Tensor products of direct sums

Bogdan C. Grecu and Raymond A. Ryan

Abstract

A similar formula to the one established by Ansemil and Floret for symmetric tensor products of direct sums is proved for alternating and Jacobian tensor products. It is then applied to stable spaces where a number of isomorphisms between spaces of tensors or multilinear forms are unveiled. A connection between these problems and irreducible group representations is made.

Preliminaries

The n-fold tensor product of n vector spaces $\left\{E_{i}\right\}_{i=1}^{n}$ is defined recursively as

$$
E_{1} \otimes \ldots \otimes E_{n-1} \otimes E_{n}=\left(E_{1} \otimes \ldots \otimes E_{n-1}\right) \otimes E_{n}
$$

Let E and F be normed spaces. A norm μ on $E \otimes F$ is said to be a reasonable crossnorm if
(1) $\mu(x \otimes y) \leq\|x\|\|y\|$ for every $x \in E$ and $y \in F$;
(2) the linear functional $\varphi \otimes \psi$ on $E \otimes_{\mu} F$ is bounded and $\|\varphi \otimes \psi\| \leq\|\varphi\|\|\psi\|$ for every $\varphi \in E^{*}$ and $\psi \in F^{*}$.

The projective and the injective norms π and ε satisfy these conditions and it can be shown that a norm μ on $E \otimes F$ is a reasonable crossnorm if and only if $\varepsilon(u) \leq \mu(u) \leq \pi(u)$ for every $u \in E \otimes F$ (see [2] and [6] for details).

A uniform crossnorm is an assignment to each pair E and F of Banach spaces of a reasonable crossnorm on $E \otimes F$ which behaves well with respect to the formation of tensor product of operators, in the sense that if $S: E \rightarrow X$ and $T: F \rightarrow Y$ are bounded linear operators and the spaces $E \otimes F$ and $X \otimes Y$ are endowed with the assigned norms, then $S \otimes T: E \otimes F \rightarrow X \otimes Y$, defined by $S \otimes T(x \otimes y)=S x \otimes T y$, is bounded and $\|S \otimes T\| \leq\|S\|\|T\|$.

If for all normed spaces $\left\{E_{i}\right\}_{i=1}^{n}$ and all k with $1 \leq k \leq n$, the norm μ satisfies

$$
\left(E_{1} \otimes_{\mu} \ldots \otimes_{\mu} E_{k}\right) \otimes_{\mu}\left(E_{k+1} \otimes_{\mu} \ldots \otimes_{\mu} E_{n}\right)=E_{1} \otimes_{\mu} \ldots \otimes_{\mu} E_{n}
$$

then we say that μ induces a tensor topology. The projective and the injective norms π and ε satisfy this property. Tensors topologies are defined in the wider context of locally convex spaces, as explained in [1].

We say that a tensor topology τ is symmetric if the mapping

$$
x_{1} \otimes \ldots \otimes x_{n} \longmapsto\left(x_{1} \otimes \ldots \otimes x_{n}\right)^{\sigma}=x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(n)}
$$

extended by linearity to the whole of $\bigotimes_{\tau}^{n} E$, is continuous for every σ in S_{n}, where S_{n} is the group of permutations of the set $\{1,2, \ldots, n\}$. In particular, if μ is a symmetric uniform crossnorm, i.e. $\mu\left(x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(n)}\right)=\mu\left(x_{1} \otimes \ldots \otimes x_{n}\right)$ for every σ in S_{n}, then the topology induced by μ is a symmetric tensor topology.

A locally convex space E is stable if E is topologically isomorphic to its square $E \oplus E=E^{2}$. Díaz and Dineen [3], working with a stable locally convex space E, proved that there exists an isomorphism between the spaces of continuous n-linear forms $\mathcal{L}\left({ }^{n} E\right)$ and symmetric n-linear forms $\mathcal{L}_{s}\left({ }^{n} E\right)$ (see also [4]). Later, Ansemil and Floret [1] dealt with the predual problem. First they establish a general formula for the symmetric n-fold tensor product of a direct sum of spaces:

$$
\bigotimes_{s}^{n}\left(F_{1} \oplus F_{2}\right) \simeq \bigoplus_{k=0}^{n}\left(\bigotimes_{s}^{k} F_{1}\right) \otimes\left(\bigotimes_{s}^{n-k} F_{2}\right)
$$

and then they use it for stable spaces to show that for all tensor topologies, the full n-fold tensor product of a stable space E is isomorphic to its symmetric n-fold tensor product.

In this note we prove similar formulas for the alternating n-fold tensor product, analyse in detail the 3 -fold tensor product and deduce a formula for the Jacobian tensor product. We apply these results to stable spaces, obtaining a number of isomorphisms. Finally we make a connection between these problems and irreducible group representations.

1. Alternating tensors

The antisymmetrisation operator $A: \otimes^{n} E \rightarrow \otimes^{n} E$ is defined as

$$
A\left(x_{1} \otimes \ldots \otimes x_{n}\right)=x_{1} \otimes_{a} \ldots \otimes_{a} x_{n}=\frac{1}{n!} \sum_{\alpha \in S_{n}} \chi(\alpha) x_{\alpha(1)} \otimes \ldots \otimes x_{\alpha(n)}
$$

for elementary tensors and extended by linearity to the whole of $\otimes^{n} E$, with $\chi(\alpha)$ denoting the sign of a permutation α. The range of A, that we denote by $\bigotimes_{a}^{n} E$, is
called the alternating n-fold tensor product of E. We want to show that a similar result to that of Ansemil and Floret holds for the alternating tensor product, that is if the vector space E is the direct sum of two subspaces F_{1} and F_{2} then

$$
\bigotimes_{a}^{n} E \simeq \bigoplus_{k=0}^{n}\left(\bigotimes_{a}^{k} F_{1}\right) \otimes\left(\bigotimes_{a}^{n-k} F_{2}\right)
$$

The proof in [1], which uses the fact that the n-fold symmetric tensor product is the linear span of the vectors $\bigotimes^{n} x=\bigotimes_{s}^{n} x$, with x in E, is no longer valid, since $\otimes_{a}^{n} x=0$ for all x.

