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Mukai-Sakai bound for 
equivariant principal bundles 

Usha N. Bhosle and Indranil Biswas 

A b s t r a c t .  Mukai  and  Sakai proved t h a t  given a vector  bundle  E of r ank  n on a connec ted  

s m o o t h  project ive  curve of genus  g and  any  r ~ [ 1 , n ] ,  there  is s u b b u n d l e  S of rank  r such  t h a t  

d e g H o m ( S , E / S ) < _ r ( n - r ) 9 .  We prove a genera l iza t ion  of th is  b o u n d  for equivar iant  pr incipal  

bundles .  Our  proof  even simplifies t he  one given by Holla and  N a r a s i m h a n  for usua l  pr incipal  

bundles .  

1. I n t r o d u c t i o n  

Let Y be a connected smooth projective curve of genus gy over an algebraically 
closed field k and E a vector bundle over Y of rank n. Fixing an integer rE[1,n],  

consider the space of all subbundles of E of rank r. It is easy to see that  their 

degrees are bounded above. In [MS], Mukai and Sakai produced a lower bound for 

the maximum of these degrees. The main result of [MS] says that E has a subbundle 
S of rank r such that degHom(S, E/S)<_r(n r)gy. 

In [HN], Holla and Narasimhan extended this result to principal bundles. Let 

G be a connected reductive linear algebraic group over k and E a  a principal G- 

bundle over Y. Fix a reduced parabolic subgroup P cG and consider the space of 
all reductions of E c  to P. There is a constant cEZ such that for any reduction 

EpCEc, we have degad(Ee)<c. In [HN], a lower bound for such a constant c is 
obtained. The main result of [HN] says that there is a reduction 

c~: Y ~ Ec/P 

such that deg~r*T~.d<gydimG/P, where Try1 is the relative tangent bundle for 

the projection of Ec/P to X. Since cr*Trel~-ad(Ea)/ad(Ee), this implies that 
c>-gy dim G/P. 

We prove a generalization of the above bound on deg ~*Trel for equivariant 

bundles (see Theorem 3.2). We use a certain Quot-scheme of ad(EG), as opposed 
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to the use of Hilbert schemes done in [HN]. This also yields a simpler proof of the 
bound obtained in [HN]. 

2. E q u i v a r i a n t  r e d u c t i o n  o f  a p r i n c i p a l  b u n d l e  

Let k be an algebraically closed field. Let Y be a connected smooth projective 
curve over k, and 

F C Aut (Y) 

a finite reduced subgroup of the automorphism group of Y. So F acts on the left 
of" Y. 

Let G be a connected reductive linear algebraic group over k and EG a principal 
G-bundle over Y. A P-linearization of EG is a lift of the action of F on Y to the 
total  space of E c  that  commutes with the action of G. So a F-linearization of E o  
is a left action of F on E c  such that  for any *y~F, the automorphism of the variety 
EG defined by it is an isomorphism of the G-bundle over the automorphism V of Y. 

The Lie algebra of G will be denoted by ~t. Fix a reduced parabolic subgroup 
P of G. Let p c g  be the Lie algebra of P. 

Let EG be a F-linearized G-bundle. Its adjoint bundle EG • will be denoted 
by ad(EG). Since the adjoint action of G preserves the Lie algebra structure of g, 
each fiber of ad(EG) has the structure of a Lie algebra isomorphic to g. 

Since G/P is complete and d i m Y = l ,  the G-bundle E r  admits a reduction 
of struetm'e group to P.  If EpCEc is a reduction of structure group of EG to 
Re, then a d ( E e ) c a d ( E c ) ,  and the quotient a d ( E c ) / a d ( E e )  is identified with the 
pullback of the relative tangent bundle on Ec/P by the section 

(7: Y ---+ Ec/P 

(of the fiber bundle EG/P over Y) corresponding to the reduction. Therefore, there 
is a constant N(EG) such that  

deg cr*Trel ~ N(EG), 

where Tret is the relative tangent bundle over Ec/P for the projection to Y. 
A reduction EpCEa is called F-invariant if the subvariety Ep is left invariant 

by the action of P on E c .  Let 

(2.1) c(~G) �9 Z 

be the minimum of deg ~r*Trd taken over all possible P-invariant reductions of E a  
to P. 
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Let Q(ad(EG)) be the Quot-scheme parametrizing all quotients of ad(EG) of 
rank dim G / P  and degree e(EG). (See [G] for properties of Q(ad(EG)).) 

Take a quotient QEQ(ad(Eo)). Let 

(2.2) 0 > S > ad(EG) > Q > 0 

be the exact sequence defined by it. The subsheaf S is a subbundle of ad(Ec) over 
a nonempty open subset of Y. 

