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Continuity of pluricomplex Green 
functions with poles along a hypersurface 

Quang Dieu Nguyen 

I. I n t r o d u c t i o n  

Let f~ be a bounded domain in C ~ and A be a complex hypersurface of fL 

Following [LS2] we define 

)CA,~ = {U C PSH(f~) : u _< 0 and p~(a) > YA(a) for all a r A}, 

and 

GA,a(~)= sup ~(~), 

where PBH(~) is the class of plurisubharmonic functions on ~ (inchtding the con- 

stant function -cx~), p+(a) denotes the Lelong number of u at a and s denotes 

the multiplicity of A at a. Recall also that, if u is plurisubharmonic in a neighbor- 

hood of aCC ~ then 

p~(a) = lira supI~ ~1=~" v(z) 
r-+0 log r 

The pluricomplex Green function GA,a was first introduced in a more general set- 

ting by F. Lgrusson and R. Sigurdsson in [LS2]. In the same paper, the authors 

studied boundary behavior and uniqueness of GA,a. They also discussed the rela- 

tionship between GA,a and disc functionals and their envelopes (see also [LS1]). In 

particular, the following result about the "almost" continuity of GA,f~ was claimed 
in Theorem 3.9 of [LS21: Let X be a relatively compact domain in a Stein manifold 
with a strong plurisubharmonic barrier at every boundary point. Let A be the divisor 

of a holomorphic function f on X which extends to a continuous function on X .  
Then the set of points in X where GA,f~ is discontinuous is pluripolar. 

Unfortunately, it turns out as reported in [LS3], that  there is a gap in the proof 

of this statement. It is not known whether this "theorem" is valid even in the case 

where X is a ball in C ~ and A is an (arbitrary) divisor (see also the remark after 
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Proposit ion 3.1). The major  difficulty in their method (and ours) lies in the fact 
that  GA,a is uncontrollable near AAcqfL 

The pr imary goal of this note is to find special cases where the continuity of 
GA,f~ can be verified. We now briefly outline the content of our work. In The- 
orem 2.2, we prove tha t  GA,a is continuous if A is a finite union of hyperplanes 

passing through 0Cf~ and if f~ satisfies some seemingly natural  assumptions to- 
gether with a more restrictive one: there exists a neighborhood V of AnOf~ such 
tha t  V can be pushed inside ~ by linear maps 9~(z)=tz for all t sufficiently close 
to 1. This technical condition is essential in our method. However, it is possible 

to derive from Theorem 2.2 a couple of consequences which are easier to appreci- 
ate. For instance, it follows rather  quickly from this result tha t  GA,a is continuous 
provided that  f~ is a bounded convex domain in C n, 0Eft  and A is a finite union 
of hyperplanes going through 0 (see the remark after Corollary 2.9). We also show 
in Corollary 2.11 that  Ga , a  is continuous provided that  f~ is a smoothly bounded 
B-regular pseudoconvex domain in C 2, and A is the coordinate line { (zl, z2):z2 =0} 
such that  ANft is a smoothly bounded simply connected domain (viewed as a subset 
of C) and that  f~ projects onto ANfL 

It  should be stressed that  not so many explicit examples of GA,f2 are known up 
to present. In the last section we provide explicit computat ions of GA,a in special 
cases. In particular, using the results obtained in Section 2 we are able to derive 
a specific formula in the case where ~2 is the unit ball in C 2 and A is the union 
of coordinate lines. Finally in Proposit ion 3.4 we discuss the continuity at the 
boundary of GA,~ in the case ~ is the unit bidisk. This result is strongly motivated 
by Example  3.4 in [LS2]. 

The main idea in our work is to connect GA,ft with the holomorphic convex 
hull of compact  sets. This is inspired from the classical paper  [Br]. 

Acknowledgment. The present work, an expanded version of [Ng], was com- 
pleted during my stay at the Depar tment  of Mathematics  and Physics, Mid Sweden 
University, Sundsvall, as a postdoctoral  fellowship. I would like to express my hearty 
thanks to Professor Urban Cegrell for the kind invitation. Next my thanks go to 
Ragnar  Sigurdsson for his warm hospitality during my first visit to Sundsvall in 
October 2000, and for explaining to me the papers [LS1] and [LS2], in particular for 
drawing my attention to Example 3.3. I am grateful also to Alexander Rashkovskii 
for fruitful conversations we had during my stay in Sundsvall in October 2000. Fi- 

nally I am indebted to the referees for their constructive comments and suggestions 
on earlier versions of this paper. 

This work was supported in part  by the National Basic Research Program in 
Natural  Sciences. 