Clearly, as k ranges from 0 to n, all of $\left(\otimes_{a}^{k} F_{1}\right) \otimes\left(\otimes_{a}^{n-k} F_{2}\right)$ are subspaces of $\otimes^{n} E$ and their sum is direct in $\otimes^{n} E$.

The elements of $\left(\otimes_{a}^{k} F_{1}\right) \otimes\left(\bigotimes_{a}^{n-k} F_{2}\right)$ are not alternating tensors, but can be antisymmetrised. Thus, if $x_{1} \otimes_{a} \ldots \otimes_{a} x_{k}$ and $x_{k+1} \otimes_{a} \ldots \otimes_{a} x_{n}$ are elements of $\otimes_{a}^{k} F_{1}$ and $\bigotimes_{a}^{n-k} F_{2}$, respectively, then

$$
\begin{aligned}
& A\left(\left(x_{1} \otimes_{a} \ldots \otimes_{a} x_{k}\right) \otimes\left(x_{k+1} \otimes_{a} \cdots \otimes_{a} x_{n}\right)\right) \\
& \quad=A\left(\frac{1}{k!(n-k)!} \sum_{\tau, \varrho} \chi(\tau) \chi(\varrho) x_{\tau(1)} \otimes \ldots \otimes x_{\tau(k)} \otimes x_{\varrho(k+1)} \otimes \ldots \otimes x_{\varrho(n)}\right)
\end{aligned}
$$

where τ ranges over S_{k} and ϱ over the set of all permutations of $\{k+1, \ldots, n\}$. Let ($\tau \varrho$) be the element of S_{n} defined by

$$
(\tau \varrho)(i)= \begin{cases}\tau(i), & 1 \leq i \leq k \\ \varrho(i), & k+1 \leq i \leq n\end{cases}
$$

It is easy to see that $\chi(\tau \varrho)=\chi(\tau) \chi(\varrho)$. Fix now τ and ϱ. As σ ranges over S_{n}, so does $\sigma(\tau \varrho)$. Therefore

$$
\begin{aligned}
& A\left(\left(x_{1} \otimes_{a} \ldots \otimes_{a} x_{k}\right) \otimes\left(x_{k+1} \otimes_{a} \ldots \otimes_{a} x_{n}\right)\right) \\
&= \frac{1}{n!} \frac{1}{k!(n-k)!} \sum_{\sigma \in S_{n}} \sum_{\tau, \varrho} \chi(\sigma) \chi(\tau \varrho) x_{\sigma(\tau \varrho)(1)} \otimes \ldots \otimes x_{\sigma(\tau \varrho)(k)} \\
& \otimes x_{\sigma(\tau \varrho)(k+1)} \otimes \ldots \otimes x_{\sigma(\tau \varrho)(n)} \\
&= \frac{1}{k!(n-k)!} \sum_{\tau, \varrho} \frac{1}{n!} \sum_{\alpha \in S_{n}} \chi(\alpha) x_{\alpha(1)} \otimes \ldots \otimes x_{\alpha(k)} \otimes x_{\alpha(k+1)} \otimes \ldots \otimes x_{\alpha(n)} \\
&= \frac{1}{k!(n-k)!} \sum_{\tau, \varrho} x_{1} \otimes_{a} \ldots \otimes_{a} x_{n} \\
&= x_{1} \otimes_{a} \cdots \otimes_{a} x_{n}
\end{aligned}
$$

Now let us try to "decompose" elementary tensors in $\bigotimes_{a}^{n} E$. We use the notation of [1]:

$$
S_{n}^{k}=\left\{\eta \in S_{n}:\left.\eta\right|_{\{1, \ldots, k\}} \text { and }\left.\eta\right|_{\{k+1, \ldots, n\}} \text { are increasing }\right\}
$$

and

$$
\begin{aligned}
& T_{n}=\{f: f:\{1,2, \ldots, n\} \rightarrow\{1,2\}\}, \\
& T_{n}^{k}=\left\{f: f \in T_{n} \text { and } \operatorname{card} f^{-1}(1)=k\right\}
\end{aligned}
$$

If P_{1} and P_{2} are the projections of E onto F_{1} and F_{2} we can write

$$
\begin{aligned}
x_{1} \otimes_{a} \ldots \otimes_{a} x_{n} & =\left(P_{1} x_{1}+P_{2} x_{1}\right) \otimes_{a} \cdots \otimes_{a}\left(P_{1} x_{n}+P_{2} x_{n}\right) \\
& =\sum_{f \in T_{n}} P_{f(1)} x_{1} \otimes_{a} \cdots \otimes_{a} P_{f(n)} x_{n}=\sum_{k=0}^{n} \sum_{f \in T_{n}^{k}} P_{f(1)} x_{1} \otimes_{a} \cdots \otimes_{a} P_{f(n)} x_{n} .
\end{aligned}
$$

For f in T_{n}^{k} let $f^{-1}(1)=\left\{i_{1}, \ldots, i_{k}\right\}$ with $i_{1} \leq i_{2} \leq \ldots \leq i_{k}$ and $f^{-1}(2)=\left\{i_{k+1}, \ldots, i_{n}\right\}$ with $i_{k+1} \leq \ldots \leq i_{n}$. Then the permutation η with $\eta(l)=i_{l}$ for $1 \leq l \leq n$ is an element of S_{n}^{k}. On the other hand, for every η in S_{n}^{k}, we can define a function $f:\{1, \ldots, n\} \rightarrow$ $\{1,2\}$ such that $f^{-1}(1)=\{\eta(1), \ldots, \eta(k)\}$ and $f^{-1}(2)=\{\eta(k+1), \ldots, \eta(n)\}$, so there is a one-to-one correspondence between S_{n}^{k} and T_{n}^{k}. Thus

