD(7)NC and so f would have 
angular linfits at almost every point of this arc by Fatou's theorem, contrary to our 
assumption. If case (c) of Lemma 1 holds, then there exists M0 > M  I such that,  for 
all M>Mo, there are infinitely many non-compact components of {z:lf(z)l>M} 
in D(7). 

We now consider components Dx of sets of the form {z: If(z) l> 5}, where A >0. 
Following the usage in [11, p. 123], we say that  such a component Dx is unbounded 
if ODx meets C, and Da is bounded otherwise. From the above argument, it follows 
that  if Lemma 1, case (c) holds, then we can choose # > A > M 0  and unbounded 
components D ,  and Dx of {z: If(z) l>#} and {z: I/(z)l>A}, respectively, such that  

D(7) D Dx D D~. 

We call such a pair of unbounded components (Dx, D~) an unbounded component 
pair for f in D(7).  

L e m m a  4. Let f and D(7) be as above, and suppose that (Dx,D,)  is an 
unbounded component pair for f in D(7 ). Then 

(a) D;~ contains an unbounded component pair" (D~,, D y ), with A'>A+I ;  
(b) Dx contains a tract of f for 0% so f has asymptotic value oc at some point 

o fT .  

First note that  if Da contains an unbounded component Du, , where #1>A+1, 
then we can choose A / with p I > A I > A + I  and take Da, to be the component of 
{z:lf(z)l>A I} that  contains D, , .  

Otherwise, for p / > A + l ,  the components of {z:l f (z) l>p I} in Dx are all 

bounded. Now let Dx denote the union of Dx and its compact complementary 
components, and let r be a conformal map from D onto /)~. Note that /ga is a 
Jordan domain, because fEs see the proof of Lemma 2 (b). Thus 6 can be ex- 
tended to a homeomorphism from OD onto 0/)x. Also, each component of Of)aND 
is part of the level set {z: If(z)l=/k}. Thus, by Lemma 3, the function g ( t ) = f ( r  
is in Af0 and [gl is bounded near C, by pll say. Hence g has finitely many poles in 
D and finite angular limits a.e. on C, by Fatou's theorem. 

Thus we can choose a finite Blasehke product B such that  gB is analytic in D 
and hence IgBI is bounded there by p,l. But IgBI is not bounded in D by A, since 
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there exist points of D in ~b I(D.) where [9 [>#> A, and these points are arbitrarily 

close to C because D ,  is unbounded. Hence, by the extended maximum principle, 
the angular limits of gB exceed A in modulus on a set E c C  of positive length, and 
this must also hold for g. Since IZ[=A on 9L)xnD, it follows that  the set ~b(E) is 

contained in 7 and has positive harmonic measure with respect t o / ) x  and therefore 
positive length, by the domain extension principle. But  f has an asymptot ic  value, 
and hence an angular limit, at each point of qS(E), which contradicts our initial 
assumption about  f .  This proves par t  (a). 

We deduce from part  (a) that  D(7  ) contains a sequence of unbounded compo- 
nent pairs (Da~,D,,~), n=0 ,  1,2, ..., such tha t  Dao=Da and 

DA~ D DA~+I, /~n+l >/~n ~- 1 , n = 0 ,  1,2, . . . .  

Therefore the sequence Dx,,~, n = 0 ,  1, 2, ..., determines a t ract  for ec of f .  If  we now 
choose z~ED~,~, n = 0 ,  1,2, ..., such that  Iznl-+l  as n--+oc, and take the pa th  F to 
be of the form F1 OF2 0. . . ,  where F~ joins z~ to z~+l in Da~, then F tends to C in 
D(@, since F cannot accumulate at any point of D(7)\C.  Thus f has asymptot ic  

value ec along F, so f has asymptot ic  value ee at a point of 7- This proves part  (b) 
of Lemma 4. 

From Lemma 4 and the discussion before it, we deduce that  if f is in No and 
has angular limits almost nowhere in 7, then f has asymptot ic  value oc at some 
point of 7; in particular, D(7  ) must contain an unbounded component pair for f .  

The next lemma will enable us to deduce that  there are uncountably many 

points in 7 at which f has asymptot ic  value oc. The argument is a modification of 
the proof of [6, Theorem 1]. 

L e m m a  5. Let f and D(~/) be as above, and suppose that (D~,D~) is an 
unbounded component pair for f in D(7 ). Then 

(a) there ezists A~>A+I such that D~ contains distinct unbounded component 
pairs ( Dix, i , D . , ) ,  i = 1 ,  2; 

(b) Da contains uncountably many tracts of f for oc. 

By Lemma 4, par t  (a), there is a sequence of unbounded component  pairs 
(Da~, D , , ) ,  n=0 ,  1, 2, . . . ,  such tha t  Dao = D x  and 

Dx,~DDx~+I, An+l > An~-l, n = 0 ,  1,2, . . . .  