Continuity of pluricomplex Green functions with poles along a hypersurface 183 

II. Continuity of Green functions 

We first fix some notation. Throughout  this paper, by U we mean a pseudo- 
convex domain in C ~. If K is a compact subset of U then by K u  we denote the 
holomorphic hull of K in U, i.e., 

B2u = {z E U: If(z)l < Ilfll~: for all f holomorphic on U}. 

If U C ~ then K u  becomes the usual polynomial convex hull of K and we will drop 
the subscript U in this case. The solution to the Levi problem (see [H6]) implies 

that  K u = K p s m u ) ,  where KpSH(U) denotes the plurisubharmonic hull of K,  i.e., 

= { u :  _< sup for all c eSH(U)  }. 
a:CK 

If Q is a pseudoconvex domain contained in U then we say that  ft is Runge in 
U if every holomorphic function on gt can be approximated uniformly on compact 
subsets by holomorphic functions on U. We will frequently appeal to the following 
well-known fact: If U' is a Runge pseudoconvex domain in U and K is a compact 
subset of U ~ then the holomorphic hulls of K in U and U' are the same. The 
following result due to Bishop [Bi] about representing measure is also quite useful: 
For every point a in the holomorphic hull Ku  of K there exists a probability measure 
# supported on K which satisfies 

log If(a)] <_ ~ log Ifl dr* for all f holomorphic on U. 

By an approximation result of Bremermann (see Th6or6ine 9 in [Sill), the above 
inequality in fact holds not only for functions of the form log Ifl but also for all 
plurisubharmonic functions on U and hence for all plurisubharmonic functions on 
neighborhoods o f / ( u .  

We next recall some elements of pluripotential theory pertaining to our work. 
Let ~2 be a domain in C ~. A function uffPSH(ft)  is called mazimal if for every 
subdomain ft'Qf~ and for every u 'EPSH(f t )  such that  ~'_<~* on Oft' we have u'_<u 
on ft'. The following concept is quite important in solving the (complex) Dirichlet 
problem in higher dimension. A boundary point ~G0ft is said to have a strong 
plurisubharmonic barrier if there exists a plurisubharmonic function u on ft, u<0,  
such that  lim~+~ u(z)---0 and such that  for every neighborhood V of ~ we have 
supf?\v ~<0.  Now, according to Sibony (see [Si2]) f~ is called B-regular if every 
(real-valued) continuous function on Oft can be extended to a plurisubharmonic 
function on f~ which is continuous on ~. A basic result of Sibony (Th6or6me 2.1 
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in [Si2], see also [Wa] and [LS2]) states that  f~ is B-regular if and only if every 
point in Oft admits a strong plurisubharmonic barrier. Using this criterion, it is 
easy to check that  every bounded strictly pseudoconvex domain ft (possibly with 
non-smooth boundary),  i.e. f~= {z: O(z) < 0}, where L) is a strictly plurisubharmonic 
function on a neighborhood of ft, is B-regular. 

In order to formulate the main result of this section (Theorem 2.2), we need a 

piece of terminology. A point ~C0ft is said to be good if there exists a strong 
plurisubharmonic barrier u at ~ and a sequence of plurisubharmonic functions 

{uj }j~-I defined on neighborhoods of ~ such that  u* (z) limj_+o~ uj (z), z C ft, where 
~a* is the upper regularization of ~ on ~. It  should be remarked at this point that ,  
if 12 is a B-regular domain with C 1 boundary then every ~ 0 t 2  is a good boundary 
point. To see this, we pick a strong plurisubharmonic barrier u at ~, according 
to Theorem 4.1 in [Wi I we can find a sequence of continuous plurisubharmonic 
functions on ~ that  decreases to u* on f~. As ft has C 1 boundary, by Theorem 1 
in [FW], every continuous plurisubharmonic function on ~ can be approximated 

uniformly on ft by plurisubharmonic functions on neighborhoods of ~. It  follows 
easily fl'om these observations that  ~ is a good boundary point (we do not know if 

the hypothesis about  smoothness of Oft can be dropped). 
Next we recall some results in [LS2] adapted to our special situation. 

P r o p o s i t i o n  2.1. Let ft be a bounded domain in C n, A be a complex hypersur- 
face which is defined by a holornorphic function f on a neighborhood of ~. Assume 
farther that f generates the ideal sheaf of A. Then GA,a is maximal plurisubhar- 
monic on f~\A, GA,a--log Ifl is locally bounded near ANft. Moreover, if there, exists 
a strong plurisubharmonie barrier at ~C (Of~)\A then 

lim GA,a (x) -- O. 
x--+~ 

Pro@ See Propositions 2.4 and 3.2 in [LS2]. 

