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On a class of strongly hyperbolic systems 

Enrico Bernardi  and Antonio  Bove 

Abstract .  In this paper we prove a well-posedness result for the Cauchy problem. We study 
a class of first order hyperbolic differentiM [2] operators of rank zero on an involutive submanifold 
of T*Rn+I\{0} and prove that under suitable assumptions on the symmetrizability of the lifting 
of the principal symbol to a natural blow up of the "singular part" of the characteristic set, the 
operator is strongly hyperbolic. 

1. I n t r o d u c t i o n  

In  this paper  we are concerned with s t rong hyperbolici ty for a class of  first order 

systems with involutive characteristics.  It  is well known tha t  the well-posedness of 

the Cauchy problem in the C ~ ca tegory usually requires some conditions bo th  on 

the principal symbol  and on the lower order terms of the opera tor  (see e.g. [5], [6] 

and [10]). However this is not  always the case and we say tha t  the Cauchy problem 

is strongly hyperbolic if it is well-posed for any lower order term. 

It  is titus na tura l  to ask when a given sys tem is s t rongly hyperbolic.  Actual ly  

most  of the existent l i terature is concerned with necessary conditions for s t rong 
hyperbolicity. We would like to refer to some of the most  impor tan t  contr ibut ions 

in this subject  related to the present paper.  In  [8] Nishitani proved that ,  assuming 

tha t  the  coefficients of the sys tem are real-analytic,  s t rong hyperbolici ty implies t ha t  

the principal symbol  at  a multiple characterist ic  point  has Jo rdan  blocks of size at  

most  2 in its canonical  form. In par t icular  a s t rongly hyperbolic  sys tem of size m 

has rank _< [�89 at a characterist ic  point  of multiplici ty m. It  is also easy to exhibit  

examples of even order m strongly hyperbolic  systems with characterist ic  roots  of 

multiplicity m whose principal symbol  has rank [�89 at those points. Actual ly  

these examples exhibit a propagat ion  cone transverse to the characterist ic  manifold 

and this fact mimics what  happens  in the scalar case for effectively hyperbolic  

operators.  On  the other  hand,  when the rank exceeds [�89 at a characterist ic  of 

multiplici ty m, we in general expect a non-s t rongly hyperbolic  operator ,  i.e. Levi 

conditions appear,  as was pointed out,  e.g., in [3]. 
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It  seems thus natural  to ask about  the strong hyperbolicity for operators with 
non-transverse (or even tangent) propagation cone. 

When the multiple characteristic set (or manifold: we clarify this in the follow- 

ing) is not involutive we still expect that,  even in the case of zero rank systems, there 
is no strong hyperbolicity. In the last section of the present paper  we present an ex- 
ample of a non-strongly 3 x 3 hyperbolic system with rank zero on its non-involutive 
characteristic manifold consisting of points of multiplicity 3. The commutat ion re- 

lations of the symplectic coordinates prevent well-posedness independently of the 
lower order terms. 

It  is therefore natural  to study a case in which the propagation cone at a mul- 
tiple point is tangent to the characteristic manifold and the characteristic manifold 
is involutive. 

In the present paper  we deal with a first order system 

?Z 

(1.1) L(x,D)=Do+EAj(x)Dj+B(x)=LI(x,D)+Lo(x), 
j - - 1  

where Aj (x) and B(x) are C ~ ,  m • m matrices and we consider the Cauchy problem 

f L(x,D)u=f, xo>O, 
(1.2) 

t it]x0 0 g. 

Denote by h(x,~)=det Ll(x,~) the determinant  of the principal symbol L1 and 
assume that  h is hyperbolic with respect to ~0- Here x--(Xo, xl, ..., xn)=(x0 ,  x ' )E  
R ~+1 and x0 is the t ime variable. 

We suppose that  the characteristic set of h is a stratified involutive manifold; 

this means that  each layer of the stratification is an involutive manifold Ey hav- 
ing the property that  if ~ r  then T ~ E j c T ~ E j  and ~ is a characteristic of h of 
multiplicity j .  Here T [ E j  denotes the dual of TeEj with respect to the symplectic 
form or. 

A typical situation in which this happens is when the localization of h at, a point 
pEEm, where m is the maximum multiplicity, is strictly hyperbolic on the normal 

space N e E , , = T e E ~  (here TzE~  denotes the euclidean orthogonal of TeE,n); then 
there are only two layers corresponding to multiplicity m and multiplicity 1. 

According to what  has been said before, we consider a zero rank situation: 
this means that,  if ECEj, ~ is a characteristic of multiplicity j .  Thus the matr ix  
L1 (x, ~), and hence the whole symbol L, can be decomposed in block diagonal form 

0] 
L2 2 ' 
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where L22(8) is elliptic and (L1)11(8) 0. 
Even in this geometrical framework we know that  the assumptions do not 

guarantee that  the operator L is a strongly hyperbolic operator. For instance the 
symbol 

L1 (x, ~) = G0 0 
0 ~0-~1 

satisfies the conditions we assumed up to now, but is not strongly hyperbolic. Its 
triple characteristic manifold is given by E3={(x,  ~)I~0=~1-0}. If ~1~0 then we 
are at a double characteristic point and the canonical form of the principal symbol 
exhibits a 2 • 2 Jordan block. Hence E=E3UE2 UE1, where El - -{(x ,  ~)IE0 =~1 ~:0} 
and E2={(x,  ~)I~0=0 and ~1r of" course Ej is involutive for every j = l ,  2, 3. 

