Mukai-Sakai bound for equivariant principal bundles

Usha N. Bhosle and Indranil Biswas

Abstract

Mukai and Sakai proved that given a vector bundle E of rank n on a connected smooth projective curve of genus g and any $r \in[1, n]$, there is subbundle S of rank r such that $\operatorname{deg} \operatorname{Hom}(S, E / S) \leq r(n-r) g$. We prove a generalization of this bound for equivariant principal bundles. Our proof even simplifies the one given by Holla and Narasimhan for usual principal bundles.

1. Introduction

Let Y be a connected smooth projective curve of genus g_{Y} over an algebraically closed field k and E a vector bundle over Y of rank n. Fixing an integer $r \in[1, n]$, consider the space of all subbundles of E of rank r. It is easy to see that their degrees are bounded above. In [MS], Mukai and Sakai produced a lower bound for the maximum of these degrees. The main result of $[\mathrm{MS}]$ says that E has a subbundle S of rank r such that $\operatorname{deg} \operatorname{Hom}(S, E / S) \leq r(n-r) g_{Y}$.

In [HN], Holla and Narasimhan extended this result to principal bundles. Let G be a connected reductive linear algebraic group over k and E_{G} a principal G bundle over Y. Fix a reduced parabolic subgroup $P \subset G$ and consider the space of all reductions of E_{G} to P. There is a constant $c \in \mathbf{Z}$ such that for any reduction $E_{P} \subset E_{G}$, we have $\operatorname{deg} \operatorname{ad}\left(E_{P}\right) \leq c$. In $[\mathrm{HN}]$, a lower bound for such a constant c is obtained. The main result of $[\mathrm{HN}]$ says that there is a reduction

$$
\sigma: Y \longrightarrow E_{G} / P
$$

such that $\operatorname{deg} \sigma^{*} T_{\text {rel }} \leq g_{Y} \operatorname{dim} G / P$, where $T_{\text {rel }}$ is the relative tangent bundle for the projection of E_{G} / P to X. Since $\sigma^{*} T_{\mathrm{rel}} \cong \operatorname{ad}\left(E_{G}\right) / \operatorname{ad}\left(E_{P}\right)$, this implies that $c \geq-g_{X} \operatorname{dim} G / P$.

We prove a generalization of the above bound on $\operatorname{deg} \sigma^{*} T_{\text {rel }}$ for equivariant bundles (see Theorem 3.2). We use a certain Quot-scheme of ad $\left(E_{G}\right)$, as opposed
to the use of Hilbert schemes done in [HN]. This also yields a simpler proof of the bound obtained in [HN].

2. Equivariant reduction of a principal bundle

Let k be an algebraically closed field. Let Y be a connected smooth projective curve over k, and

$$
\Gamma \subset \operatorname{Aut}(Y)
$$

a finite reduced subgroup of the automorphism group of Y. So Γ acts on the left of Y.

Let G be a connected reductive linear algebraic group over k and E_{G} a principal G-bundle over Y. A Γ-linearization of E_{G} is a lift of the action of Γ on Y to the total space of E_{G} that commutes with the action of G. So a Γ-linearization of E_{G} is a left action of Γ on E_{G} such that for any $\gamma \in \Gamma$, the automorphism of the variety E_{G} defined by it is an isomorphism of the G-bundle over the automorphism γ of Y.

The Lie algebra of G will be denoted by \mathfrak{g}. Fix a reduced parabolic subgroup P of G. Let $\mathfrak{p} \subset \mathfrak{g}$ be the Lie algebra of P.

Let E_{G} be a Γ-linearized G-bundle. Its adjoint bundle $E_{G} \times{ }^{G} \mathfrak{g}$ will be denoted by $\operatorname{ad}\left(E_{G}\right)$. Since the adjoint action of G preserves the Lie algebra structure of \mathfrak{g}, each fiber of $\operatorname{ad}\left(E_{G}\right)$ has the structure of a Lie algebra isomorphic to \mathfrak{g}.