The action of F on Ec defining the F-linearization induces an action of F on 
the vector bundle ad(Ea). Let 

Qr(ad(Ea)) c Q(ad(EG)) 

be the closed subschenle consisting of all quotients Q such that the corresponding 
subsheaf S (as in (2.2)) is left invariant by the action of F. Note that if S is 
invariant under the action F, then there is an induced action of F on Q defined by 
the condition that the projection in (2.2) is F-equivariant. 

The action of F on ad(Ec) induces an action of F on the scheme Q(ad(EG)). 
The action of any 7EF sends a quotient Q=ad(EG)/S  to ad(Ea)/7(S) .  Clearly, 
Qr(ad(E~)) coincides with Q(ad(Ec)) r. 

The vector bundle ad(Ea) is associated with Ea for the adjoint action of G 
oil [1. So any closed point of the fiber (Ea)~, yCY,  gives a Lie algebra isomorphism 
of the fiber ad(Ea)y with g. More precisely, the isomorphism defined by y sends any 
wCg to the equivalence class defined by (y, w) (recall that ad(EG)y is a quotient 
of (Ec)y • All such isomorphisms of ad(Ec)y, yEY, with g (defined by (Ea)v) 
will be called distinguished isomorphisms. 

Therefore, any two distinguished isomorphislns of ad(EG)y with IJ differ by an 
inner automorphism of g (defined by some element in G). 

Take any quotient Q~ Qr(ad(Ea)). Let Scad (Ec )  be the subsheaf defined as 
in (2.2). Let U c Y  be the nonempty open subset over which S is a subbundle of 
ad(EG). 

L e m m a  2.1. If  there is a nonempty open subset U' C U such that for any point 
y~U',  there exists a distinguished isomorphism of ad(EG)y with 1~ that takes Sy 
isomorphically to p, then S is a subbundle of ad(Ec), that is, U - Y .  

Pry@ Let S ' cad (Ea )  be the (unique) subbundle of rank d imP that con- 
tains S. So S' is the inverse image of Torsion(Q) for the projection in (2.2). For 
any yEY,  the fiber S; is a subalgebra of ad(E~) identified with p by (the restric- 
tion of) some distinguished isomorphism. Indeed, this follows from the fact that the 
subvariety of the Grassmannian Gr(dim P, g) (parametrizing all dim P-dimensional 
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subspaces of g), defined by all the conjugations of p c g ,  is the image of G/P in 
Gr(dim P, g). In particular, it is a complete subvariety. Therefore, if the fiber of 
a subbundle of ad (Ec )  over the general point is identified with p by some distin- 
guished isomorphism, then the fiber over the subbundle over each point of Y has 
this property. 

Since S is left invariant by the action of F on ad(Ec) ,  it follows immediately 
that  S ~ is invariant under the action of F. 

Consequently, S '  gives a (reduced) F-invariant sub-group-scheme 

S'  C Ad(Ea)  := E c  •  

of the gauge bundle defined by the condition that  for any point yEY, the Lie algebra 
of S~ coincides with S ~. Now, S '  defines a reduction of structure group 

E p  C EG 

to the parabolic subgroup P. For any point yEY, the subvariety (Ep)yC(EG)y 
consists of all zC (Ec)y  such that  the natural  projection of E c  • G to Ad(Ea )  sends 

z • P into S;. Tha t  this defines a reduction of structure group of E a  to P is an 
immediate consequence of the fact that  the norlnalizer of P in G coincides with P.  
This reduction E p  is P-invariant, since S'  is left invariant under the action P. 

From the definition of c(Ea) in (2.1) it follows that  

d e g ( a d ( E c ) / S ' )  = deg or* T~.~f >_ c(Ec), 

where a is the section Y--+EG/P defining the reduction Ep. Therefore, as 

deg(ad(Ea)/S') = deg(ad(Ea)/S) - d i m  Torsion(Q) - e(Ec) - d i m  Torsion(Q), 

we have Torsion(Q)=0.  This implies that  St=S, and the proof of the lemma is 
complete. [] 

Using the above lemma we will construct a closed subscheme of Q r ( a d ( E a ) ) .  