Note. From now on, we always assume that  the hypersurface A is defined by 
a holomorphic function f on a neighborhood of ~ such tha t  f generates the ideal 
sheaf of A, in other words dfr on a dense subset of A. By the preceding result 
Ga,a--log Ifr is real-valued plurisubharmonic on f t \A and locally bounded near 
A~ft .  Thus it extends through A to a locally bounded plurisubharmonic function 

GA,a on f~. Thus the continuity of GA,a on ft implies that  of GA,a on ft. 

We are now able to formulate the main result of this paper. 

T h e o r e m  2.2. Let ~2 be a relatively compact pseudoconvex domain in U and 
A be a finite union of complex hyperplanes passing through OEQ. Assume further 
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that the following conditions arv satisfied: 
(i) Q is holomorphically convex in U and I n t ( Q ) - Q .  
(ii) There exist o,<1 and a (relatively) open subset V of ANO~ on O~ such 

that t V ~ ,  ~ < t < l .  
(iii) Every ( ~ ( O ~ ) \ V  is a good boundary point. 

Then G A,n is continuous on ~. 

It seems tha t  the simplest situation where Theorem 2.2 is applicable is the case 
where Q - B ,  the unit ball and A = { ( z l ,  S ) : z l=O}.  In this special case, an explicit 
computat ion of GA,~ is available (see [LS2], p. 1535). More precisely, by writing 
z = ( z l ,  z ')  we have 

GA,B(z )=log  (1 Iz']2)l/2" 

The proof of the theorem relies on some lemmas. We first need the following simple 
fact. 

L e m m a  2.3. Let X and Y be two bounded domains in C ~ such that X c Y G U .  
Let f be a holomorphic function continuous up to the boundary of Y .  We define 

2 - { ( z , w )  : Iwl < If(z)l for z OX}, 

= { ( z , w ) : l w l _ < l f ( z ) l  for z C O Y } .  

Then X u x c c Y u x c .  
A 

Proof. It  suffices to show that  X C Y u x c .  For this, we pick (Zo,Wo)CX. Write 
wo Af(zo), where IA]<l. By the maximum modulus principle, for every g holo- 
morphic on U x C we have 

Ig(*o, < m a x  Ig(z, 
- -  z C O Y  

It follows that  ( z o , w o ) C Y u x c .  [] 

The next lemma is almost standard, we record it here for the readers conve- 
nience. 

L e m m a  2.4. Let ~ be a relatively compact domain in U. Assume that ~ is 
holomoTphically convex in U. Then ~ has a neighborhood basis of Runge strictly 
pseudoconvex domains with C ~ boundaries. 

Proof. Since ~ is holomorphically convex in U, by a result of Catlin (see Propo- 
sition 1.3 in [Si3]) we can find a smooth non-negative plurisubharmonic exhaustion 
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function 0 on U such that  t~ vanishes precisely on ~ and that  t) is strictly plurisub- 
harmonic off [2. By the Sard theorem we can find a sequence {ej}j~_l of positive 

numbers decreasing to 0 such tha t  {z:g(z)=cj}  is smooth for every j .  Now for 
each j we let [2j be the connected component  of {z:o(z)<ca} that  contains t2. The 
lemma now follows. [] 

L e m m a  2.5. Let [2 be a relatively compact domain in U. Let ~ be a real-valued 
continuous function on Oft. Set 

/ ~ :  {(z,~w):log Iwl+~<~) ~0,  z < o~}. 

Then 

where 

{(~,~) :log I~1+~(~) ~0, ~c~} c Ru~c, 

(1) (I)(z) := sup{u(z) : u C PSH(f~) and u* (~) <_ g,({), ~ C 0~ }. 

This lemma is probably well known, but due to the lack of a precise reference 

we offer a short proof. 

Pro@ Fix (z0 ,w0)Et2xC such tha t  Iw01<e ~(zo). Let h be holomorphic on 
U x C  and satisfying IlhllK_<l. Expanding h into power series (in w) one gets 

(DO 

h(~, w) = ~ w% (~). 
j=O 

Using the Cauchy inequalities we obtain ( l / j ) l o g  Ihjl<_~ on 0[2. Since ( l / j ) l o g  Ihjl 
is plurisubharmonic on U we infer that  ( l / j ) l o g  ]h j l<~  on [2. This implies that  

O 0  

Ih(~0, w0)l _< ~ Iw0~(z~ I ~ - 1 
1 Iw01e~(~o) j--0 

Applying this inequality to powers of h, it follows that  (z0, w 0 ) C K u x c .  Since the 
latter set is closed, it includes all points ( z , w ) E f g x C  such that  Iwl<_e -e~ This 

completes the proof. [] 

Remark. If we assume in addition that  f~ is regular in the real sense, i.e. every 
continuous function on 0f1 is the boundary values of some harmonic function on f~, 
then q) is plm'isubharmonic on ft (see Lemma a . r  in [LSl]). 