The D~,~, n=0 ,  1, 2, ..., determine a tract  for oc of f ,  the end of which must be a 
point of 7, say (0, since f is normal. Hence f has asymptot ic  value oc at (0 and 

(4.1) diamDa, ,  -~0  as r~--+~. 
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If the assertion in part (a) is false, then (because A ~ > ~ 0 + I = A + I ,  for n>_l) each 
of the unbounded component pairs (Dx,~, D,~,) is unique in Dxo. It follows that, 
for n >  1, the set 

(4.2) = D o\JS   

D t i contains no unbounded component pair ( a~, D,,r~). Hence the components, if any, 
of {z:l f(z)r>#~ } in G~ are bounded; for otherwise we could take an unbounded 
component D;~,~ C G~ and the corresponding component D'x,~ of { z: I f (z) l > ,X~ }, with 

D;~,~ c D ~  cG~,  to give a different unbounded component pair in Dao. Now 0~ is 

a Jordan domain because f E s  so G~ satisfies the hypotheses for f~ in Lemma 3. 
Thus, by Lemma 3, part (b), we deduce that 

(4.3) f is bounded in 0~  near cq0~ for n > 1. 

In the remainder of the proof, we consider two cases. First suppose that the 
set 0Dxo NC has positive harmonic measure with respect to /)xo. In this case we 
can apply the following result [6, Lemma 1]. 

T h e o r e m  D. Let G be a simply connected Jordan domain with G c D ,  and 
suppose that E=OGNC has positive harmonic measure with respect to G. Then 
there is a subset E1 of E of positive length such that each ( in E1 is the vertex of 
an open Stolz angle S( contained in G. 

Applying Theorem D with G=/~Xo, we deduce that if C~EI\{(0} ,  then Sr 
5,~, for some Stolz angle S( and some r e > l ,  by (4.1) and (4.2). Thus, by (4.3), 
we can assume that f is bounded in each such S(. Plessner's theorem [11, p. 147] 
then gives a contradiction to our initial assumption that f has angular limits almost 
nowhere in V- 

Otherwise, the set 0DXo nC has harmonic measure zero with respect to /~Xo- 
In this case we claim that 

(4.4) l imsup If(z)l < A0 for ( C  (0DxoNC)\{(0}.  
z--+( 

zC/~Xo 

To prove (4.4) suppose that (1 ~ (0Dxo N C)\{@}.  Then by (4.1) there exists 
~Tt>l and a boundary neighbourhood 

N I = { z E D : I z - ( I I < O , } ,  0 s > 0 ,  

such that N-~ N/)Xo C 0,,~, and f is bounded in N~ C?/)~o by (4.3). If H is a component 
of Ns N/~x o which contains ~1 in its closure, then H is regular for the Dirichlet 
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problem, since /)xo is a Jordan domain. Also OHNC has harmonic measure zero 
with respect to H,  by the domain extension principle. The function 

If(C)] for r  

h ( ( ) :  l0 for ( � 9  

is bounded on OH and continuous there, except possibly at the points (at most two) 
of OHNCN{z:Iz--(~I=al  }. Hence the Dirichlet problem for h in H has a unique 
solution, h say, which is bounded in H and continuous on E r, except possibly at the 
points just mentioned. In particular, 

lira h(z) = Ao. 
z c H  

Now the function 

u ( z ) = l f ( z ) l - h ( z ) ,  z E H ,  

is subharmonic and bounded above in H, with boundary value zero at each point of 
0H,  except for a subset of harmonic measure zero. Thus, by the extended maximum 
principle, u_<0 in H. Hence (4.4) holds. 

It follows from (4.4) that cq/)x, cannot include any point of (cg/~x o NC)\{(0},  so 
c9/)x I ND is a simple path F1 approaching (0 at both ends, on which Ifl =hi .  Since 
f has asymptotic value oc at (o, and hence angular limit oc at @, we have obtained 
a contradiction to the following theorem of Anderson, Clunie and Pommerenke; 
see [1, p. 31]. Here C E ( f , ( ) ,  ( c C ,  denotes the cluster set of f along a set E c D  
such that  ( E E ;  that  is, the set of all limits of sequences of the form f(z,~), where 
zn-+ ~, z~ ~ET. 

T h e o r e m  E. Let f be in Afo, let P be a path in D ending at ( in C, and let 
S be any Stolz angle with vertex at (.  Then 

a s ( f ,  ~) C Cp( f  , ~). 