3. The subscheme Qrp(ad(EG)) 

Let Gry(dimP, ad(Ec)) be the Grassmann bundle over Y parametrizing all 
dim P-dimensional subspaces in the fibers of ad(Ea) .  The space of all conjugates 
of the Lie subalgebra p in ad (Ec )  define a subbundle 

(3.1) Gr~  C G r y  (dim P, ad (Ea ) )  
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of the fiber bundle. In other words, for any yCY, a subspace Vcad(EG)y is in Gr~ 
if and only if there is a distinguished isomorphism of ad(Ec)v with 1~ that  takes 
p isomorphically to V. Therefore, any fiber of the fiber bundle Gr~ is isomorphic 
to G/P. In fact, there is a canonical isomorphism 

(3.2) Gr~ ~- Ec/P. 

Indeed, for any yEY and any zC(Ec)y (recall that (Ec)v parametrizes the dis- 
tinguished isomorphisms of ad(Ea)v with g), the image of p in ad(Ec) by the 
distinguished isomorphism corresponding to z is a point in the fiber of Gr~ over y. 
Since this image subalgebra does not change as y moves over a P-orbit (for the 
action of P on (EG)y), we get a natural isomorphism of the fiber bundle Gr~ over 
X with EG/P. 

Note that  the action of P on Ea  induces an action of F on Gr~. 
Let 

(3.3) Q~(ad(Ec))  c Qr(ad(Ea))  

be the subscheme defined by the F-invariant sections of Gr~ (defined in (3.1)). So 
a point of Qr(ad(Ec)) ,  representing a quotient Q of ad(Ec) ,  lies in Qrp(ad(Ea)) if 
and only if the corresponding subsheaf S (as in (2.2)) has the property that  S is a 
subbundle of ad(Ea) and for each point yCY, there is a distinguished isomorphism 
of ad(EG)y with g that  takes the fiber Sy isomorphically to p. 

Using Lemma 2.1 it can be shown that  Qr(ad(Ec;)) is in fact a closed sub- 
scheme of Qr(ad(Ec)) .  Indeed, if we consider a morphism 

f: C\{p} > Qr(ad(Ea) ) ,  

where p is a point on a smooth curve C, then using the completeness of Qr (ad(Ea)) 
it extends to a morphism f : C ~ Q r ( a d ( E a ) ) .  Let UcY be the nonempty open 
subset over which the quotient f(c) of ad(Ec)  is locally free. Let 

f :  U • C ---+ Gry (dim P, ad(EG)) 

be the map defined by f .  So, f(u, c) represents the subspace of ad(Ec)~ defined 
by f(c). Therefore, the map f has the property that  f(U• (C\{p}))CGr~. Since 
Gr~ is a complete variety, we conclude that  f(UxC)cGrPy. In particular, we 
have U • {p}cGr~.  Now Lemlna 2.1 implies that  f(p)E Q~(ad(Ea)) .  Therefore, 
Qr(ad(EG)) is closed in QP(ad(Ec)). 

Take any quotient Q in Qr(ad(Ea) ) .  The action of F on Q induces an action 
on H~(Y, Q) tbr any i>0.  Let 

H (y, Q)r < H (y, 0,) 
be the invariant subspace on which F acts trivially. 
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P r o p o s i t i o n  3.1. For any Q E Q F ( a d ( E c ) ) ,  

dim G/P >_ dim H ~ (Y, Q)F dim H I (Y, Q)r ,  

where Hi(Y, Q)r  is the invariant part. 

Proof. Let  . :  be a sect ion  ber bund le  dem ed in (3.1) (we saw in (3.2) 
that  Gr~ is naturally identified with Ea/P). As we saw in the proof of Lemma 2.1, 
such a section ~ defines a reduction of structure group EpcEc  to P.  Note that  
a d ( E c ) / a d ( E p )  is identified with Y*Trd, where Try1 is the pullback of the relative 
tangent bundle for the projection of Gr~ to Y. Therefore, from [K, p. 37, The- 
orem 2.17.1] it follows immediately that  the dimension of the local moduli space, 
around ~, of sections of Gr~ is at least 

dim H ~ (Y, ad (Ec)  / ad(Ep))  - d i m  H 1 (Y, a d ( E a ) / a d ( E p ) ) .  

(Set X and S in [K, p. 37, Theorem 2.17] to be the curve Y, with the identity map 
of Y as the projection of X to S; note that  a morphism Y/Y-->GrPy/Y is a section 
of the fiber bundle GrPy.) Similarly, if p is F-invariant, then the local moduli space, 
around ~, of F-invariant sections of Gr~ is of dimension not less than 

dim H ~ (Y, a d ( E c ) / a d ( E p ) )  r - d i m  H 1 (Y, a d ( E c ) / a d ( E p ) )  r 

(see [K, p. 37, Theorem 2.17.1] and [K, p. 35, Theorem 2.15]). To derive this from 
the previous assertion, note that  a F-invariant section of Gr~ is a section of G r ~ / P  
over Y/F. The pullback of the relative tangent bundle by the section over Y/F 
defined by the above r-invariant section y coincides with @,(ad(Ec)/ad(Ep)) r, 
where q5 is the projection of Y to Y/F. Since ~b is a finite map, we have 

Hi(Y/F, ~. ( a d ( E c ) / a d ( E p ) )  p) ~ Hi(Y, a d ( E c ) / a d ( E p ) )  r.  