Retaining the notat ion used in Lemma 2.3, we move to the next lemma, which 
is the key in our argument.  
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L e m m a  2.6. Assume further that ~ is holomorphically convex in U and that 
I n t ( ~ ) = ~ .  Let f be a holomorphic function on a neighborhood of ~. We set 

= {(~,w):~ ~ 0~ and Iwl < If(z)l}. 

Then we have 

~ g ~ c  n (~ ~ c )  = 4(~, w): ~ e ~ and log Iwl +F(~)  ~ 0}, 

where F is a lower semicontinuous function in ~ such that F*, its upper regular- 
ization, is locally bounded, maximal plurisubharmonic in gt and F* <GA,~ on ~. 

Proof. Since ~ is holomorphically convex in U, by shrinking U we may assume 
that  f is holomorphic on U. We split the proof into two steps. 

Step 1. In this step, we suppose in addition that  Vt is a strictly pseudoconvex 
domain (possibly with non-smooth boundary),  i.e. ~={zEU:~(z)<0},  where ~ is a 
strictly plurisubharmonic function on a neighborhood of ~. Shrinking U again we 
may assume that  ~ is strictly plurisubharmonic on a neighborhood of U. 

f ~  Choose a sequence of reM-valued, C 2 functions { j} j=l  defined on U such that 
f ~ t - l o g  Ifl (we may e.g. take fj=-log(Ifl+UY)). Fix y > l ,  let F5 be defined as 
in (1) (with ~ replaced by fy). Since gt is strictly pseudoconvex we have that  Fy 
is a continuous maximal plurisubharmonic function on f~ with boundary values fj .  
Purther, according to Lemma 2.5 we have 

(2) {(z, w):z  ~ Ft and log Iwl+Fj (z) _< 0} C (Kj)gx C, 

where 

K 5 = { ( ~ , w ) : ~ e 0 ~  and log Iwl+fj(~) _< 0}. 

Next we claim that  Fj can be continued to a continuous plurisubharmonic function 
on U. Indeed, since ~ is strictly plurisubharmonic on a neighborhood of U and 
Fj is continuous and maximal on ~, the following function will be continuous and 
plurisubharmonic on U provided that  Aj is large enough 

/~y (z) = Ayp(z)+fj(z), zeU\ f~ .  

The claim follows. Since ~ is holomorphically convex in U, by Theorem 4.3.4 in [H6] 
we get 

(3) (Ky)v• C { ( z , w ) : z e ~  and loglwl+Fy(z ) <0}.  
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Combining (2) and (3) and using the fact that  Fj--fj on Oft, we obtain 

A 

(Kj)Ux c = {(z, w):z Eft and log [wl+Fj(z ) <_ 0}. 

Notice that  K j S K ,  hence ( -~ j )u •215  This implies that  

where F is the increasing pointwise limit of Fj. Therefore F is lower semicontinuous, 
furthermore its upper regularization F* is maximal plurisubharmonic and locally 
bounded in f t \A. Since log lf  I +Fj <_ 0 on the boundary of ft for every j > 1, by the 
maximum principle we have log Ifl +Fj <_0 on ft. This implies that  log Ifl +Fj ~-PA,a 
and hence log If] +Fj < GA,a in ft. Thus Fj <GA,a on ft. Consequently F*_< Ga,f2 
on ft. Therefore F* is maximal plurisubharmonic and locally bounded in ft. Thus 
the case where f~ is strictly pseudoconvex has been settled. 

Step 2. The general case. By Lemma 2.4 we can find a sequence {ftj}j~-i of 

smoothly bounded, strictly pseudoconvex domains such that  ftj is holomorphically 
convex in U and f t j$~ .  Now for each j we define 

Lj {(z,w):zEOf~j and Iwl<_lf(z)[}. 

It follows from the result obtained in Step 1 that  

i 

(c j )v•  c = w) fij and log I  /+Fj _< 0}, 

where Fj is lower semicontinuous on ftj such that  F f  is locally bounded, maximal 
plurisubharmonic on ftj and log Ifl+Fj* < 0 on f~j. As Int(~) ft we see that  the sets 

Lj converges to K in the Hausdorff metric. By Lemma 2.3 we have (%~-j)uxcSKuxc. 
F On the other hand, the sequence { J}j=l increases to a lower semicontinuous func- 

tion F on ~L So F* is maximal plurisubharmonic on ft and F*<_GA,a on fL The 
desired conclusion follows from these observations. [] 

Remark. I f~c  (cga)\A is a good boundary point then l i m ~ r  F ( z ) - -  log If(~)l. 