$$
\begin{aligned}
x_{1} \otimes_{a} \ldots \otimes_{a} x_{n}= & \sum_{k=0}^{n} \sum_{\eta \in S_{n}^{k}} \chi(\eta) P_{1} x_{\eta(1)} \otimes_{a} \ldots \otimes_{a} P_{1} x_{\eta(k)} \otimes_{a} P_{2} x_{\eta(k+1)} \otimes_{a} \ldots \otimes_{a} P_{2} x_{\eta(n)} \\
= & \sum_{k=0}^{n} \sum_{\eta \in S_{n}^{k}} \chi(\eta) A\left(\left(P_{1} x_{\eta(1)} \otimes_{a} \ldots \otimes_{a} P_{1} x_{\eta(k)}\right)\right. \\
& \left.\otimes\left(P_{2} x_{\eta(k+1)} \otimes_{a} \ldots \otimes_{a} P_{2} x_{\eta(n)}\right)\right) \\
= & A\left(\sum_{k=0}^{n} \sum_{\eta \in S_{n}^{k}} \chi(\eta) \frac{1}{k!(n-k)!} \sum_{\tau, \varrho} \chi(\tau) \chi(\varrho) P_{1} x_{\tau \eta(1)} \otimes \ldots \otimes_{1} x_{\tau \eta(k)}\right. \\
& \left.\otimes P_{2} x_{\varrho \eta(k+1)} \otimes \ldots \otimes P_{2} x_{\varrho \eta(n)}\right)
\end{aligned}
$$

where τ and ϱ range over the set of all permutations of $\{\eta(1), \ldots, \eta(k)\}$ and of $\{\eta(k+1), \ldots, \eta(n)\}$, respectively, for every fixed η in S_{n}^{k}. Certainly ($\left.\tau \varrho\right) \eta$ is an element of S_{n} and

$$
\chi((\tau \varrho) \eta)=\chi(\tau) \chi(\varrho) \chi(\eta)
$$

Conversely, if σ is an element of S_{n}, let η be the permutation in S_{n}^{k} such that $\{\eta(1), \ldots, \eta(k)\}=\{\sigma(1), \ldots, \sigma(k)\}$ and $\{\eta(k+1), \ldots, \eta(n)\}=\{\sigma(k+1), \ldots, \sigma(n)\}$. If we put $\tau(\eta(\eta))=\sigma(l)$ for $1 \leq l \leq k$ and $\varrho(\eta(j))=\sigma(j)$ for $k+1 \leq j \leq n$ then τ and ϱ are permutations of $\{\eta(1), \ldots, \eta(k)\}$ and $\{\eta(k+1), \ldots, \eta(n)\}$, respectively, and $\sigma=(\tau \varrho) \eta$. We can then write

$$
\begin{aligned}
x_{1} \otimes_{a} \ldots \otimes_{a} x_{n}= & A\left(\sum_{k=0}^{n}\binom{n}{k} \frac{1}{n!} \sum_{\sigma \in S_{n}} \chi(\sigma) P_{1} x_{\sigma(1)} \otimes \ldots \otimes P_{1} x_{\sigma(k)}\right. \\
& \left.\otimes P_{2} x_{\sigma(k+1)} \otimes \ldots \otimes P_{2} x_{\sigma(n)}\right) \\
= & A\left(\sum_{k=0}^{n}\binom{n}{k}\left(\bigotimes^{k} P_{1}\right) \otimes\left(\bigotimes^{n-k} P_{2}\right)\left(x_{1} \otimes_{a} \ldots \otimes_{a} x_{n}\right)\right)
\end{aligned}
$$

Now define $Q_{k}: \otimes^{n} E \rightarrow\left(\otimes^{k} F_{1}\right) \otimes\left(\otimes^{n-k} F_{2}\right)$ by $Q_{k}=\binom{n}{k}\left(\otimes^{k} P_{1}\right) \otimes\left(\otimes^{n-k} P_{2}\right)$. As is easily seen from the calculations above

$$
\begin{aligned}
Q_{k}\left(x_{1} \otimes_{a} \ldots \otimes_{a} x_{n}\right)= & \sum_{\eta \in S_{n}^{k}} \chi(\eta)\left(P_{1} x_{\eta(1)} \otimes_{a} \ldots \otimes_{a} P_{1} x_{\eta(k)}\right) \\
& \otimes\left(P_{2} x_{\eta(k+1)} \otimes_{a} \ldots \otimes_{a} P_{2} x_{n(n)}\right)
\end{aligned}
$$

therefore Q_{k} maps $\bigotimes_{a}^{n} E$ into $\left(\otimes_{a}^{k} F_{1}\right) \otimes\left(\otimes_{a}^{n-k} F_{2}\right)$. We are now ready to prove the announced result.

Theorem 1. Let E be a vector space such that $E=F_{1} \oplus F_{2}$. Then the linear mapping

$$
Q: \bigotimes_{a}^{n} E \rightarrow \bigoplus_{k=0}^{n}\left(\bigotimes_{a}^{k} F_{1}\right) \otimes\left(\bigotimes_{a}^{n-k} F_{2}\right)
$$

defined by $Q(u)=\oplus_{k=0}^{n} Q_{k}(u)$ for all u in $\bigotimes_{a}^{n} E$ is an isomorphism, its inverse being the restriction of the antisymmetrisation operator A to $\oplus_{k=0}^{n}\left(\otimes_{a}^{k} F_{1}\right) \otimes\left(\otimes_{a}^{n-k} F_{2}\right)$.

Proof. Since for elementary tensors we have

$$
x_{1} \otimes_{a} \ldots \otimes_{a} x_{n}=A\left(\sum_{k=0}^{n} Q_{k}\left(x_{1} \otimes_{a} \ldots \otimes_{a} x_{n}\right)\right)
$$

we obtain

$$
u=A(Q(u))
$$

for every u in $\otimes_{a}^{n} E$.