In order to rule out the above cases we must add an extra assumption on 
the symmetrizability of the localization of L1 on the normal space NeEy if Ey,, 
l < f  < j ,  is present. The above example does not satisfy this assumption. Actually 
this assumption turns out to be also necessary, according to Theorem 5.2 in [9]. 

The technique employed in this paper is inspired of the Melrose Uhlmann pa- 
per [7]. We do not construct parametrices though, so that  in order to construct a 
symmetrizer for our operator we need a precise way to define the composition within 
a class of singular pseudodifferential operators. Section 3 is devoted to this task. 
Once this is accomplished, the strong hyperbolicity is a consequence of the usual 
energy estimates; the latter can be deduced easily because of the uniform microlocal 
symmetrizability assumption (see (2.3) below for a precise statement) in Section 4. 
Section 5 is devoted to proving that  a specific example of system with non-involutive 
characteristic manifold is not strongly hyperbolic. In particular the determinant of 
this system is a third order hyperbolic symbol with triple characteristics and its 
well-posedness is well known due to [1]. We conclude that  in general we cannot 
expect strong hyperbolicity for systems with non-involutive characteristic manifold. 

Acknowledgements. We are indebted to T. Nishitani for helpful conversations. 

2. S t a t e m e n t  o f  t h e  r e s u l t  

We consider the following Cauchy problem 

S L(x,D)u(x) f(x) in{xEUIxo>O}, 
(2.1) 

t ulx o 0 = g  i n { x e U I x 0 = 0 } ,  

where U is an open subset of R ~+1, 0cU,  and f and g are given distributions. 
Here x c R  ~+1, x=(x0 ,  Xl, ..., x~)=(x0,  x'), and L is a pseudodifferential first order 
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matrix operator of size m of the form 

(2.2) L(x, D) = Do+ A(x, D')+ B(x, D') = Ll (x, D)+ Lo(x, D'), 

where A(x, ~') (resp. B(x,~')) is an m •  matrix whose entries are homogeneous 
symbols of order 1 (resp., polyhomogeneous symbols of order 0) with respect to ~t. 

The operator L satisfies the assumption: 

(H1) L is hyperbolic with respect to the direction (0, e0)--(x=0, ~=(1, ..., 0)) 
i.e., writing h(x, ~) -de t  L1 (x, ~) -de t (~0+A(x,  ~')), the polynomial ~o~+h(x, ~o, ~') 
has only real roots in the time covariable ~0. 

Let us denote by E={(x,  ~)c r*g \{O}lh(x ,  ~)-0} the characteristic set of L. 
We assume that,  for l<l_<m, 

(H2)z The multiplicity of the points of E is at most m. Moreover, denoting by 

El={(x,~)cEIdJh(x,~)=O, j = 0 , 1 , . . . , /  1, andd~h(x ,~) r  

the set of points of multiplicity l, we suppose that  Et is a non-radial involutive C ~ 
submanifold of T* U of codimension kl + 1, kl _> 2. 

We further assume that: 
(2.3) 
KerLx(x,~)AImLl(X,~)={O} for (x ,~ )cEI~T*U\{0}  and d imKerLxlz~=l .  

Define now the smooth submanifold E~ as the flowout of E1 along the Hamilton 
vector field of x0, i.e. 

(2.4) E~ : exp(tH_~o)EZ, Itl <6, 

where ~ is a suitable positive number such that  E~cT*U\{0}. Let 2~Ez and con- 
s i d e 1  - a (conic) neighborhood of C r ' U \ { 0 } .  We now want to blow up T ' U \ { 0 )  

a l o n g  the submanifold E' t. As a set this blow up (T*U\{0})~ is defined to be the 
A 

ration of (T*U\{0})\E~ and PNE~, tile projective normal bundle of E~ (see e.g. [4]). 
A 

The above mentioned neighborhood V~ is then lifted to an open subset V~ C 
(T*U\{0})~ and A(x, ~') can be extended to a smooth function--for tile C ~ struc- 

A 

ture of (T*U\{0})~ defined in Vs. 
The final assumption is: 

(H3)l A is uniformly symmetrizable in V~. 

We can then state our first result. 
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T h e o r e m  2 .1 .  Under the assumptions (H1), (H2)t and (H3)t the Cauchy 
problem (2.1) is microlocally strongly well-posed in a neighborhood of a point in El. 

A local version of the above theorem is the following result. 

Tr~ T h e o r e m  2.2. Assume that E is stratified as Uj 1 Ej,  where E i are C ~176 
manifolds of multiplicity j .  Denote by 7c: T*U\{O}--+U the natural p~vjection and 
consider 7c I(U)NE. Assume that (H1), (H2)j and (H3)j are satisfied for j > 2  on 
7c I(U)NEy. Then L is strongly hyperbolic. 