To see this, we claim first that  K u •  ({{} • C ) - { ( { ,  w): ]wl _< ]/(~)I}. Assuming 
this, then by Lemma 2.6 clearly we have l i m i n f ~  F ( z ) = -  log If(~)l. On the other 
hand, as log Ifl + F *  c~A,a  we infer that  lira supz+r F(z) <-  log [f(~)l. Thus we are 

done. It remains to prove the claim. Take a point ({, w0) ~ K u x c .  Then we can find 
a representing measure # such that  for all plurisubharmonic u on a neighborhood of 
K u •  the following holds u({, wo)<_fK u d#. Let p be a strong plurisubharmonic 
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barrier at ~, and {~oj }j~-i be a sequence of plurisubharmonic functions on neighbor- 
hoods of ft that  decreases to ~* on ~. Since ~ is holomorphieally convex in U, we 
may consider ~oj as a phrisubharmonic function on a neighborhood of K u •  for 
each j_> 1. Applying the above inequality to ~j and then passing to the limit we 
see that # must be supported on {~} • C. The claim now follows. 

The next lemma is quite similar to Lemma A9 in [AWl. 

L e m m a  2.7. Let ft be a relatively compact pseudoconvex domain in U. As- 
sume that In t ( f t )=f t  and that ~ is holomorphically convex in U. Then f~ is Runge 

in U, i.e. every holomorphic ]unction on [2 can be approximated locally uniformly 
by holomorphic functions on U. 

Proof. Let K be a compact subset of ft. In view of Theorem 4.3.2 in [HS], it suf- 
rices to check that KpsH(U) Gft. Let {t~j} be a neighborhood basis of Runge pseudo- 

convex domains of Q. Since - l o g d i s t ( . ,  Ogt j )cPSH(~j )  we infer KPSH(U)@~- [] 

The final preparatory lemma is the following easy fact whose proof is left to 
the readers. 

L e m m a  2.8. Let f~ be a bounded domain in C ~ and {~j}j~ 1 be a sequence 
of lower sernicontinuous functions on ft that increases to a lower semicontinuous 
function ~ on ft. Then for every sequence {aj}j~_l that converges to a E~  we have 

~. (a) _< lim inf ~j (aj), 
j--+oo 

where ~o.(z) is the lower "reguIa~ization of qo, which is defined on, ~. Moreover, if  
~ .  is continuous at a then limr ~j(aj)=~o.(a).  

Proof of Theorem 2.2. Let f be a homogeneous polynomial that  defines A. 
Define 

K { ( z , w ) : z C O f t  and Iwl<l f ( z ) l } .  

Then by Lemma 2.6 we get 

K v •  = { ( z ,w) : z  C ft and log [w[+F(z)  <_0}, 

where F is a lower semicontinuous function on f~ satisfying F* _<GA,e on ft. Thus 

in view of the lower senficontinuity of F,  it suffices to prove that  Ga,a  _<F. Indeed, 

otherwise we could find z0 ~ f~ such that  F(zo)< GA,a (z0). Since the (real) interval 
[1, to] as a subset of C '~ is not pluri-thin at 1 we can rind a sequence {tj}~~ C (1, tO) 
such that  t j$1 and 

(4) GA,a(zo/t j )  > F ( z 0 ) + s  for all j and for some s > 0. 



190 Quang Dieu Nguyen 

We may further assume that tjZoE~ for all j .  Let ~ be a C ~ strictly plurisubhar- 
monic exhaustion function on t~, then we choose a sequence ~j$oc  such that  for 
each j_> 1 there exists a connected component ftj of the level set {z:o(z)<(~j } that  
contains {0, zo/tj, V/tj} (this is possible in view of (ii)). Further, by the Sard theo- 
rem we may also achieve that  {z:Q(z)=c~j} is a smooth real hypersurface (possibly 
disconnected), in particular its connected components have disjoint closures. It fol- 
lows that  ~j  is holomorphically convex in ft. As ft is Runge in U by Lemma 2.7, 
we conclude that  ftj is holomorphically convex in U. 

Fix j_>l, let Uj be the connected component of tjf~jA~ that  includes 0. Set 

: - -{(z ,w) :z~Ogj and Iwl _< If(z)[}, 

Wj := { ( z , w ) : z  C cgftj and ]w I _< If(z)l}. 

By Lemmas 2.5 and 2.6 we obtain lower semicontinuous functions Gj (resp. Hi) on 
Uj (resp. ftj) as constructed in (1) such that  

(5) ( )v•215 and log lwl+ah(z) _< 0}, 

(6) (Wj)u•215 j and loglwl+gj(z)<O}. 