To prove that $Q A$ is the identity on $\oplus_{k=0}^{n}\left(\otimes_{a}^{k} F_{1}\right) \otimes\left(\otimes_{a}^{n-k} F_{2}\right)$, let w_{k} be elements of $\left(\otimes_{a}^{k} F_{1}\right) \otimes\left(\otimes_{a}^{n-k} F_{2}\right)$. Because of the linearity, it is enough to work with elementary tensors w_{k}. Fix a value between 0 and n and call it l. Let $w_{l}=$ $\left(x_{1} \otimes_{a} \ldots \otimes_{a} x_{l}\right) \otimes\left(x_{l+1} \otimes_{a} \ldots \otimes_{a} x_{n}\right)$. Then

$$
\begin{aligned}
Q\left(A\left(w_{l}\right)\right) & =\sum_{k=0}^{n} Q_{k}\left(A\left(w_{l}\right)\right) \\
& =\sum_{k=0}^{n}\binom{n}{k}\left(\bigotimes^{k} P_{2}\right) \otimes\left(\otimes^{n-k} P_{2}\right)\left(x_{1} \otimes_{a} \ldots \otimes_{a} x_{l} \otimes_{a} x_{l+1} \otimes_{a} \ldots \otimes_{a} x_{n}\right) \\
& =\sum_{k=0}^{n}\binom{n}{k} \frac{1}{n!} \sum_{\sigma \in S_{n}} \chi(\sigma) P_{1} x_{\sigma(1)} \otimes \ldots \otimes P_{1} x_{\sigma(k)} \otimes P_{2} x_{\sigma(k+1)} \otimes \ldots \otimes P_{2} x_{\sigma(n)} .
\end{aligned}
$$

If $k<l$ then $\{\sigma(k+1), \ldots, \sigma(n)\}$ contains at least one natural number j with $1 \leq j \leq l$ and thus $P_{1} x_{\sigma(1)} \otimes \ldots \otimes P_{1} x_{\sigma(k)} \otimes P_{2} x_{\sigma(k+1)} \otimes \ldots \otimes P_{2} x_{\sigma(n)}=0$ since $P_{2} x_{j}=0$. In the same way, all the terms corresponding to $k>l$ will vanish and so

$$
Q\left(A\left(w_{l}\right)\right)=\binom{n}{l} \frac{1}{n!} \sum_{\sigma \in S_{n}} \chi(\sigma) P_{1} x_{\sigma(1)} \otimes \ldots \otimes P_{1} x_{\sigma(l)} \otimes P_{2} x_{\sigma(l+1)} \otimes \ldots \otimes P_{2} x_{\sigma(n)}
$$

It is clear now that the terms of the sum will be 0 unless $\{\sigma(1), \ldots, \sigma(l)\}=\{1, \ldots, l\}$ and $\{\sigma(l+1), \ldots, \sigma(n)\}=\{l+1, \ldots, n\}$, in which case $\sigma=(\tau \varrho)$ with τ and ϱ permutations of $\{1, \ldots, l\}$ and $\{l+1, \ldots, n\}$ respectively. Thus

$$
\begin{aligned}
Q\left(A\left(w_{l}\right)\right) & =\binom{n}{l} \frac{1}{n!} \sum_{\tau, \varrho} \chi(\tau) \chi(\varrho) x_{\tau(1)} \otimes \ldots \otimes x_{\tau(l)} \otimes x_{\varrho(l+1)} \otimes \ldots \otimes x_{\varrho(n)} \\
& =\binom{n}{l} \frac{1}{n!}\left(\sum_{\tau} \chi(\tau) x_{\tau(1)} \otimes \ldots \otimes x_{\tau(l)}\right) \otimes\left(\sum_{\varrho} \chi(\varrho) x_{\varrho(l+1)} \otimes \ldots \otimes x_{\varrho(n)}\right) \\
& =\binom{n}{l} \frac{1}{n!} l!(n-l)!\left(x_{1} \otimes_{a} \ldots \otimes_{a} x_{l}\right) \otimes\left(x_{l+1} \otimes_{Q} \ldots \otimes_{a} x_{n}\right) \\
& =w_{l}
\end{aligned}
$$

and so, by linearity

$$
Q\left(A\left(\sum_{l=0}^{n} w_{l}\right)\right)=\sum_{l=0}^{n} w_{l}
$$

for all w_{l} in $\left(\otimes_{a}^{l} F_{1}\right) \otimes\left(\otimes_{a}^{n-l} F_{2}\right)$ and all $0 \leq l \leq n$. Therefore Q is an isomorphism.

Remark. By induction the result can be extended for a finite direct sum of subspaces:

2. Jacobian tensors

The space $E \otimes E$ is the direct sum of $E \otimes_{s} E$ and $E \otimes_{a} E$, an element $x \otimes y$ of $E \otimes E$ being expressed uniquely as a sum of elements of $E \otimes_{s} E$ and $E \otimes_{a} E$:

$$
x \otimes y=x \otimes_{s} y+x \otimes_{a} y
$$

When the order of the tensor product increases, more components of an elementary tensor will come into play. When $n=3$ we have to deal with a third component, $J(x \otimes y \otimes z)$, such that

$$
x \otimes y \otimes z=x \otimes_{s} y \otimes_{s} z+x \otimes_{a} y \otimes_{a} z+J(x \otimes y \otimes z)
$$

Thus

$$
J(x \otimes y \otimes z)=\frac{1}{3}(2 x \otimes y \otimes z-y \otimes z \otimes x-z \otimes x \otimes y)
$$

and it is easy to see that J is a projection which satisfies the identity

$$
J(x \otimes y \otimes z)+J(y \otimes z \otimes x)+J(z \otimes x \otimes y)=0
$$

for which reason we call the element $J(x \otimes y \otimes z)$ the Jacobian component of $x \otimes y \otimes z$ and the space $J\left(\otimes^{3} E\right)$ the subspace of Jacobian tensors. We will occasionally denote $J(x \otimes y \otimes z)$ by $x \otimes_{J} y \otimes_{J} z$ and $J\left(\otimes^{3} E\right)$ by $\otimes_{J}^{3} E$. We can then write

$$
\bigotimes^{3} E=\left(\bigotimes_{s}^{3} E\right) \oplus\left(\bigotimes_{a}^{3} E\right) \oplus\left(\bigotimes_{J}^{3} E\right)
$$

Our goal is to find a formula for $\otimes_{J}^{3}\left(F_{1} \oplus F_{2}\right)$. Unlike the case for the symmetric and antisymmetric tensors, if σ is a permutation of $\{x, y, z\}$ there is no way of expressing the relation between $x \otimes_{J} y \otimes_{J} z$ and $\sigma(x) \otimes_{J} \sigma(y) \otimes_{J} \sigma(z)$ without using other terms involving at least one more permutation. It is then expected that we will encounter some difficulties and that the formula will not be as "uniform" as for the symmetric or alternating case.