When the localization h~ of det L1 is strictly hyperbolic we can prove the the 
following theorem. 

T h e o r e m  2.3. Assume that (H1) and (H2),,~ hold and that T~Em=A(h~), 
z~E,~.  Then the Cauchy problem (2.1) is micrvIocally strongly well-posed in a 
neighborhood of a point in El. 

3. S o m e  p r e p a r a t i o n s  

In this section we assume that  (H2),~ and (H3)~ hold, i.e. we make our as- 
sumptions in the case of maximal multiplicity. The other cases, modulo a block 
reduction, are quite similar. 

By assumption (H2) there are smooth functions 9j (x, ~), j - -0 ,  1, ..., k, homo- 
geneous of degree 1 with respect to ~ such that  

0, j = 0 , 1 ,  ... ,k}. 

We argue in a neighborhood of a fixed point zEE.m. It is easy to see that  for at 
least one jC{0,  ..., k'} we have (O~j/O~o)(z)r Let us say that  (O~o/O~o)(z)r 
Hence we may assume that  ~o(X, ~ )=~0-~0(x ,  ~') and ~j =~ j (x ,  ~') for j = l ,  ..., k, 
~0 being homogeneous of degree 1 with respect to ~'. By means of a canonical trans- 
formation leaving the hyperplane {x Ix0 =0} unchanged we may reduce %o0 (x, ~) to {0 
so that  E ~ = { ( x ,  { ) I{0 -0  and ~j(x,  { ' )=0,  j 1, ..., k}. This choice of coordinates 
yields that  

H ~ = { ( x , ~ ) l ~ j ( x , ~ ' ) = 0 ,  j = l , . . . , k } .  

By assumption (H2), E,~ is an involutive submanifold of T*Rn+I\{0};  this implies 
that 

and 0, 

for every i, jC{1,  ..., k}. Let us first consider the first set of brackets. 
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L e m m a  3.1. Due to our assumptions, the functions ~j, j = l , . . . , k ,  can be 
chosen to be independent of the variable Xo. 

Proof. From the above mentioned bracket vanishing property we obtain that  
there are smooth functions ctjl(x, ( ) ,  j ,  l=1,  ..., k, such that  

k 

(3.1) y= l , . . . ,k .  
O~0 t 1 

Let U(x, ~) be the k • k smooth matrix obtained by solving the Cauchy problem 

(3.2) ~ (x, ~') = -U(x,  ~')A(x, ( ) ,  

Ul~0=0 =I~ ,  

where A denotes the k x k matrix whose entries are the (ljl above. Set ~(x, ~ ) =  
U(x, ~')p(x, ~'), where ~ and ~ denote two vectors with k components. Since 0~o~= 
(O~oU)~+U(O~o~)=(-UA+UA)~=-O we conclude that ~ are actually functions of 
(x ~, ~)  only. Furthermore, U is a non-singular matrix, at least for small values of 
the variable x0, i.e. ~ = 0  if and only if ~=0 .  [] 

As a consequence of Lemma 3.1 we may assume that  the submanifold 

~ r r ~ = { ( x , ~ ) E T * R n + l \ { 0 } l ~ 0 = 0  a n d w j ( J , ~ ' ) = 0 ,  j = l , . . . , k } ,  

where the functions ~j have independent differentials at the points of E,~. It is 
then obvious that  the manifold 

E~  = {(x,~) c T * R ~ + I \ { 0 }  I~j(x',~') =0, j =  1,...,k} 

is cylindrical with respect to (x0, ~0) and of course involutive. Hence there are 
homogeneous symplectic coordinates, which we still denote by (x, {), such that  

E~, = {(x, {) e T*R~+I\{0} I{0 = {1 . . . . .  ~k = 0}. 

We point out that  this homogeneous canonical transformation can be realized 
by a Fourier integral operator of order zero, elliptic at z E E~,  leaving the hyperplane 
{(x, ~)x0=0} unchanged, due to Lemma 3.1. This will lead to a microlocal energy 
estimate for the system (2.1). Using these new coordinates (2.2) becomes 

(3.3) 
k 

L(x, D) = Do + ~ Aj (x, D')Dj + B ( x ,  D') = L1 (x, D ) + L o  (x, D'),  
4=1 
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where the Aj  (x, g') are m x m matrices of order zero, homogeneous of degree zero 
with respect to g', depending smoothly on the parameter x0. We notice that,  in 
order to obtain the form (3.3) for L, the rank zero assumption has been used. 

k Next we consider the symbol ~ j=~  Aj (x ,g ' )g  5 and want to regularize it by 
using a blow up technique. 