It should be observed that,  as the components of tjftjnft nmy not have disjoint 
closures, we cannot assert that  Uj is holomorphically convex in U, so we have to 
use Lemma 2.5 in (5). Assume that  d e g f = d ,  then under the linear map Aj(z, w)= 
(z/tj, w/t]) the set Vj transforms into 

' { l(ouj) andpw[<lf(z)l}. 

Clearly Uj/tj cftj, so by Lemma 2.3 we have (Vj)uxcC(Wj)ux c. Applying the 

inverse of hj and combining (5) and (6) we arrive at 

Hi(z) <_Cj(tj )+dlo th,  eUj/tj. 

Since the point zo/tj lies in Uj/tj we obtain 

(7) gj (zo/tj) < Gj (Zo) +d log tj. 

On the other hand, we have loglwl+GA,a(z)<O on Wj. It follows from Theo- 
rem 4.3.4 in [Hh] that  

(Wj~uxc = (Wj~ftx C C {(z, w):z C ~j and log Iwl +GA,f~(z) <~ 0}. 



Cont inu i ty  of  p lu r icomplex  Green  func t ions  wi th  poles along a hypersur face  191 

It implies tha t  GA,~_Hj on  f~j. Putt ing this and (7) together one gets 

(8) GA,a(zo/tj) <_ Gj (zo) +d log Itjl. 

Combining this with (4) we obtain 

f( o) aj(z0) <_dlogl jl- . 

Thus 

lira sup(F(z0) - Gj (Zo) ) <_ -e.  
j--+oc 

In order to derive a contradiction from the above inequality, it is useful to recall 
X the construction of F and Gj given in Lemma 2.6. Let { k}~=l be a sequence of 

smoothly bounded strictly pseudoconvex domains decreasing to ~2 such that  X--k is 
holomorphically convex in U. Let Yk,j be the connected component of Xk N~jf~j that 

1 ec includes Uj. Let {f  }z=l be a sequence of real-vMued continuous functions increasing 
to log If] on U. For each l_>l we have continuous functions as constructed in (1) 
(with j) instead of f) Gk,j,l on Yk,j and Fk,l on Xk. Observe that  Ykd is a strictly 
pseudoconvex domain (possibly with non-smooth boundary),  so from the proof of 
Lemma 2.6 we obtain 

G~,j = lira Gk,j, l ,  [Pk = lim Fk,l, 
l--+c~ l-+ec 

Gj = lira Gk,j, F = lira Fk. 
k--+oc k--+oc 

Notice that  the constructions of Gk,j,~ and Fk,l imply 

(9) _< sup Ifz-G, l, 
OYk ,j 

Let ~k,j,l be a point on OYk,j that  realizes the suprenmm on the right-hand side. 
Since F~,l=--.fl on OXk, we may achieve that  ~k,j,IE(OY~,j)NXk. By passing to a 
subsequence we may assume further in view of (ii) that  ~k,j,l tends to ~* E ~ \ V  k,j 
when l tends to oc. Letting l tend to oc in (9) and using Lemma 2.8 we obtain 

]G~,j(Zo)-Fk(zo)] < m a x { - l o g  I f (~ , j ) l -  (Fk).(~[~,j), log ]f(~;d) I + (F~)* (~;,j) } 

= - log If (~;,j)1 - (Fk). ({;,j). 

Here in the second line we have used the fact that  (Fk)*_<-log ]f] on ~ \V .  We 
may assume that  {* converges to {~*c~ when k tends to oc. It follows that  k,j 

IGj (zo) - F(zo)] <_ - log I f (~*) l -  F. (~;*). 
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Again switching to a subsequence we may assume that  (~* converges to ~***C 
(Of~)\V. Now the remark after Lemma 2.6 implies F , (~*** ) - - - l og  If(C**)l.  This 
yields a contradiction. The proof is thereby concluded. [] 

Remarks. (a) In the proof of Theorem 2.2 we have established a connection 
between the holomorphic hull of K and the Green function GA,a. In fact, we have 

actually shown that  GA,a on ft. This is closely related to a previous work of 
Bremermann (see [Br]). 

(b) Theorem 2.2 depends heavily on the geometric nature of C ~, so it seems 
hard to find an analogue of this result in the manifold setting. 

(c) The hypothesis that  A is a finite union of hyperplanes is not so restrictive 
as we will see later. On the other hand, the assumption on the existence of the 
neighborhood V of AMcqf~ is essential for our method. It is desirable to know if a 
weaker hypothesis is sufficient. 

C o r o l l a r y  2.9. Let f~ be a bounded pseudoconvex domain which is (stron9ly) 

starshaped, i.e. t f ~ f t ,  tC[0, 1). Let A be a finite union of complex hyperplanes 
passing through OEft. Then GA,a is continuous on f~. 