Let us write $x_{1}=P_{1} x$ and $x_{2}=P_{2} x$ for an element x in E. We have

$$
\begin{aligned}
x \otimes_{J} y \otimes_{J} z= & x_{1} \otimes_{J} y_{1} \otimes_{J} z_{1} \\
& +x_{1} \otimes_{J} y_{1} \otimes_{J} z_{2}+x_{1} \otimes_{J} y_{2} \otimes_{J} z_{1}+x_{2} \otimes_{J} y_{1} \otimes_{J} z_{1} \\
& +x_{1} \otimes_{J} y_{2} \otimes_{J} z_{2}+x_{2} \otimes_{J} y_{1} \otimes_{J} z_{2}+x_{2} \otimes_{J} y_{2} \otimes_{J} z_{1} \\
& +x_{2} \otimes_{J} y_{2} \otimes_{J} z_{2} .
\end{aligned}
$$

Now we notice that each of the terms on the second line in the formula above is the Jacobian tensor product of two elements of F_{1} and one element of F_{2} and, using the Jacobian formula, their sum can be expressed as

$$
J\left(x_{1} \otimes y_{1} \otimes z_{2}-z_{1} \otimes x_{1} \otimes y_{2}+x_{2} \otimes y_{1} \otimes z_{1}-y_{2} \otimes z_{1} \otimes x_{1}\right)
$$

Consider the projection $Q_{1}^{a}: \otimes^{3} E \rightarrow\left(F_{1} \otimes F_{1}\right) \otimes F_{2}$ defined by

$$
Q_{1}^{a}(x \otimes y \otimes z)=x_{1} \otimes y_{1} \otimes z_{2}-z_{1} \otimes x_{1} \otimes y_{2}
$$

It is easy to see that

$$
Q_{1}^{a}\left(x \otimes_{J} y \otimes_{J} z\right)=x_{1} \otimes y_{1} \otimes z_{2}-z_{1} \otimes x_{1} \otimes y_{2}
$$

The same thing is true for $Q_{1}^{b}: \otimes^{3} E \rightarrow\left(F_{1} \otimes F_{1}\right) \otimes F_{2}$ defined by

$$
Q_{1}^{b}(x \otimes y \otimes z)=y_{1} \otimes z_{1} \otimes x_{2}-z_{1} \otimes x_{1} \otimes y_{2}
$$

and thus

$$
\begin{aligned}
J\left(x_{1} \otimes y_{1} \otimes z_{2}-z_{1} \otimes x_{1} \otimes y_{2}+x_{2} \otimes\right. & \left.y_{1} \otimes z_{1}-y_{2} \otimes z_{1} \otimes x_{1}\right) \\
& =J\left(Q_{1}^{a}\left(x \otimes_{J} y \otimes_{J} z\right)+\left[Q_{1}^{b}\left(x \otimes_{J} y \otimes_{J} z\right)\right]^{(3,1,2)}\right)
\end{aligned}
$$

where $(x \otimes y \otimes z)^{(3,1,2)}=z \otimes x \otimes y$.
In the same way, working with the projections Q_{2}^{a} and Q_{2}^{b} of $\otimes^{3} E$ onto $F_{1} \otimes$ $\left(F_{2} \otimes F_{2}\right)$, defined by

$$
\begin{aligned}
& Q_{2}^{a}\left(x \otimes_{J} y \otimes_{J} z\right)=x_{1} \otimes y_{2} \otimes z_{2}-y_{1} \otimes z_{2} \otimes x_{2}, \\
& Q_{2}^{b}\left(x \otimes_{J} y \otimes_{J} z\right)=z_{1} \otimes x_{2} \otimes y_{2}-y_{1} \otimes z_{2} \otimes x_{2},
\end{aligned}
$$

we obtain

$$
\begin{aligned}
x_{1} \otimes_{J} y_{2} \otimes_{J} z_{2}+ & x_{2} \otimes_{J} y_{1} \otimes_{J} z_{2}+x_{2} \otimes_{J} y_{2} \otimes_{J} z_{1} \\
& =J\left(x_{1} \otimes y_{2} \otimes z_{2}-y_{1} \otimes z_{2} \otimes x_{2}+x_{2} \otimes y_{2} \otimes z_{1}-z_{2} \otimes x_{2} \otimes y_{1}\right) \\
& =J\left(Q_{2}^{a}\left(x \otimes_{J} y \otimes_{J} z\right)+\left[Q_{2}^{b}\left(x \otimes_{J} y \otimes_{J} z\right)\right]^{(2,3,1)}\right)
\end{aligned}
$$

with $(x \otimes y \otimes z)^{(2,3,1)}=y \otimes z \otimes x$.
Defining $Q_{0}(x \otimes y \otimes z)=x_{1} \otimes y_{1} \otimes z_{1}$ and $Q_{3}(x \otimes y \otimes z)=x_{2} \otimes y_{2} \otimes z_{2}$ and noticing that

$$
\begin{aligned}
& Q_{0}\left(x \otimes_{J} y \otimes_{J} z\right)=x_{1} \otimes_{J} y_{1} \otimes_{J} z_{1}, \\
& Q_{3}\left(x \otimes_{J} y \otimes_{J} z\right)=x_{2} \otimes_{J} y_{2} \otimes_{J} z_{2},
\end{aligned}
$$