. A 
Let us consider (T U \ { 0 } ) e , ,  the blow up of T ' U \ { 0 }  along the submanifold 

E ' ~ = { ( x , g ) c T * U \ { O } l g l  . . . . .  g~=0}. It will be useful to adopt the following no- 
tation: for jC{1,  ..., n}, denote by x(j) the j - tuple x ( j ) - ( x t ,  ..., x j )  and by x (j) the 

( n - j + l ) - t u p l e  x(J)=(x j ,  ... , x , ) ,  so that  x - ( x o , x ( j ) , x ( J + l ) ) .  Let us now take a 
* A 

look at (T U\{0})r;,. By definition it is the union of ( T * U \ { 0 } ) \ E "  and of the 

projective normal bundle of E'~. Using our special coordinates the latter can be 
identified with the quotient of 

{((X, g0, g(k) = 0, g(k+l)), (Sg(k), 0) I g (~+1) r 0 and (Sg)(k) r 0} 

{(X, g0, g(kq-1), (~g(k)) I g (k+*) r 0 and ag(~) r 0} 

by the equivalence relation obtained identifying two normal vectors when they are 
multiple one of the other via a non-zero real factor. This means that  the above 
normal bundle can be described as 

{(*, g0, g(~+~), a~(k)) I g (k+*) r 0 and lag(k) l = 1} 

and each couple of antipodal points on the unit (k-1)-dimensional  sphere is iden- 
tified with one point. 

It can be easily seen (see e.g. [4] for a proof of this fact) that  (T*U\{0})~,r ~ 
can be identified with the quotient of 

R • S k-1 • U(x404(k+~)), 

where 

U(x,~o,~:+l)) = {(x, go, g(k+l)) i there exists a g(k) such that  (x, g) E U}, 

via the identification of (x, Q, co, g0, g(~+l)) with 

0 (k+l )  i(x,Q,~,g ,g ) (X , - -Q, - -02 ,  g 0 , ~ @ + I ) ) .  

Using these coordinates the symbol LI(X, g) in (3.3) becomes 

(3.4) 
k 

j = l  
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on (R e • S ~ - l x  U)/i. Now assumption (H3) means that  there is a smooth matrix 

S(x, ~, cv, ~(~+1)) defined in (R~ • S~ -~ • u)/i such that 
(i) s-s*;  
(ii) S is positive definite; 
(iii) SA=A*S, 

where A A(x,p,w,~(~+l))= ~ 1Aj(x, ocv,((~+l))a:~" Let us now introduce a 
class of symbols naturally related to the blow up geometry. Without loss of gener- 
ality we may assume that  z =  (0, e~). 

Definition 3.1. Let f~ be an open subset of R ~+1 containing the origin and 
I, rncR. We say that  

I:~]r -1 ~ St(R+;S "~) a(22, L0, cd, ~(/~§ ~ SI(R+; S.~(f~ x Skw - 1  x ~(~:+i)]/ 

if for every K ~  there exists a positive constant CK,~,~,~,Q such that  

10~9 0~0~(k.l ) 8  (2 (~ (~j, O~)a(x, ~, c~, ~(~+1)) I ~ CK,~,(~,~,Q (1 + ~))z-~ (1 + I~ (k§ I F  , 

where Q is a differential operator on S k-1. 

From (iii) above it is easily seen that,  possibly dividing S by (L)2+I~ (~+~) 12) ~/2, 
we can choose S as a function positively homogeneous of degree 0 with respect to 

and 4(~+1). 

This immediately implies that  S(x, ~, w, ~(k+l))ES0(R+; SO(ft • S ~ 1 • Rk+l)) .  

Remark. Assumption (H3) forces us to place ourselves in a neighborhood of 
z=(0,  en) of the form I~(~)l_<sl~(~+l)l, for a positive number e. In the blow up 
coordinates this means that t)<el~(k+l) I. Therefore choosing cr ~ C ~  (R), supp ~ C 
[-1,  1], or_--1 on [_1,  �89 we will use a cut-off function of the form 

ch(P,~ (k+l)) cr(c]~(kO+l)[), 

and thus ~1 ~S~ SO). In particular the symbols of Definition 3.1 can be quan- 
tized in the usual way, provided they are supported (or cut off) in a region of the 
above form. 

We now turn to the precise computation of the composition of two symbols in 
the above defined class. 
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L e m m a  3.2. Let aESI(R+;S'~), b~SI' (R+;S'*V). Then op(a)oop(b) C , +  
c2+c3+c4,  (C2) S re(R+; 
S*+*'(R+; S-m), S-m). 

Proof. A straightforward computation shows that  

(3.5) 

where I denotes the k • k identity matrix, so that  

I~(k)l 

(3.6) 0 ~(~) 
s 0 

where Ql~(k)l ~(ca, 0~) denotes a differential operator on S ~-l of order Ic~(k)-sl. 
Formula (3.6) implies that  singularities at g=0  appear whenever we take the com- 
position of two symbols. Thanks to (3.6) the latter can be expressed as 

[a(k)l 

1 (ca 0 ~- I~(k)]+*O~O~(k+*~a.D~b ~ ~/~,j, (3.7) a#b=~__, ~.. E Qla<k)l-~, , ~,~ ~ e(k+s) = 
a > 0  s=0 i , j > 0  

where ~ < j ~ S l + t ' - i ( R + ; S  ~+~J 0) for i,j>_O. In order to make sense of the sec- 
ond sum in (3.7), at first we apply the usual asymptotic summation technique to 
~<0>_0 7~,j for fixed values of the index i (see e.g. [4]). This is possible since the 

cut-off functions used to perform the sum ~ i , j>0  Ti,j are functions of {(~+*) alone 

and the product of a usual symbol in the variable (x (k+l), {(k+,)) by a symbol in 
the classes Sl(R+; S "~) yields a symbol in the classes St(R+; S'~). Moreover, the 
index i being fixed, there is no uniformity problem with respect to i. Therefore we 
obtain 