Since G / P is complete and $\operatorname{dim} Y=1$, the G-bundle E_{G} admits a reduction of structure group to P. If $E_{P} \subset E_{G}$ is a reduction of structure group of E_{G} to E_{P}, then $\operatorname{ad}\left(E_{P}\right) \subset \operatorname{ad}\left(E_{G}\right)$, and the quotient $\operatorname{ad}\left(E_{G}\right) / \operatorname{ad}\left(E_{P}\right)$ is identified with the pullback of the relative tangent bundle on E_{G} / P by the section

$$
\sigma: Y \longrightarrow E_{G} / P
$$

(of the fiber bundle E_{G} / P over Y) corresponding to the reduction. Therefore, there is a constant $N\left(E_{G}\right)$ such that

$$
\operatorname{deg} \sigma^{*} T_{\mathrm{rel}} \geq N\left(E_{G}\right)
$$

where $T_{\text {rel }}$ is the relative tangent bundle over E_{G} / P for the projection to Y.
A reduction $E_{P} \subset E_{G}$ is called Γ-invariant if the subvariety E_{P} is left invariant by the action of Γ on E_{G}. Let

$$
\begin{equation*}
c\left(E_{G}\right) \in \mathbf{Z} \tag{2.1}
\end{equation*}
$$

be the minimum of $\operatorname{deg} \sigma^{*} T_{\text {rel }}$ taken over all possible Γ-invariant reductions of E_{G} to P.

Let $\mathcal{Q}\left(\operatorname{ad}\left(E_{G}\right)\right)$ be the Quot-scheme parametrizing all quotients of ad $\left(E_{G}\right)$ of rank $\operatorname{dim} G / P$ and degree $c\left(E_{G}\right)$. (See $[G]$ for properties of $\mathcal{Q}\left(\operatorname{ad}\left(E_{G}\right)\right)$.)

Take a quotient $Q \in \mathcal{Q}\left(\operatorname{ad}\left(E_{G}\right)\right)$. Let

$$
\begin{equation*}
0 \longrightarrow S \longrightarrow \operatorname{ad}\left(E_{G}\right) \longrightarrow Q \longrightarrow 0 \tag{2.2}
\end{equation*}
$$

be the exact sequence defined by it. The subsheaf S is a subbundle of $\operatorname{ad}\left(E_{G}\right)$ over a nonempty open subset of Y.

The action of Γ on E_{G} defining the Γ-linearization induces an action of Γ on the vector bundle $\operatorname{ad}\left(E_{G}\right)$. Let

$$
\mathcal{Q}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right) \subset \mathcal{Q}\left(\operatorname{ad}\left(E_{G}\right)\right)
$$

be the closed subscheme consisting of all quotients Q such that the corresponding subsheaf S (as in (2.2)) is left invariant by the action of Γ. Note that if S is invariant under the action Γ, then there is an induced action of Γ on Q defined by the condition that the projection in (2.2) is Γ-equivariant.

The action of Γ on $\operatorname{ad}\left(E_{G}\right)$ induces an action of Γ on the scheme $\mathcal{Q}\left(\operatorname{ad}\left(E_{G}\right)\right)$. The action of any $\gamma \in \Gamma$ sends a quotient $Q=\operatorname{ad}\left(E_{G}\right) / S$ to $\operatorname{ad}\left(E_{G}\right) / \gamma(S)$. Clearly, $\mathcal{Q}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$ coincides with $\mathcal{Q}\left(\operatorname{ad}\left(E_{G}\right)\right)^{\Gamma}$.

The vector bundle $\operatorname{ad}\left(E_{G}\right)$ is associated with E_{G} for the adjoint action of G on \mathfrak{g}. So any closed point of the fiber $\left(E_{G}\right)_{y}, y \in Y$, gives a Lie algebra isomorphism of the fiber $\operatorname{ad}\left(E_{G}\right)_{y}$ with \mathfrak{g}. More precisely, the isomorphism defined by y sends any $w \in \mathfrak{g}$ to the equivalence class defined by (y, w) (recall that $\operatorname{ad}\left(E_{G}\right)_{y}$ is a quotient of $\left(E_{G}\right)_{y} \times \mathfrak{g}$). All such isomorphisms of $\operatorname{ad}\left(E_{G}\right)_{y}, y \in Y$, with \mathfrak{g} (defined by $\left.\left(E_{G}\right)_{y}\right)$ will be called distinguished isomorphisms.

Therefore, any two distinguished isomorphisms of $\operatorname{ad}\left(E_{G}\right)_{y}$ with \mathfrak{g} differ by an inner automorphism of \mathfrak{g} (defined by some element in G).