This proves Lemma 5, part (a), and part (b) follows immediately. 
To complete the proof of Theorem 1 we use the fact that  f can have at most 

one tract  for oc ending at each point ( of C. Indeed, if a normal function f has 
asymptotic value c~ along two paths approaching ( in C, then f ( z )  must tend to c~ 
as z tends to ( between the paths. It is sufficient to prove this result for c~=0, and 
we can do this by combining results from [18] and [19]. First we state a version of 
the maximum principle of Lehto and Virtanen. This involves the real function a(z) 
defined in Section 3. 
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T h e o r e m  F. Let f be meromorphic in D and normal of order c, let A be an 
open arc of C and let Bx,  0<A<Tc, be the lens-shaped domain in D bounded by A 
and the circular arc in D making angle A with A. Let G be a domain in Bx with 

OGcB~, \A .  I f  

I f ( z ) l < ~ < 5 ( . )  f o r z e 0 G \ 0 B x ,  

where x=c;~/ sin A, then 

If(z)l  ~ ~r~ forzEa,  

where, r/=~/(~ , c, )~) is the smallest positive solution of 

Note that ,  for fixed c and A, we have rl(a,c,)~)-+O as 5-+0. Theorem F is 
given in [18, Theorem 9.1], with the extra  assumption made there that  G C D .  To 
deduce the above version, we can apply this special case to a sequence of lens-shaped 
regions approximating Ba from within, as described in [19, part  (b) of the proof of 
Theorem 4.2]. 

Suppose now tha t  f has asymptot ic  value 0 at r along a simple pa th  F. It  is 
sufficient to show that  f ( z )  tends to 0 as z tends to r between F and the radius Re 
of D with endpoint at C. To do this we show that ,  for each s > 0 ,  there is a Jordan 
domain in D, in which Ill-<~ and in the closure of which F and Rr both eventually 
lie. 

Let Fa be a subpath of F such that  Ifl<_5 on Fa, where ~ is so small that  
rl(5, e , ~Tc)<e. Following the proof of [19, Theorem 4.3], we construct a pair of 
open discs D • such that  the circles C•  • each pass through C, making the 

3 with C, and also FdB(C+UC )r  Then the radius Re lies eventually angle ~ r  

in D+AD . We may also assume that  F aA(D +UD - )  is connected. Then let V • 
be the component  of D •  that  contains points of the unit circle C, and put 
G~:=D•177162  Since V • are disjoint, we have D+ND C G + U G - U F 5 .  It  
follows that  

int(G + tAG- UF5) 

is a Jordan domain in D, in the closure of which F and Re both eventually lie and 
in which Ifl <_e, by Theorem F. This completes the proof of Theorem 1. 

5. P r o o f  o f  T h e o r e m  2 

To prove Theorem 2, we establish the following lemma. 
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L e m m a  6. Let f be in Af0, and let ?/ be a non-trivial arc of C. I f  r p ( f ,  ~/) 
has linear measure zero, then f has asymptotic value oc at a point of 7. 

As noted earlier, we can replace oc here by any c~ in C, so Theorem 2 follows 

immediately fl'om Lemma 6. 

The proof of Lemma 6 is similar to the proof of the first part  of Theorem 1, 

that  is, up to Lernma 4. There we assumed that  f has angular limits at almost no 
points of 7 and deduced that  f has asymptot ic  value oc at some point of 7- Here 
our initial assumption is that  Fp(f ,~/)  has linear measure zero, and we again wish 
to deduce tha t  f has asymptot ic  vMue oc at some point of ~/. 

We need the following slight generalisation of a theorem of Collingwood and 

Cartwright. 

T h e o r e m  G.  Let f be meromorphic in D and bounded in a simply connected 

Jordan domain f~ in D such that O~2AC is an arc ~/ of C. Let f have angular limits 
Wl r at interior points CI r  of 7, and let L be a polygonal path joining Wl and 
w2, with the property that for any line M normal to L the points wl and w2 lie in 
different components of C \ M .  Then, .[or each line segment L I of L, we have 

(a) the orthogonal projection of F p ( f ,  7) on the interior of L' includes all of 
the interior of U; 

(b) the set of points of F p ( f ,  ~/) that can be projected orthogonally onto L' has 
positive linear measure. 

In the original result [11, p. 120], the pa th  L consisted of a single line segment. 

A similar proof works in this more general case, since the polygonal pa th  L has the 
property that  any smooth pa th  from Wl to w2 meets any normal line to L. 