we have

$$
\begin{aligned}
x \otimes_{J} y \otimes_{J} z= & Q_{0}\left(x \otimes_{J} y \otimes_{J} z\right) \\
& +J\left(Q_{1}^{a}\left(x \otimes_{J} y \otimes_{J} z\right)+\left[Q_{1}^{b}\left(x \otimes_{J} y \otimes_{J} z\right)\right]^{(3,1,2)}\right) \\
& +J\left(Q_{2}^{a}\left(x \otimes_{J} y \otimes_{J} z\right)+\left[Q_{2}^{b}\left(x \otimes_{J} y \otimes_{J} z\right)\right]^{(2,3,1)}\right) \\
& +Q_{3}\left(x \otimes_{J} y \otimes_{J} z\right) .
\end{aligned}
$$

Let $Q_{1}=Q_{1}^{a}+\left(Q_{1}^{b}\right)^{(3,1,2)}$ and $Q_{2}=Q_{2}^{a}+\left(Q_{2}^{b}\right)^{(2,3,1)}$.
Theorem 2. Let E be a vector space such that $E=F_{1} \oplus F_{2}$. Then the linear mapping

$$
Q: \bigotimes_{J}^{3} E \longrightarrow\left(\bigotimes_{J}^{3} F_{1}\right) \oplus\left(\left(F_{1} \otimes F_{1}\right) \otimes F_{2}\right)^{2} \oplus\left(F_{1} \otimes\left(F_{2} \otimes F_{2}\right)\right)^{2} \oplus\left(\bigotimes_{J}^{3} F_{2}\right)
$$

defined by $Q(u)=\oplus_{k=0}^{3} Q_{k}(u)$ for all u in $\otimes_{J}^{3} E$, is an isomorphism, its inverse being the restriction of the projection J to

$$
\left(\bigotimes_{J}^{3} F_{1}\right) \oplus\left(\left(F_{1} \otimes F_{1}\right) \otimes F_{2}\right)^{2} \oplus\left(F_{1} \otimes\left(F_{2} \otimes F_{2}\right)\right)^{2} \oplus\left(\bigotimes_{J}^{3} F_{2}\right)
$$

Proof. Since we have $J Q_{0}\left(x \otimes_{J} y \otimes_{J} z\right)=Q_{0}\left(x \otimes_{J} y \otimes_{J} z\right)$ and $J Q_{3}\left(x \otimes_{J} y \otimes_{J} z\right)=$ $Q_{3}\left(x \otimes_{J} y \otimes_{J} z\right)$, it follows that

$$
J Q(u)=u
$$

for all u in $\bigotimes_{J}^{3} E$.
It remains to show that $Q J$ is the identity on

$$
\left(\bigotimes_{J}^{3} F_{1}\right) \oplus\left(\left(F_{1} \otimes F_{1}\right) \otimes F_{2}\right)^{2} \oplus\left(F_{1} \otimes\left(F_{2} \otimes F_{2}\right)\right)^{2} \oplus\left(\bigotimes_{J}^{3} F_{2}\right)
$$

Because of the linearity, it is enough to work with elementary tensors.
Pick an element $w_{0}=x \otimes_{J} y \otimes_{J} z$ in $\otimes_{J}^{3} F_{1}$. Clearly $J w_{0}=w_{0}$ and $Q_{0}\left(J w_{0}\right)=w_{0}$. Since the projection of E on F_{2} appears in the formulas for Q_{1}, Q_{2} and Q_{3}, we obtain $Q_{1}\left(J w_{0}\right)=Q_{2}\left(J w_{0}\right)=Q_{3}\left(J w_{0}\right)=0$ which means that $Q\left(J w_{0}\right)=w_{0}$.

Take now $w_{1}=x \otimes y \otimes z$ in $\left(F_{1} \otimes F_{1}\right) \otimes F_{2}$. Clearly $Q_{0}\left(J w_{1}\right)=0$ since $z_{1}=0$. The expressions of Q_{2} and Q_{3} contain at least two projections on F_{2} and so $Q_{2}\left(J w_{1}\right)=$ $Q_{3}\left(J w_{1}\right)=0$. Then

$$
\begin{aligned}
Q_{1}(J(x \otimes y \otimes z)) & =Q_{1}^{a}(x \otimes J y \otimes J z)+\left[Q_{1}^{b}\left(x \otimes_{J} y \otimes J z\right)\right]^{(3,1,2)} \\
& =x_{1} \otimes y_{1} \otimes z_{2}-z_{1} \otimes x_{1} \otimes y_{2}+x_{2} \otimes y_{1} \otimes z_{1}-y_{2} \otimes z_{1} \otimes x_{1}=x \otimes y \otimes z=w_{1}
\end{aligned}
$$

and so $Q\left(J\left(w_{1}\right)\right)=w_{1}$.
In the same way it can be shown that $Q\left(J\left(w_{2}\right)\right)=w_{2}$ and $Q\left(J\left(w_{3}\right)\right)=w_{3}$ for all elements w_{2} in $F_{1} \otimes\left(F_{2} \otimes F_{2}\right)$ and w_{3} in $\otimes_{J}^{3} F_{2}$. Therefore $Q J$ is the identity.

3. Topological results

Both of the theorems proved so far state the existence of algebraic isomorphisms. When working with a topological structure on E we would like these isomorphisms to be topological as well.