Take any quotient $Q \in \mathcal{Q}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$. Let $S \subset \operatorname{ad}\left(E_{G}\right)$ be the subsheaf defined as in (2.2). Let $U \subset Y$ be the nonempty open subset over which S is a subbundle of $\operatorname{ad}\left(E_{G}\right)$.

Lemma 2.1. If there is a nonempty open subset $U^{\prime} \subset U$ such that for any point $y \in U^{\prime}$, there exists a distinguished isomorphism of $\operatorname{ad}\left(E_{G}\right)_{y}$ with \mathfrak{g} that takes S_{y} isomorphically to \mathfrak{p}, then S is a subbundle of $\operatorname{ad}\left(E_{G}\right)$, that is, $U=Y$.

Proof. Let $S^{\prime} \subset \operatorname{ad}\left(E_{G}\right)$ be the (unique) subbundle of rank $\operatorname{dim} P$ that contains S. So S^{\prime} is the inverse image of $\operatorname{Torsion}(Q)$ for the projection in (2.2). For any $y \in Y$, the fiber S_{y}^{\prime} is a subalgebra of $\operatorname{ad}\left(E_{G}\right)$ identified with \mathfrak{p} by (the restriction of) some distinguished isomorphism. Indeed, this follows from the fact that the subvariety of the Grassmannian $\operatorname{Gr}(\operatorname{dim} P, \mathfrak{g})$ (parametrizing all $\operatorname{dim} P$-dimensional
subspaces of \mathfrak{g}), defined by all the conjugations of $\mathfrak{p} \subset \mathfrak{g}$, is the image of G / P in $\operatorname{Gr}(\operatorname{dim} P, \mathfrak{g})$. In particular, it is a complete subvariety. Therefore, if the fiber of a subbundle of $\operatorname{ad}\left(E_{G}\right)$ over the general point is identified with \mathfrak{p} by some distinguished isomorphism, then the fiber over the subbundle over each point of Y has this property.

Since S is left invariant by the action of Γ on ad $\left(E_{G}\right)$, it follows immediately that S^{\prime} is invariant under the action of Γ.

Consequently, S^{\prime} gives a (reduced) Γ-invariant sub-group-scheme

$$
\widetilde{S}^{\prime} \subset \operatorname{Ad}\left(E_{G}\right):=E_{G} \times{ }^{G} G
$$

of the gauge bundle defined by the condition that for any point $y \in Y$, the Lie algebra of $\widetilde{S}_{y}^{\prime}$ coincides with S^{\prime}. Now, \widetilde{S}^{\prime} defines a reduction of structure group

$$
E_{P} \subset E_{G}
$$

to the parabolic subgroup P. For any point $y \in Y$, the subvariety $\left(E_{P}\right)_{y} \subset\left(E_{G}\right)_{y}$ consists of all $z \in\left(E_{G}\right)_{y}$ such that the natural projection of $E_{G} \times G$ to $\operatorname{Ad}\left(E_{G}\right)$ sends $z \times P$ into $\widetilde{S}_{y}^{\prime}$. That this defines a reduction of structure group of E_{G} to P is an immediate consequence of the fact that the normalizer of P in G coincides with P. This reduction E_{P} is Γ-invariant, since S^{\prime} is left invariant under the action Γ.

From the definition of $c\left(E_{G}\right)$ in (2.1) it follows that

$$
\operatorname{deg}\left(\operatorname{ad}\left(E_{G}\right) / S^{\prime}\right)=\operatorname{deg} \sigma^{*} T_{\mathrm{ref}} \geq c\left(E_{G}\right)
$$

where σ is the section $Y \rightarrow E_{G} / P$ defining the reduction E_{P}. Therefore, as

$$
\operatorname{deg}\left(\operatorname{ad}\left(E_{G}\right) / S^{\prime}\right)=\operatorname{deg}\left(\operatorname{ad}\left(E_{G}\right) / S\right)-\operatorname{dim} \operatorname{Torsion}(Q)=c\left(E_{G}\right)-\operatorname{dim} \operatorname{Torsion}(Q)
$$

we have $\operatorname{Torsion}(Q)=0$. This implies that $S^{\prime}=S$, and the proof of the lemma is complete.

Using the above lemma we will construct a closed subscheme of $\mathcal{Q}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$.