Proof. By Proposition 5 in [Ka] we have that  ~ is polynomially convex. Thus 
all assumptions given in Theorem 2.2 are satisfied (with U = C  n and V-Of~) ,  so 

GA,a is continuous. [] 

Remark. The assumptions on f~ are obviously satisfied in the case where ft is 
a bounded convex domain containing the origin. 

The next result t reats  a special case where there exist many "good" boundary 
points on Of~. We first fix the notation, let ft be a bounded pseudoconvex domain 
in C ~ and ~ be a U 1 plurisubharmonic function on a pseudoconvex neighborhood 
U of ~ such that  f~:={zEU:o(z)<O}. Clearly for to sufficiently close to 1 we have 
t f tGU,  tC(1, t0). Set 

o (t) = t (1, to). 

Let A be a finite union of hyperplanes passing through 0ElL Then we have the 
following result. 

C o r o l l a r y  2.10. With the same notation as above, assume that for every ~E 
ANOf~ we have 0~(1)>0, and that every ~ ( O f t ) \ A  is a good boundary point. Then 

G A,~ is continuous on f~. 

Proof. It  is well known that  ft is holomorphically convex in U. Moreover the 
maximum principle implies that  I n t ( f l ) - f L  In order to apply Theorem 2.2, it 
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suffices to check the condition (ii) given there. We argue by contradiction, assume 

that  there exists no such neighborhood V. By passing to a subsequence we may 

assume that  there exist a sequence tj$1 and a sequence {~J }~-1 ={(~1) ,  ... ,-ag!~))}~-1 

belonging to OFt and a point {* CANOFt such that  limj~oo {j--{*, and that  O(to{j) >_ 
0. As O(~j) 0, we infer that  ~j(Aj)_<0 for some ,~jC(tj ,1).  By letting j tend to 

we get 0{.(1)_<0, a contradiction. [] 

C o r o l l a r y  2.11. Let t-~ be a bounded B-regular pseudoeonvex domain with C a 
boundary. Let A={(z~,  z2):z2 0}. Assume that A N ~  is a simply connected domain 
with d ~ boundary (viewed as a subset of C) and that rc(Ft) • {0} AnFt, where rc 
is the prvjection (Zl, z2)~-->zl. Then GA,a is continuous on Ft. 

Proof. Since ANf~ is a smoothly bounded simply connected domain (viewed as 
a subset of C) we can find a conformal map ~/J from A N ~  onto the unit disk D. By 
Theorem 4.8.17 in [BG], r extends to a C ~176 diffeomorphism from a neighborhood 
of ANI2 to a neighborhood of D. Furthermore,  as ~ projects onto ANFt we infer 
that  the map q2(Zl, z2)-(z~,  ~(z2)) sends ft biholomorphically onto fY, a bounded 
B-regular pseudoconvex domain with C 3 boundary such that  ANfY is the unit disk. 
It  suffices to check that  GA,~, is continuous on fY. According to Theorem 4.1 
in [Si2], we can find a function aEPSH(U)NCa(U) ,  where U is a pseudoconvex 
neighborhood of ~ '  such that  Ft' {zcU:~(z)<O}.  By shrinking U we may assume 
that  ~ is holomorphically convex in U. By the remark made before Proposition 2.1 
we see tha t  every ~ 0 f ~  is a good boundary point. Now let ~(z~):=~(Zl, 0). Since 

~<0  on D and ~ vanishes on OD, by the Hopf lemma, the outward normal derivative 
of ~ is positive at every point on the circle Izs l -1 .  Thus using Corollary 2.10 we 
conclude that  GA,~' is continuous on fY. The desired conclusion *bllows. [] 

So far, we have dealt only with cases where the pole set A is in some sense 
"linear". For the general case, a natural  idea is to find a "good" holomorphic 
mapping that  transforms t~ and A to a new setup such that  one of the above results 
is applicable. The next result illustrates this idea. 

P r o p o s i t i o n  2.12. Let Ft be the unit ball { (z ,w): lz l2+lwl2<l}  in C 2 and A 
be the complex curve { ( z , w ) : w - z ~ } ,  where m is a positive integer. Then GA,~ is 
continuous on fL 

Proof. Consider the holomorphic map g(z, w )=(z  ~,  w). It  is easy to check that  
under g the ball Ft is mapped  properly onto the Thullen domain 

gY= {(z', w ' ) :  Iz'12/'~+ Iw'l 2 < 1} 

and A is t ransformed to the complex line A' {(z', w ' ) : w ' = z ' } .  Now we claim that  

GA,~,og==-GA,~t. Indeed, from the definition we have GA, a, og<GA,~. The reverse 
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inequality is obtained by pulling back the plurisubharmonic function GA',a,. Thus 
the claim is verified. It is straightforward to see that  t2' and A' verify all assumptions 
given in Corollary 2.9, thus GA',~' is continuous on f/~. The continuity of GA,~ now 
follows from this and the claim above. [] 

III. Some examples  

The first explicit examples of the Green function GA,a appeared in [LS2], where 
the authors compute GA,a in the cases where ft is a ball or a polydisk and A is 
a coordinate hyperplane. Motivated from these examples, we deal with the case 
where f~ is a Hartogs domain in C 2. 