E Ti,j =giq-ri, 
/,j>o 

where gi cSl+V-i(R+;  S ~+~ ' )  and ri ESI+V-i(R+; s - m ) .  As a second step we take 

i>0  i>0  

We do this by means of the same Borel smnmation technique with respect to the 
variable Q (the fact that  ~ER + has no influence on the procedure). Again, anal- 
ogously to the preceding argument only the variable Q matters. From the first 
sumrnand in (3.8) we obtain a symbol g+r, where gESl+ l ' (R+ ;S  m+m') and rE 
S - m  (R+;S  "~+'V). On the other hand the same argument for the second summand 
in (3.8) yields a symbol ~1+~2, with ~, ESl+Z'(R+; S m) and ~ s - m ( R + ;  s--m). 
This completes the proof of the Iemma. [] 
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L e m m a  3.3. Let a~SZ(R+; S~); then 

a*(x, D) -Z~ (x~ D ) + ~  (x, D)+Z3 (x, D)+Z~ (x, D)~ 

where 7~ ~S~(R+; S ~) with symbol coinciding with ~t, 

7~Sz -~ (R+;S~)~  73CS~(R+;S "~ ~) 

and 

(3.9) 
f ei{~c(k+ 1)--y(k+l) 

~4(X~ D)u = J ,~ ,~/4Lx, y(k)~(k+l))u(y)dyd~(k+l) 
( 

(X ~ ' , , ~  z(k+l)~Sm(RnxRk n-k where 74~ , ~ ) , ~  ~- ~ x y(k) xR~(k+l)). 

Proof. It is analogous to that of the preceding lemma. [] 

Remark. We point out that op(~l) is a smoothing operator. Moreover a1~1E 
S - ~ ( R + ;  S - ~ ) ,  where o- 1 is the cut-off function introduced in the remark after 
Definition 3.1, so that the operator corresponding to o-1~1 is also a smoothing op- 
erator. 

We want to take a look at C2=op(c2), c 2 C S - ~ ( R + ; S  ~) for some mER.  

L e m m a  3.4. Let aE S ~(R+; Sin). Then op(a) can be written as a smoothing 
operutor in the x(k) variables with values in OPS'~(R~-~).  

Proof. From the expression 

op(a)n = / '  c ie(~(k)-u(~)'~)+~(x (k+l)-y(k+~),~(k+~)} 

• a(x, ~ ~, ((k+l))u(y(~), y(k+l))~k-1 d~ d~ d~ (k+~) dy, 

we obtain that the distribution kernel of op(a) is 

ka(X, y) = f e i~(~(~)-u(~)'~)+i(~ (~+~)-u (~:+~),~(k+~)ia(x, ~, ~, ~(k+l))p~-I dQ dw d~ (~+1) 

/ ei(x(k+l)_y(k+l ) ~(k+~)} , an (x, Y(k), ~(k+l)) d~(k+l) 

since the (~, ~)-integral is absolutely convergent. Thus the partial differential oper- 
ator corresponding to the above kernel is 

OD(aL)U 

• u(y(k ), y(~+~)) dy(~) dy (~+1) d~ (k+~) �9 
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It is straightforward to conclude that  

n - k  aL C --C ~ ,(R~y(k) ," ~.q'WR n ~  ~ x R~(k+~))). 

This proves the lemma. [] 

It will be useful to refer to the L 2 continuity for our class of partial differential 
operators. 

L e m m a  3.5. Let a~S~  SO), then a(x, D) is bounded in L 2. 

Pro@ The proof proceeds along the lines of Theorem 18.1.11 in [4]. We start 
assuming that  acS-k - I (R+;S- (~  k)-l);  the standard calculus guarantees that,  
denoting by K(x, y) the distribution kernel of a, (x -y)~K(x ,  y) is the kernel of a 
symbol in 

S-k- I - I~(~)I (R+;S (~ k) 1-1a(~+~)l) 

for every c~>0. As a consequence, by use of the Sclmr lemma, we can conclude that 
a is L 2 continuous if a~S-k- l (R+;S- (n-k) - l ) .  Let now a~Sl (R+;  S'~), where 
l, m_<- l .  For u E S  we have 

Ila(m, D)ull 2 : (a*(x, D)a(x, D)u, u}, 

where a*a(x, D)E OPS 2z (R+; $2~*). By the Cauehy-Schwarz inequality we are then 
reduced to the proof of the L 2 continuity for an operator having the symbol in the 
class S2t(R+;Ss'~).  We get L 2 continuity i f / < _ - � 8 9  and m_< ~ ( n - k + l ) .  