3. The subscheme $\mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$

Let $\operatorname{Gr}_{Y}\left(\operatorname{dim} P, \operatorname{ad}\left(E_{G}\right)\right)$ be the Grassmann bundle over Y parametrizing all $\operatorname{dim} P$-dimensional subspaces in the fibers of $\operatorname{ad}\left(E_{G}\right)$. The space of all conjugates of the Lie subalgebra \mathfrak{p} in $\operatorname{ad}\left(E_{G}\right)$ define a subbundle

$$
\begin{equation*}
\operatorname{Gr}_{Y}^{\mathrm{p}} \subset \operatorname{Gr}_{Y}\left(\operatorname{dim} P, \operatorname{ad}\left(E_{G}\right)\right) \tag{3.1}
\end{equation*}
$$

of the fiber bundle. In other words, for any $y \in Y$, a subspace $V \subset \operatorname{ad}\left(E_{G}\right)_{y}$ is in $\operatorname{Gr}_{Y}^{\mathrm{p}}$ if and only if there is a distinguished isomorphism of $\operatorname{ad}\left(E_{G}\right)_{y}$ with \mathfrak{g} that takes \mathfrak{p} isomorphically to V. Therefore, any fiber of the fiber bundle $\mathrm{Gr}_{Y}^{\mathfrak{p}}$ is isomorphic to G / P. In fact, there is a canonical isomorphism

$$
\begin{equation*}
\mathrm{Gr}_{Y}^{\mathrm{p}} \cong E_{G} / P \tag{3.2}
\end{equation*}
$$

Indeed, for any $y \in Y$ and any $z \in\left(E_{G}\right)_{y}$ (recall that $\left(E_{G}\right)_{y}$ parametrizes the distinguished isomorphisms of $\operatorname{ad}\left(E_{G}\right)_{y}$ with $\left.\mathfrak{g}\right)$, the image of \mathfrak{p} in $\operatorname{ad}\left(E_{G}\right)$ by the distinguished isomorphism corresponding to z is a point in the fiber of Gr_{Y}^{p} over y. Since this image subalgebra does not change as y moves over a P-orbit (for the action of P on $\left(E_{G}\right)_{y}$), we get a natural isomorphism of the fiber bundle Gr_{Y}^{p} over X with E_{G} / P.

Note that the action of Γ on E_{G} induces an action of Γ on Gr_{Y}^{p}.
Let

$$
\begin{equation*}
\mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right) \subset \mathcal{Q}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right) \tag{3.3}
\end{equation*}
$$

be the subscheme defined by the Γ-invariant sections of $\mathrm{Gr}_{Y^{\prime}}^{p}$ (defined in (3.1)). So a point of $\mathcal{Q}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$, representing a quotient Q of $\operatorname{ad}\left(E_{G}\right)$, lies in $\mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$ if and only if the corresponding subsheaf S (as in (2.2)) has the property that S is a subbundle of $\operatorname{ad}\left(E_{G}\right)$ and for each point $y \in Y$, there is a distinguished isomorphism of $\operatorname{ad}\left(E_{G}\right)_{y}$ with \mathfrak{g} that takes the fiber S_{y} isomorphically to \mathfrak{p}.

Using Lemma 2.1 it can be shown that $\mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$ is in fact a closed subscheme of $\mathcal{Q}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$. Indeed, if we consider a morphism

$$
f: C \backslash\{p\} \longrightarrow \mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)
$$

where p is a point on a smooth curve C, then using the completeness of $\mathcal{Q}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$ it extends to a morphism $\bar{f}: C \rightarrow \mathcal{Q}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$. Let $U \subset Y$ be the nonempty open subset over which the quotient $\bar{f}(c)$ of $\operatorname{ad}\left(E_{G}\right)$ is locally free. Let

$$
\hat{f}: U \times C \longrightarrow \operatorname{Gr}_{Y}\left(\operatorname{dim} P, \operatorname{ad}\left(E_{G}\right)\right)
$$

be the map defined by \bar{f}. So, $\hat{f}(u, c)$ represents the subspace of $\operatorname{ad}\left(E_{G}\right)_{u}$ defined by $\bar{f}(c)$. Therefore, the map \hat{f} has the property that $\hat{f}(U \times(C \backslash\{p\})) \subset \operatorname{Gr}_{Y}^{p}$. Since $\operatorname{Gr}_{Y}^{p}$ is a complete variety, we conclude that $\hat{f}(U \times C) \subset \operatorname{Gr}_{Y}^{p}$. In particular, we have $U \times\{p\} \subset \operatorname{Gr}_{Y}^{p}$. Now Lemma 2.1 implies that $\bar{f}(p) \in \mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$. Therefore, $\mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$ is closed in $\mathcal{Q}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$.