This establishes the above lower bound for the dimension of the local moduli space, 
around z~, of F-invariant sections of Gr~. Therefore, for any QE Q r ( a d ( E c ) )  we 
have 

dim TQ Q r  (ad(Ec))  >_ dim H ~ (Y, Q)p _ dim H I (Y, Q)F. 

So, to prove the proposition it suffices to show that dim G/P>dim Q~(ad(Ec) ) .  
Fix a point y E Y  and consider the map 

fy: QP (ad(EG)) > Gr := Gr(dim P, ad(Ea)y)  
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to the Grassmannian that  sends a quotient Q to the quotient Qv of ad(Ec)y .  If 
v EGr(dim P, ad(Ec)y)  and C is an irreducible complete curve in fyl(v) ,  consider 
the map 

Y • C ---+ Gry  (dim P, ad (Ec) )  

to the Grassmann bundle (parametrizing dim P-dimensional subspaces in ad(Ec) )  
that  sends any (z, c) to the fiber at z of the subbundle corresponding to the quotient 
represented by c. This map is constant on y x C, and hence using the rigidity lemma 
we conclude that  this map factors through the projection of Y x C to Y (see [MS, 
pp. 254-255]). Therefore, all the fibers of fy are of dimension zero. 

The image of fy is contained in the orbit of p under the adjoint action of G 
on g (recall the condition that  any fiber of S in (2.2) is identified with p by some 
distinguished isomorphism). This implies that  dim hnage(fy) <d im G/P. Conse- 
quently, we have dim G/P>dim Qrp(ad(Ec)),  and the proof of the proposition is 
complete. [] 

Set X:=Y/F,  and denote by r the projection of Y. Let R C Y  be the collection 
of all points where the map r is ramified, that  is, all points with nontrivial isotropy. 
For any yCR, the isotropy subgroup Fv CF is a cyclic subgroup, which acts faithfully 
on TyY. Let 7-y ~Fy be the generator that  acts as multiplication by exp(27cx/Z1/ny),  
where n v = # F y .  Consider the action of T v on the fiber ad(EG)v. The eigenvalues 

y >m~im >0 are of the form exp(27rx/L~m/ny),  rnE [0, n v -  1]. If n v > m  I > m  2 >... 

are such that  exp (27cx /~m~/nv)  , iE [1, dim~], are the eigenvalues, then set 

dim G/ P 
Y 

i = l  

T h e o r e m  3.2. The bound c(Ea) defined in (2.1) satisfies the inequality 

e(EG) <_ gx#F-dim G/P + ~ Nv, 
yER 

where 9x-genus(X) and ~F is the order of F. 

Proof. This follows from Proposition 3.1 and the Riemann Roch formula fbr 
the Euler characteristic dim H ~ (Y, Q)r  _ dim H 1 (Y, Q)F. 

For any Q C Q F ( a d ( E c ) )  we have Hi(Y, Q)F~--H{(X, (r  where ( r  c 

r  is the subsheaf on which F acts trivially. 

For any point yER, consider the induced action of Fy on the fiber Q~. Let 
exp(27rxflL~lY/ny), iE [1, dim G/P], be the eigenvalues, where ny is defined above 
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and l~ ~ [0, ny 1]. We have 

dim G/P 

d e g Q = # P ' d e g ( r  ~ /~ 
yCR /=1 

(see [B, p. 318, (3.10)]). Therefore, 

degQ -V'z-~yeR z-,iv'dimC/Pl~l degQ ~venNy 
deg(r r = > 

# r  #p 

Qy-t_dim G / P as t ~ Ji=l is a. subcollection of t,,~i'f~Y'ldimG*ji 1 for each yER. Now, using the 
Riemann-Roch formula for (r  we have 

deg 0 :v~ 
dimH~ (r (r r) _> ( 1 - 9 x ) d i m G / P §  # - ~ - - ~  OF" 

yCR 

Combining this with Proposition 3.1 gives 

deg Q X~ 
dimG/P> # ~ -  ~ #P " 

yER 

In other words, degQ<gx~F.dimG/P+~y~aN v. Since c(E~)=deg(Q), the 
proof of the theorem is complete. [] 
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