In the part  of the proof of Theorem 1 before Lemma 4, we can replace the 
use of Fatou's  theorem by that  of part  (b) of Theorem G in order to deduce that  
there is an unbounded component  pair for f in D(~). In the proof of Lemma 4, 

part  (a), a little more work is required. There we have a function g _ f o 6  that  is 
meromorphic in D and bounded near C. Moreover, the angular limits of g on C 
include a point w~ with IWll=A, and a point w~ with Iw21>A. Thus we can apply 

part  (b) of Theorem G to the function g on an annulus f t={z : r0  < I zl < 1}, taking 
the pa th  L from wl to w2 to consist of (at most) two line segments, one of which 
is the shortest line segment from w2 to the circle {w:lwl A}. We deduce that  the 
set rp(f, C)n{w: Iwl >~} has positive linear measure. Since each angular limit of g 
with modulus greater than  A is also a point of F p ( f ,  7), we deduce that  Fp( f ,  7) has 
positive linear measure, which contradicts our initial assumption. Thus the proof 
of Lemma 4, part  (a), goes through with this new assumption. This completes the 
proof of Lemma 6 and hence that  of Theorem 2. 



Asymptotic values of strongly normal functions 83 

R e f e r e n c e s  

1. ANDERSON, J. M., CLUNIE, J. and POMMERENKE, C., On Bloch functions and 
normal functions, J. Reine Angew. Math. 270 (1974), 12-37. 

2. AULASKARI, R. and ZHAO, R., Some characterizations of normal and little normal 
functions, Complex Variables Theory Appl. 28 (1995), 135 148. 

3. BAGEMIHL, F.,  Sets of asymptotic  values of positive linear measure, Ann. Acad. Sci. 
Fenn. Set. A I Math. 373 (1965). 

4. BAGEMIHL, F. and SEIDEL, W., Koebe arcs and Fatou points of normal functions, 
Comment. Math. Helv. 36 (1961), 9 18. 

5. BARTH, K. F.,  Asymptot ic  values of meromorphic functions, Michigan Math. J. 13 
(1966), 321 340. 

6. BARTH, K. F. and RIPPON, P. J., Angular limits of holomorphic functions of slow 
growth, J. London Math. Soe. 45 (1992), 55-61. 

7. BARTH, K. F. and RIPPON, P. J., Infinitely many asymptotic values of locally univa- 
lent meromorphic functions, Ann. Acad. Sei. Fenn. Math. 28 (2003), 303-314. 

8. BRANNAN, D. A.,  On the behaviour of continuous functions near infinity, Complex 
Variables Theory Appl. 5 (t986), 237 244. 

9. CARLESON, L., Selected Problems on Exceptional Sets, Van Nostrand Mathematical  
Studies 13, Van Nostrand, Princeton, N J, 1967. 

10. CHEN, H. and GAUTmER, P. M., On strongly normal functions, Canad. Math. Bull. 
39 (1996), 408-419. 

11. COLLINGWOOD, E. F. and LOHWATER, A. J.+ The Theory of Cluster Sets, Cambridge 
Tracts in Mathematics and Mathematical  Physics 56, Cambridge Univ. Press, 
Cambridge, 1966. 

12. DRAGOSH, S., Koebe sequences of arcs and normal meromorphic functions, Trans. 
Amer. Math. Soe. 190 (1974), 207 222. 

13. GNUSCHKE-HAUSCHILD, D. and POMMERENKE~ C., On Bloch functions and gap 
series, J. Reine Angew. Math. 367 (1986), 172 186. 

14. }lAYMAN, W. K., Meromorphic Functions, Clarendon Press, Oxford, 1964. 

15. HAYMAN, W. K., On Iversen's theorem for meromorphic functions with few poles, 
Aeta Math. 141 (1978), 115 145. 

16. LENTO, O. and VIRTANEN, K. I., Boundary behaviour and normal meromorphic 
functions, Acta Math. 97 (1957), 47 65. 

17. MACLANE, G. R., Asymptotic values of holomorphic functions, Rice Univ. Studies 
49:1, 1963, 1-83. 

18. POMMERENKE, C., Univalent Functions, Vandenhoeck & Ruprecht, GSttingen, 1975. 

19. POMMERENKE, C., Boundary Behaviour of Con]brmal Maps, Springer-Verlag, Berlin, 
1992. 



84 Karl F. Barth and Philip J. Rippon: Asymptotic values of strongly normal functions 

20. RIPPON, P. J., Asymptotic values of continuous functions in Euclidean space, Math. 
Proc. Cambridge Philos. Soc. 111 (1992), 309 318. 

21. ROHDE, S., On functions in the little Bloch space and inner functions, Trans. Amer. 
Math. Soc. 348 (1996), 2519 2531. 

Received June 12, 2003 Karl F. Barth 
Department of Mathematics 
Syracuse University 
Syracuse, NY 13244 
U.S.A. 
emaih kPoarth~mailbox.syr.edu 

Philip J. Rippon 
The Open University 
Department of Pure Mathematics 
Walton Hall 
Milton Keynes MK7 6AA 
United Kingdom 
email: p.j.rippon@open.ac.uk 