Take any quotient Q in $\mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$. The action of Γ on Q induces an action on $H^{i}(Y, Q)$ for any $i \geq 0$. Let

$$
H^{i}(Y, Q)^{\Gamma} \subset H^{i}(Y, Q)
$$

be the invariant subspace on which Γ acts trivially.

Proposition 3.1. For any $Q \in \mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$,

$$
\operatorname{dim} G / P \geq \operatorname{dim} H^{0}(Y, Q)^{\Gamma}-\operatorname{dim} H^{1}(Y, Q)^{\Gamma}
$$

where $H^{i}(Y, Q)^{\Gamma}$ is the invariant part.
Proof. Let $\nu: Y \rightarrow \mathrm{Gr}_{Y}^{\mathrm{p}}$ be a section fiber bundle defined in (3.1) (we saw in (3.2) that Gr_{Y}^{p} is naturally identified with $\left.E_{G} / P\right)$. As we saw in the proof of Lemma 2.1, such a section ν defines a reduction of structure group $E_{P} \subset E_{G}$ to P. Note that $\operatorname{ad}\left(E_{G}\right) / \operatorname{ad}\left(E_{P}\right)$ is identified with $\nu^{*} T_{\text {rel }}$, where $T_{\text {rel }}$ is the pullback of the relative tangent bundle for the projection of $\mathrm{Gr}_{Y}^{\mathrm{p}}$ to Y. Therefore, from $[\mathrm{K}, \mathrm{p} .37$, Theorem 2.17.1] it follows immediately that the dimension of the local moduli space, around ν, of sections of $\operatorname{Gr}_{Y}^{\mathfrak{p}}$ is at least

$$
\operatorname{dim} H^{0}\left(Y, \operatorname{ad}\left(E_{G}\right) / \operatorname{ad}\left(E_{P}\right)\right)-\operatorname{dim} H^{1}\left(Y, \operatorname{ad}\left(E_{G}\right) / \operatorname{ad}\left(E_{P}\right)\right)
$$

(Set X and S in [K, p. 37, Theorem 2.17] to be the curve Y, with the identity map of Y as the projection of X to S; note that a morphism $Y / Y \rightarrow \operatorname{Gr}_{Y}^{\mathrm{p}} / Y$ is a section of the fiber bundle Gr_{Y}^{p}.) Similarly, if ν is Γ-invariant, then the local moduli space, around ν, of Γ-invariant sections of $\mathrm{Gr}_{Y}^{\mathfrak{p}}$ is of dimension not less than

$$
\operatorname{dim} H^{0}\left(Y, \operatorname{ad}\left(E_{G}\right) / \operatorname{ad}\left(E_{P}\right)\right)^{\Gamma}-\operatorname{dim} H^{1}\left(Y, \operatorname{ad}\left(E_{G}\right) / \operatorname{ad}\left(E_{P}\right)\right)^{\Gamma}
$$

(see [K, p. 37, Theorem 2.17.1] and [K, p. 35, Theorem 2.15]). To derive this from the previous assertion, note that a Γ-invariant section of $\mathrm{Gr}_{Y}^{\mathfrak{p}}$ is a section of $\mathrm{Gr}_{Y}^{\mathfrak{p}} / \Gamma$ over Y / Γ. The pullback of the relative tangent bundle by the section over Y / Γ defined by the above Γ-invariant section ν coincides with $\phi_{*}\left(\operatorname{ad}\left(E_{G}\right) / \operatorname{ad}\left(E_{P}\right)\right)^{\Gamma}$, where ϕ is the projection of Y to Y / Γ. Since ϕ is a finite map, we have

$$
H^{i}\left(Y / \Gamma, \phi_{*}\left(\operatorname{ad}\left(E_{G}\right) / \operatorname{ad}\left(E_{P}\right)\right)^{\Gamma}\right) \cong H^{i}\left(Y, \operatorname{ad}\left(E_{G}\right) / \operatorname{ad}\left(E_{P}\right)\right)^{\Gamma}
$$