Arguing by induction, in a finite number of steps, we conclude that  aESZ(R+; S "~) 
is L 2 continuous if/,  m_<- l .  Let now 1<1. We want to show that  if acS-Z(R+;  S~ 
then a(x, D) is L 2 continuous. This again uses an induction argument. As above 
we compute 

Ila(x, D)u[I 2 -- (a* (x, D)a(x, D)u, u} = (bl (x, D)u, u}, 

where bl ff S -2~ (R+; S~ Now (bl(x, D)u, u}_< ]lull Hbl (x, D)u[[, so that we are left 
with the proof of L 2 continuity for 

bl E S-21(R+;  so) .  

Iterating this argument we obtain 

[[a(x, D)u[I 2 < [[u[[ Hbl(X, D)~[[ < 11"~[[3/2[]bl (x, D)u[[ ~ ... 

S II~ll~+~/~+'"+~/~"rlb,-+~(~, D)~II ~/~~, 
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where bjES 2~Z(R+; SO). After a finite number of steps we reach the point where 

for instance 2~' />2k+2, so that  

D)u(x) = / e i<~(k+~)-y(~'+~) ,~(k+l))b(x, Y(k), ~(kq-1)) ~/,(y) dy d~ (k--l) , br.+l (~, 

whose L 2 continuity is a consequence of the classical result, l) being a sufficiently 
smooth kernel in the variable y(~) and a symbol of order 0 in (x (k+l), ~(k+l)). Thus 

[la(x, D)~II 2 _< Cllull 1+1/2+'''+1/2"+1/2~ - Cllul[ 2. 

Let us now consider aES~176 Let M > 2 s u p l a [  2 and set c(x,p,a~,~(k+l))-- 
(M--]a(cc,~,cJ,~(k+l))12)a/2. It  is easy to see that  c is a well-defined symbol in 

S~ S~ Now we have that  

0 < (c*(x, D)c(x, D)u, u} 
= ((1u a* (2s D)a(x,  D))it, l/~)-]-(71 ( z  , D)u, @ + (72 (x, D)u,  ~t), 

where 

7~(x, ~, ~, ~(~+~)) ~ S-~(R+; S ~ and 72(x, ~),~,~(~+1)) ~ SO(R+; S-1) .  

It  is obvious that  the L 2 continuity of 7j yields the statement.  Tha t  71 is L 2 
continuous follows from what has been said before. In order to geZ the L 2 conti- 

nuity of 72 we must recall the microlocal nature of our symbols, namely 72 is a 
symbol having its support  in a region where O<c]~ (k+l)]. Since, in such a region, 
( l+t ) ) / ( l+[~(k+l) l )_<l ,  we obtain that  72~S~ S 1 ) c S - I ( R + ;  S~ This ends 
the proof of the lemma. [] 

4. T h e  e n e r g y  e s t i m a t e  

The proof of Theorem 2.1 relies on the deduction of an energy estimate for the 
operator L as in (3.4). Actually the deduction of such an estimate goes through 
a number of steps, the most important  of which is an energy estimate in a conic 

neighborhood of the multiple characteristic manifold. In this section we accomplish 
such a task. 

Let S(x, D) be the operator obtained fl'om the symbol 

S(x, c, w, ~(~§ ~ S~ S ~ 
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satisfying conditions (i)-(iii) following equation (3.4). Writing 

(4.1) 

where 

(4.2) 

L(r D) : Do+A(x, D')+B(r D'), 

k 

A(x,&c~,~ (k+l)) 0~-~Ay(x,&w,{(k+l))c~j ESI (R+;S~  
j = l  

125 

(4.3) B(x, 0, w,~ (k+l)) E S~ sO). 

Let us compute, with u=op(o ' l )V,  vEC~~ 

2i Im((Do + A(x, D') + B(x, D') )u, S(x, D')u) : I1 +/2 +/3. 

We have 

Is : 2i Im(Dou, S(x, D')u) = Do(u, S u } -  (u, Do(S*-S)u) - (u, [S*, Do]u). 

Let us consider the second term in the right-hand side above: 

(~, no(S* -S )u}  - (u, (S* - S ) D o u ) +  (u, [Do, S* - S],u). 

The first summand can be written as 

(4 .4)  ( ( s - s * ) ~ ,  Dou} - ((S-S*>, f~ ) -  ((S-S*>, A.~+B~) 

By Lemma 3.3 and conditions (i) (iii) on S(x, &w,[  (~+1)) we obtain that 

S-S*  = 72(x, D')+?~a(x, D ' ) + % ( r  D'), 

where ~y2(x, & w, ~(k+l)) c S - 1  (R+; So), Ta(x, O, co, {(k+l)) ESO(R+; S-S) and % has 
the form (3.9) where 

S-I(R~+I •  k k x n-k 74(x,Y(k),~ (k+I))~ v (~o,x,) ( ) Re(~+l>) 

The first term in (4.4) is estimated by 

1 
I((S-S*)u, Lu)t <_ ~llLull~+aJ/~ll ~, 5>O. 
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Consider now 

I((S- S*)u, Au) l < 1(~2u, Au) l§ Au) l+l('~4u, Au) l. 

On the support of the cut-off function ~1 the second term is equivalent to the 
first. By Lemmas 3.2, 3.3 and 3.5, 7~A is L 2 continuous. Moreover, since on the 
support of the cut-off function c~l, SX(R+; S~176  S x) we can also conclude 
that  [(74u, Au)l_<ellull 2, so that  

(4.5) I ( ( S -  S*)u, du} l < Cllull 2. 