Suppose E is a normed space. Let us analyse first the antisymmetric tensors. The isomorphism Q is the sum of Q_{k} 's, where

$$
Q_{k}\left(x_{1} \otimes_{a} \ldots \otimes_{a} x_{n}\right)=\binom{n}{k}\left(\left(\bigotimes^{k} P_{1}\right) \otimes\left(\bigotimes^{n-k} P_{2}\right) \circ A\right)\left(x_{1} \otimes \ldots \otimes x_{n}\right)
$$

In order for the antisymmetrisation operator A to be continuous we need to work with a norm μ on $\bigotimes^{n} E$ for which the mapping $u \mapsto u^{\sigma}$ is continuous for every σ in S_{n}, a condition satisfied by symmetric tensor norms. We also need the continuity of $\otimes^{k} P_{1}$ and $\otimes{ }^{n-k} P_{2}$, so we would like tensor products of continuous operators to remain continuous. Thus μ should be a uniform cross-norm. Finally, we want to be able to associate the factors of an n-fold tensor product in any way we want, therefore we require that the norm μ induces a tensor topology. It is clear now that once these conditions are satisfied, all of the spaces $\left(\otimes_{\mu, a}^{k} F_{1}\right) \otimes_{\mu}\left(\otimes_{\mu, a}^{n-k} F_{2}\right)$ are continuously embedded into $\otimes_{\mu}^{n} E$ and so the inverse of Q, which is the restriction of A to the direct sum of these spaces, is also continuous. The same remarks remain valid when working with locally convex spaces.

Theorem 3. Let E be a locally convex space such that $E=F_{1} \oplus F_{2}$. Then

$$
\bigotimes_{\tau, a}^{n} E \cong \bigoplus_{k=0}^{n}\left(\bigotimes_{\tau, a}^{k} F_{1}\right) \otimes_{\tau}\left(\bigotimes_{\tau, a}^{n-k} F_{2}\right)
$$

for every symmetric tensor topology τ.
Let us apply now this result to stable spaces. Díaz and Dineen [3] showed that the spaces of continuous n-linear forms and symmetric continuous n-linear
forms on a stable space E are isomorphic. Using their ideas, Ansemil and Floret [1] extended this result to the predual of those two spaces, respectively the n-fold and the symmetric n-fold tensor products endowed with the projective topology. They also showed that the isomorphism holds for all the symmetric tensor topologies. The proof of the next corollary follows that in [1], but we give it for the sake of completeness.

Corollary 1. Let E be a stable locally convex space. Then, for all symmetric tensor topologies τ and all positive integers n, the spaces $\bigotimes_{\tau, a}^{n} E$ and $\bigotimes_{\tau}^{n} E$ are isomorphic.

Proof. We are going to prove it by induction. The result is clear for $n=1$ since both spaces are, in this case, equal to E. Let us write $E=F_{1} \oplus F_{2}$ with both F_{1} and F_{2} isomorphic to E and denote $\bigotimes_{\tau, a}^{k} E$ by G_{k} and $\bigotimes_{\tau}^{k} E$ by H_{k}. Assume $G_{k} \cong H_{k}$ for all $k<n$.

Since we are working with a tensor topology,

$$
\begin{aligned}
H_{k} & =\left(\bigotimes_{\tau}^{k-1} E\right) \otimes_{\tau}\left(F_{1} \oplus F_{2}\right)=\left(\left(\bigotimes_{\tau}^{k-1} E\right) \otimes_{\tau} F_{1}\right) \oplus\left(\left(\bigotimes_{\tau}^{k-1} E\right) \otimes_{\tau} F_{2}\right) \\
& \cong\left(\left(\bigotimes_{\tau}^{k-1} E\right) \otimes_{\tau} E\right)^{2}=H_{k}^{2}
\end{aligned}
$$

By the previous theorem,

$$
\begin{aligned}
G_{n} & \left.=\left(\bigotimes_{\tau, a}^{n} F_{1}\right) \oplus \bigoplus_{k=1}^{n-1}\left(\bigotimes_{\tau, a}^{k} F_{1}\right) \otimes_{\tau}\left(\bigotimes_{\tau, a}^{n-k} F_{2}\right)\right) \oplus\left(\bigotimes_{\tau, a}^{n} F_{2}\right) \\
& \cong G_{n}^{2} \oplus\left(\bigoplus_{k=1}^{n-1} H_{k} \otimes_{\tau} H_{n-k}\right)=G_{n}^{2} \oplus H_{n}^{n-1} \cong G_{n}^{2} \oplus H_{n} .
\end{aligned}
$$

Let V be the topological complement of G_{n} in H_{n}. Then

$$
H_{n}=G_{n} \oplus V \cong G_{n}^{2} \oplus H_{n} \oplus V=G_{n} \oplus H_{n}^{2} \cong G_{n}^{2} \oplus H_{n}^{3} \cong G_{n}^{2} \oplus H_{n} \cong G_{n}
$$

Let us denote by $\mathcal{L}_{a}\left({ }^{n} E\right)$ the space of alternating n-linear forms, namely those forms B that satisfy

$$
B\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right)=\chi(\sigma) B\left(x_{1}, \ldots, x_{n}\right)
$$

for all σ in S_{n}, and endow it with the topology of uniform convergence on bounded subsets of E. Let us note that for a normed space E we deal with the usual "sup" norm in both $\mathcal{L}_{a}\left({ }^{n} E\right)$ and $\mathcal{L}\left({ }^{n} E\right)$. When working with the projective topology π, the dual of $\bigotimes_{\pi, a}^{n} E$ is $\mathcal{L}_{a}\left({ }^{n} E\right)$ and by duality we have the following result.

Corollary 2. For a stable locally convex space E and all positive integers n, the spaces $\mathcal{L}_{a}\left({ }^{n} E\right)$ and $\mathcal{L}\left({ }^{n} E\right)$ are isomorphic.

Moving on to Jacobian tensors and working with normed or locally convex spaces, it is easy to see, by analysing the expression of the algebraic isomorphism in Theorem 2 that, in order to obtain a topological isomorphism, the topology we work with must meet the same requirements as in the case of the alternating tensors that we have just dealt with. In other words, we need to work with a symmetric tensor topology, in which case the following statement holds.