This establishes the above lower bound for the dimension of the local moduli space, around ν, of Γ-invariant sections of $\operatorname{Gr}_{Y}^{p}$. Therefore, for any $Q \in \mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$ we have

$$
\operatorname{dim} T_{Q} \mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right) \geq \operatorname{dim} H^{0}(Y, Q)^{\Gamma}-\operatorname{dim} H^{1}(Y, Q)^{\Gamma}
$$

So, to prove the proposition it suffices to show that $\operatorname{dim} G / P \geq \operatorname{dim} \mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$.
Fix a point $y \in Y$ and consider the map

$$
f_{y}: \mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right) \longrightarrow \mathrm{Gr}:=\operatorname{Gr}\left(\operatorname{dim} P, \operatorname{ad}\left(E_{G}\right)_{y}\right)
$$

to the Grassmannian that sends a quotient Q to the quotient Q_{y} of $\operatorname{ad}\left(E_{G}\right)_{y}$. If $v \in \operatorname{Gr}\left(\operatorname{dim} P, \operatorname{ad}\left(E_{G}\right)_{y}\right)$ and C is an irreducible complete curve in $f_{y}^{-1}(v)$, consider the map

$$
Y \times C \longrightarrow \operatorname{Gr}_{Y}\left(\operatorname{dim} P, \operatorname{ad}\left(E_{G}\right)\right)
$$

to the Grassmann bundle (parametrizing $\operatorname{dim} P$-dimensional subspaces in $\operatorname{ad}\left(E_{G}\right)$) that sends any (z, c) to the fiber at z of the subbundle corresponding to the quotient represented by c. This map is constant on $y \times C$, and hence using the rigidity lemma we conclude that this map factors through the projection of $Y \times C$ to Y (see [MS, pp. 254-255]). Therefore, all the fibers of f_{y} are of dimension zero.

The image of f_{y} is contained in the orbit of \mathfrak{p} under the adjoint action of G on \mathfrak{g} (recall the condition that any fiber of S in (2.2) is identified with \mathfrak{p} by some distinguished isomorphism). This implies that $\operatorname{dim} \operatorname{Image}\left(f_{y}\right) \leq \operatorname{dim} G / P$. Consequently, we have $\operatorname{dim} G / P \geq \operatorname{dim} \mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$, and the proof of the proposition is complete.

Set $X:=Y / \Gamma$, and denote by ϕ the projection of Y. Let $R \subset Y$ be the collection of all points where the map ϕ is ramified, that is, all points with nontrivial isotropy. For any $y \in R$, the isotropy subgroup $\Gamma_{y} \subset \Gamma$ is a cyclic subgroup, which acts faithfully on $T_{y} Y$. Let $\tau_{y} \in \Gamma_{y}$ be the generator that acts as multiplication by $\exp \left(2 \pi \sqrt{-1} / n_{y}\right)$, where $n_{y}=\# \Gamma_{y}$. Consider the action of τ_{y} on the fiber $\operatorname{ad}\left(E_{G}\right)_{y}$. The eigenvalues are of the form $\exp \left(2 \pi \sqrt{-1} m / n_{y}\right), m \in\left[0, n_{y}-1\right]$. If $n_{y}>m_{1}^{y} \geq m_{2}^{y} \geq \ldots \geq m_{\operatorname{dim} \mathfrak{g}}^{y} \geq 0$ are such that $\exp \left(2 \pi \sqrt{-1} m_{i}^{y} / n_{y}\right), i \in[1, \operatorname{dim} \mathfrak{g}]$, are the eigenvalues, then set

$$
N_{y}:=\sum_{i=1}^{\operatorname{dim} G / P} m_{i}^{y}
$$

Theorem 3.2. The bound $c\left(E_{G}\right)$ defined in (2.1) satisfies the inequality

$$
c\left(E_{G}\right) \leq g_{X} \# \Gamma \cdot \operatorname{dim} G / P+\sum_{y \in R} N_{y}
$$

where $g_{X}=\operatorname{genus}(X)$ and $\# \Gamma$ is the order of Γ.
Proof. This follows from Proposition 3.1 and the Riemann-Roch formula for the Euler characteristic $\operatorname{dim} H^{0}(Y, Q)^{\Gamma}-\operatorname{dim} H^{1}(Y, Q)^{\Gamma}$.