A similar, but easier argument; yields that  

(4.6) [ ( (S -S*)u ,  Bu}l < cIl~ll  2 

Next let us consider {u, [D0, S* - S]u). The commutator  inside the scalar product 
has the same form as S * - S  and hence is L 2 continuous. We argue for (u, [S, Do]u} 
in an analogous way. Thus 

(4.7) I1 = Do (u, Su} + R1 (u), 

where IR1 (~)1_< C111~112 +C2 IlL-l/2. Now 

I2 2iIm(d(x ,D')u,S(x ,D')u)  

= ((S* -S ) (x ,  D')d(x, D')u, u}+((SA-A*S) (x ,  D')u, u}. 

The inequality (4.5) allows us to estimate the first term. By condition (iii), 

a ( S A -  A* S) = oq +a2, 

S ~  '~+~ • R~ ,~-k a l C S ~ 1 7 6  and c~2 ~ (xo,x,) y(k) •162 is quantized according to 
(3.9), where we used the fact that  there is the cut-off function al  in front of every- 
thing. Hence, by Lemrna 3.5, 

(4.8) 1/21 _< CIluII 2, 

The same argument as above gives us that  

(4.9) 151 < ClI~II ~ 

Summing up; all the previous estimates give 

(4.10) 2i Im( Lu, Su) = Do (u, Su) + R(u), 
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where 

(4.11) IR(~)l _< c~ Ibll ~ +C~ lIL~rl ~. 

Let ~- be a positive large parameter; we have 

- .[+* ~'~OOo<~, s~> d~.o= <~(o), s(o)~(o)> +2~ .f+* ~-~o <~, s~> d~o 

due to the properties of S. On tile other hand 

-/o +~ ~'XOOo<~,s~> dxo= -/o +~ ~'~o (2 ~m<L~, S~> +~R(~)) d~o 

Taking ~- large enough gives the microlocal energy estimates 

(4.12) l[~(0)112+ ~2~Xolb(xo)ll2 dxo <_C e2'-~~ dxo. 

This ends the proof of Theorem 2.1. 
We now prove Theorem 2.2. 
Let us consider a part i t ion of unity of T ' K \ { 0 }  where K C U .  We assume that  

the support  of each element of the part i t ion of unity is chosen in such a way that  
(a) either it intersects only one layer corresponding to a certain multiplicity l or 
(b) it contains points of a certain multiplicity l and points of lower multiplicity l'_< I. 

It  is then clear that  we may apply the above argument in a hierarchical way, 
start ing from the set of maximum multiplicity. 

As a preliminary remark we point out that  near a point of multiplicity j ,  2<  
j_<m, the principal symbol can be block diagonalized uniformly in a neighborhood 
of the point, by assumption (H2)j. This allows us to block diagonalize globally 
our system and thus reduce us microlocally to a j x j system, for which we already 
proved an estimate of the form (4.12): 

~lll~.~lll 2 _< ClIIL~.~III ~, 

where  Ibll12=]0 +~ ~2~x0 Ilu(~0," )11 ~ d~0. T h e n  

~llblll ~ -< ~ ~ II l~l l l  ~ -< C(IIIL~III ~ +~ III [L, ~.,~]ulll 2 _< C'(IIIL~III 2 + Iblll2), 
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since the commuta tor  [L, ;~,~] is L 2 contimtous. Choosing 7- sufficiently large proves 
the local energy estimate and titus strong hyperbolicity follows. 

Let us now finally prove Theorem 2.2. 

In this case our assumptions imply that  E - -EIUE,~ ,  i.e. h~(Sz) is a strictly 
hyperbolic polynomial of degree m in T~E • Hence (H3).~ holds since the lifting of 
A to a neighborhood in the blow up has distinct eigenvalues. 

5. A c o u n t e r e x a m p l e  

In this section we consider the following differential operator 

L(x, D) = DoI3 + AD1 + Bx1D~, 

where no zero order t e rm is present, 

A = 0 0 and B = 1 0 1 . 
0 - 1  - 1  1 0 

Here 13 denotes the 3 •  identity matrix. It  is easily seen that  this system is 
hyperbolic, i.e. de tL(x ,~ )  (0(~g 2 2 2 ~1 -Xl~,~). Moreover the submanifold E of triple 
points is not involutive near (0, e~) and it can be checked that  A and B are not 
simultaneously symmetrizable.  

The s tudy of the well-posedness of scalar operators with this principal symbol 
has been carried out in [1]. 

We want to prove the following result. 

P r o p o s i t i o n  5.1. The Cauchy problem for L is not well-posed. In particular 
L is not strongly hyperbolic. 

Proof. We will choose a suitable asymptot ic  null solution of LV~O of the form 
V- -MU,  where M=(C~ D)+iGD~)U with r176 ~) denoting the cofactor ma- 
trix of L and G being a suitable constant matr ix  to be precised later. 