Theorem 4. Let E be a locally convex space such that $E=F_{1} \oplus F_{2}$. Then

$$
\bigotimes_{\tau, J}^{3} E \cong\left(\bigotimes_{\tau, J}^{3} F_{1}\right) \oplus\left(\left(F_{1} \otimes_{\tau} F_{1}\right) \otimes_{\tau} F_{2}\right)^{2} \oplus\left(F_{1} \otimes_{\tau}\left(F_{2} \otimes_{\tau} F_{2}\right)\right)^{2} \oplus\left(\bigotimes_{\tau, J}^{3} F_{2}\right)
$$

for every symmetric tensor topology τ.
If E is a stable locally convex space then so is $\bigotimes_{\tau}^{3} E$, where τ is a tensor topology. Writing $E=F_{1} \oplus F_{2}$ with F_{1} and F_{2} isomorphic to E, from the preceding corollary we obtain

$$
\bigotimes_{\tau, J}^{3} E \cong\left(\bigotimes_{\tau, J}^{3} E\right) \oplus\left(\bigotimes_{\tau}^{3} E\right)^{4} \oplus\left(\bigotimes_{\tau, J}^{3} E\right) \cong\left(\bigotimes_{\tau, J}^{3} E\right)^{2} \oplus\left(\bigotimes_{\tau}^{3} E\right)
$$

and so the preceding result and the proof of Corollary 1 give the following corollary.
Corollary 3. Let E be a stable locally convex space. Then, for all symmetric tensor topologies τ, the spaces $\otimes_{\tau, J}^{3} E$ and $\bigotimes_{\tau}^{3} E$ are isomorphic.

The dual result will involve the space $\mathcal{L}_{J}\left({ }^{3} E\right)$ of Jacobian 3-linear forms, namely those which satisfy

$$
B(x, y, z)+B(y, z, x)+B(z, x, y)=0
$$

for all x, y and z in E, endowed with the topology of uniform convergence on bounded subsets of E. Since $\mathcal{L}_{J}\left({ }^{3} E\right)$ is the dual of $\otimes_{\pi, J}^{3} E$, by duality we obtain the next result.

Corollary 4. For a stable locally convex space E the spaces $\mathcal{L}_{J}\left({ }^{3} E\right)$ and $\mathcal{L}\left({ }^{3} E\right)$ are isomorphic.

4. Further ideas

Let E be a vector space. As has been mentioned before

$$
E \otimes E=\left(E \otimes_{s} E\right) \oplus\left(E \otimes_{a} E\right)
$$

Having a formula for both symmetric and alternating tensor products of direct sums, it has been proved that when E is a stable locally convex space and we work
with a symmetric tensor topology, both $E \otimes_{s} E$ and $E \otimes_{a} E$ are isomorphic to $E \otimes E$.
The same thing remains true for the 3 -fold tensor product of a locally convex space E, again, the result coming from the fact that

$$
\bigotimes^{3} E=\left(\bigotimes_{s}^{3} E\right) \oplus\left(\bigotimes_{a}^{3} E\right) \oplus\left(\bigotimes_{J}^{3} E\right)
$$

and that we have a formula for symmetric, antisymmetric and Jacobian tensor products of direct sums.

It is interesting now to notice a connection between these facts and the irreducible representations of the symmetric groups of different orders (see [5] for details on representations). When $n=2$, the symmetric group S_{2} has just two such representations, the trivial one, corresponding to symmetric tensors and the alternating one (corresponding to alternating tensors). Moving on to $n=3$, a new irreducible representation comes into play, the standard one, corresponding to the Jacobian tensors. Analysing the character table of S_{3}, where, on the top row, 1 represents the identity permutation, (12) the transpositions and (123) the 2-cycles,

S_{3}	1	(12)	(123)
trivial	1	1	1
alternating	1	-1	1
standard	2	0	-1

we see the way the correspondence is given; for instance $x \otimes_{J} y \otimes_{J} z$ will contain twice the identity $x \otimes y \otimes z$, none of the transpositions $y \otimes x \otimes z, x \otimes z \otimes y$ or $z \otimes y \otimes x$ and the negatives of the 2-cycles $y \otimes z \otimes x$ and $z \otimes x \otimes y$.

Now, the greater the value of n, the more irreducible representations (in fact the number of partitions of n) S_{n} will have (5 for $n=4,7$ for $n=5,11$ for $n=6$, etc.) and to each such representation a subspace of $\bigotimes^{n} E$ will be associated. Since there exist formulas for symmetric and alternating n-tensors of direct sums for any degree n, it would be interesting to investigate whether such formulas can be found for other types of tensors corresponding to other representations than the trivial and the alternating one, as is the case with the standard representation when $n=3$. Could these formulas be so "uniform" so that for a stable space E, each of these subspaces of $\bigotimes^{n} E$ are isomorphic to $\bigotimes^{n} E$ itself, as is the case for $n=2$ and $n=3$?

Acknowledgments. Both authors wish to acknowledge the financial support of an Enterprise Ireland Basic Research Grant. Thanks are due to Emil Sköldberg for helpful conversations about group representations.

References

1. Ansemil, J. M. and Floret, K., The symmetric tensor product of a direct sum of locally convex spaces, Studia Math. 129 (1998), 285-295.
2. Defant, A. and Floret, K., Tensor Norms and Operator Ideals, North-Holland, Amsterdam, 1993.
3. Díaz, J. C. and Dineen, S., Polynomials on stable spaces, Ark. Mat. 36 (1998), 87-96.
4. Dineen, S., Complex Analysis on Infinite Dimensional Spaces, Springer-Verlag, London, 1999.
5. Fulton, W. and Harris, J., Representation Theory. A First Course, Graduate Texts in Mathematics 129, Springer-Verlag, New York, 1991.
6. Ryan, R. A., Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics, Springer-Verlag, London, 2002.

Received June 16, 2003
Bogdan C. Grecu
Mathematics Department
National University of Ireland
Galway
Ireland
email: bogdan@wuzwuz.nuigalway.ie

Raymond A. Ryan
Mathematics Department
National University of Ireland
Galway
Ireland
email: ray.ryan@nuigalway.ie