For any $Q \in \mathcal{Q}_{P}^{\Gamma}\left(\operatorname{ad}\left(E_{G}\right)\right)$ we have $H^{i}(Y, Q)^{\Gamma} \cong H^{i}\left(X,\left(\phi_{*} Q\right)^{\Gamma}\right)$, where $\left(\phi_{*} Q\right)^{\Gamma} \subset$ $\phi_{*} Q$ is the subsheaf on which Γ acts trivially.

For any point $y \in R$, consider the induced action of Γ_{y} on the fiber Q_{y}. Let $\exp \left(2 \pi \sqrt{-1} l_{i}^{y} / n_{y}\right), i \in[1, \operatorname{dim} G / P]$, be the eigenvalues, where n_{y} is defined above
and $l_{i}^{y} \in\left[0, n_{y}-1\right]$. We have

$$
\operatorname{deg} Q=\# \Gamma \cdot \operatorname{deg}\left(\phi_{*} Q\right)^{\Gamma}+\sum_{y \in R} \sum_{i=1}^{\operatorname{dim} G / P} l_{i}^{y}
$$

(see [B, p. 318, (3.10)]). Therefore,

$$
\operatorname{deg}\left(\phi_{*} Q\right)^{\Gamma}=\frac{\operatorname{deg} Q-\sum_{y \in R} \sum_{i=1}^{\operatorname{dim} G / P} l_{i}^{y}}{\# \Gamma} \geq \frac{\operatorname{deg} Q-\sum_{y \in R} N_{y}}{\# \Gamma}
$$

as $\left\{l_{i}^{y}\right\}_{i=1}^{\operatorname{dim} G / P}$ is a subcollection of $\left\{m_{i}^{y}\right\}_{i=1}^{\operatorname{dim} G}$ for each $y \in R$. Now, using the Riemann-Roch formula for $\left(\phi_{*} Q\right)^{\Gamma}$ we have

$$
\operatorname{dim} H^{0}\left(X,\left(\phi_{*} Q\right)^{\Gamma}\right)-\operatorname{dim} H^{1}\left(X,\left(\phi_{*} Q\right)^{\Gamma}\right) \geq\left(1-g_{X}\right) \operatorname{dim} G / P+\frac{\operatorname{deg} Q}{\# \Gamma}-\sum_{y \in R} \frac{N_{y}}{\# \Gamma}
$$

Combining this with Proposition 3.1 gives

$$
\operatorname{dim} G / P \geq\left(1-g_{X}\right) \operatorname{dim} G / P+\frac{\operatorname{deg} Q}{\# \Gamma}-\sum_{y \in R} \frac{N_{y}}{\# \Gamma}
$$

In other words, $\operatorname{deg} Q \leq g_{X} \# \Gamma \cdot \operatorname{dim} G / P+\sum_{y \in R} N_{y}$. Since $c\left(E_{G}\right)=\operatorname{deg}(Q)$, the proof of the theorem is complete.

References

[B] Biswas, I., Parabolic bundles as orbifold bundles, Duke Math. J. 88 (1997), 305-325.
[G] Grothendieck, A., Techniques de construction et théorèmes d'existence en géométrie algébrique. IV. Les schémas de Hilbert, in Séminaire Bourbaki, Vol. 6, Exp. No. 221, pp. 249-276, Soc. Math. France, Paris, 1995.
[HN] Holla, Y. I. and Narasimhan, M. S., A generalisation of Nagata's theorem on ruled surfaces, Compositio Math. 127 (2001), 321-332.
[K] Kollár, J., Rational Curves on Algebraic Varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete 32, Springer-Verlag, Berlin, 1996.
[MS] Mukai, S. and SakaI, F., Maximal subbundles of vector bundles on a curve, Manuscripta Math. 52 (1985), 251-256.

Received May 27, 2003
in revised form August 10, 2003

Usha N. Bhosle
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Mumbai 400005
India
email: usha@math.tifr.res.in
Indranil Biswas
School of Mathematics
Tata Institute of Fundamental Research
Homi Bhabha Road
Mumbai 400005
India
email: indranil@math.tifr.res.in