Computing C~ ~) we get 

= 

- - X l ~  n 
2 2 

--Xl~n(~O--%Cl)--Xl%<n 
2 2 

Xl{n{O @2Jl{ n 

Now we have 

X 2 2 +Xl n 22 ] 
�9 

2 
- - X l ~  n 

L V  = L M U  = L(C~ D)+iGD,,)U = AU, 
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where A = A a + A s ,  Aa(x, ~)=(det L(x, ~))I3 and 

Aa(x, ~) = 1 7 (o~ L(~, ~)Ox~ >~ L(~, ~)- L(x, ~). a~) .  

Choosing 

we get that 

[01 ] 
G =  -2  3 

0 -1  

0 -2  - 1 J  
/ h ( x , ~ ) =  2 - a  2 ~0~ 

1 2 0 i 

The matrix in A2 can be diagonalized since it has 3 distinct eigenvalues, one real 
and two complex conjugate. Denote by Aj these eigenvalues. After a conjugation 
with a non-singular matrix, H, eventually we have that A(z, D) can be put in 
diagonal form 

~ ( ~ , ~ )  = [ det L(x, ~! i/~1 ~0~ 0 
det L(x, ~) -iA2{0{~ 

0 detL(x,~i-iA3~o~ ] " 
An asymptotic null solution violating the a priori estimates is then easily found since 
we are now violating the HSrmander Ivrii-Petkov Levi condition for an operator 
with double characteristics. 

Finally, we must make sure that the above determined asymptotic solution 
does not annihilate the operator M. More precisely we must ascertain that 

(C~ 1U r 

where U is the null asymptotic solution mentioned above and H is the constant 
matrix used in the diagonalization of A(x, D). In order to do this we point out that 

where p(z) is a phase function satisfying the equation (00p)2- ( l+ i ta )  0 and 
01~(0)=0, A is a large parameter and the Cauchy data for the eikonal equation are 
chosen suitably to make U a rapidly decreasing function. 
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W h e n  we compute  C~ D) at a:=O we easily see that 

Do(Do-D1)  0 0 ] 
 oL(o, D )  : 0 o . 

0 0 Do(Do+D1) 

Therefore if we consider the element (1, 1) of the matr ix  M we only have tha t  the 

funct ion 

Do (D0- Ds)e  ~ ~ -  A~x~/2+~A~(~)~,x (z) 

must  be non-zero. The  latter is equal to 

e iA~ ~" - A%lQ2+iA~(z) [(Do + A00F) 2 - (Do +A00~)(D1 -}-lAw1 +A019))]~A 

which concludes the proof, since A can be chosen large and 00~ does not vanish at 
the origin. [] 

References 

1. BERNARDI, E. and BOVE, A., Necessary and sufficient conditions for the well-posed- 
ness of the Cauchy problem for a class of hyperbolic operators with triple 
characteristics, J. Areal. Math. 54 (1990), 21 59. 

2. BERNARDI~ E. and NISHITANI, Z., Remarks on symmetrization of 2 • 2 systems and 
the characteristic manifolds, Osaka J. Math. 29 (1992), 129 134. 

3. BOVE, A. and NISHITANI, T., Necessary conditions for hyperbolic systems, Bull. Sci. 
Math. 126 (2002), 445 479. 

4. H6RMANDER, L., The Analysis of Linear" Partial Differential Operator's. Vol. I IV, 
Springer-Verlag, Berlin, 1983 85. 

5. IVRII, V. YA. and PETKOV, V. M., Necessary conditions for the correctness of the 
Cauchy problem for non-strictly hyperbolic equations, Uspekhi Mat. Na~tk 
29:5 (1974), 3-70 (Russian). English transl.: Russian Math. Surveys 29:5 
(1974), 1-70. 

6. KAJITANI, K., Strongly hyperbolic systems with variable coefficients, Publ. Res. Inst. 
Math. Sci. 9 (1973/74), 597 612. 

7. MELROSE, R. B. and UHLMANN, G. A., Microlocal structure of involutive conical 
refraction, Duke Math. J. 46 (1979), 571 582. 

8. NISHITAN1, T., Necessary conditions for strong hyperbolicity of first order systems, 
J. Anal. Math. 61 (1993), 181-229. 



On a class of strongly hyperbolic systems 131 

9. NISHITANI, T., On localizations of a class of strongly hyperbolic systems, Osaka d. 
Math. 32 (1995), 41 69. 

10. NISHITANI, T., Hyperbolicity for systems, in Analysis and Applications--ISAA C 2001 
(Berlin), pp. 237-252, Kluwer, Dordrecht, 2003. 

Received June 10, 2003 Enrico Bernardi 
Dipart imento di Matemat ica  
Universitg di Bologna 
Piazza di Por ta  S. Donato 5 
IT-40127 Bologna 
I taly 
emaih bernardi~dm.unibo. i t  

Antonio Bore 
Dipart imento di Matemat ica  
Universitg di Bologna 
Piazza di Por ta  S. Donato 5 
IT-40127 Bologna 
I taly 
and 
Ist i tuto Nazionale di Fisica Nucleare 
Sezione di Bologna 
Cia Irnerio 46 
IT-40126 Bologna 
I taly 
emaih bove@dm.unibo.it 