P r o p o s i t i o n  3.1. L e t  X be a bounded domain in C and ~9 be a real-valued 
snbhar'monic function on X. Let A={(z, w):w=O} and 

- { ( ~ , w )  ~ x •  I~1+~(~)  < 0}. 

Then G~,~(z, ~,)=log pwl-F~(~). 

Proof. It is obvious that  log Iwl +~(z)E.TA,a.  Hence OA,a(Z, W)>~(Z), (z, W)C 
ft. Fix zCX, as GA,e(z, w)<O, (z, w)EFI, by applying the maximum principle to 
the disk {w: [wl<e-P(~) } we obtain 

O~,a(~,~) < ~(~), (~,~) ~ a. 

The desired conclusion follows. [] 

Remarks. (a) Let 

Then ~ is a bounded hyperconvex domain in C 2, which is not B-regular as cgf~ 
contains (non-trivial) analytic disks. On the other hand, using Proposition 3.1 we 
can verify easily that  Gn,n is a continuous plurisubharmonic function on ~ \ A  with 
boundary values 0, where A={(z,w):z=O}. This example shows that  GA,a may 
still behave nicely (in some sense) on non-B-regular domains. 

(b) Let ~ be a bounded subharmonic function on the unit disk D such that  
is discontinuous at some point aCD. Set 

e : -  { (~ , ,~)  c D • c :  log I~1 + ~ ( ~ )  < 0}.  
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Then by Proposition 3.1 CA,~(Z,W)=Iog Iwl--~(z) where A {(z ,w):w=O}.  Thus 

Ga,a is discontinuous at every point of {a} • {w:lwl<e ~(~)}. We will show that 

there exists no (weak) plm'isubharmonic bm'rier at any point of {a} •  

e ~(~)}. Assume contrary that there exists such a barrier. Then we could find 

a negative plurisubharmonic function u on t2, a point (a, w0) such that Iw01-e -~<~> 
and that limr u(~)=0. Since ~ is discontinuous at a, there exists a sequence 

{zj}~_~ converging to a such that ~ ( z j )<~(a )  c for some s>0 .  Now for each j we 

set ~j( t ) :=u(z j ,  te-s(~)+~). Then each ~j is a negative subharmonic function on 

the unit disk D. Define ~ ( t )=  (lira s u p j _ ~  ~j (t))*. It is clear that  ~ is subharmonic 

on D and ~<0 .  Notice also that ~(0)<0  so ~ 0 .  On the other hand, as u is a 

strong barrier at (a, w0) we infer that  ~(w0e s(~) ~)=0. This is a contradiction to 
the maximum principle. This example indicates that the assumption on the exis- 

tence of a strong plurisubharmonic barrier at every boundary point in Theorem 3.9 

in [LS2] cannot be entirely omitted. [] 

Before stating the next result, recall that by an analytic disk in C ~ we mean 

a holomorphic mapping from the unit disk D in C to C ~ which is continuous up 

to OD. 

P r o p o s i t i o n  3.2. Let f~ be a bounded domain in C n such that ~ is polyno- 

mially convex. Let A be a complex hypersurfaee defined by a holomorphic f on a 

neighborhood of ~. Set M--llf l l~ and 

s =  {z E 0f~: If(z)l =M} .  

Assume that there exists an analytic disk q~: D--+f~ such that q~(OD)cS and that f~ 
has a strong plurisubharmonic barrier at every point along q~(OD). Then for every 

E D we have 

(~A,~oe ) (~ )  - loaM.  

Pro@ Let 

K = {(~, ~ ) :~  ~ 0~ and I~1 -< rf(z)l}. 

By Lemma 2.6 we can express 

(10) I~n(f~xc)={(z,w):zE~ and loglwl+F(z) ~0}, 

where F is a lower semicontinuous function on f~. First we claim that 

s  = M }  = ~• {(~, ~ ) : ~  = M} .  
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It  is obvious that  the set on the right-hand side is contained in the left-hand side 
one. To show the reverse inclusion, let (z0, M ) ~ K ,  then we can find a probabili ty 
measure # supported on K such that  

(11) log ]p(zo, M) I < f~: log Ip(z, w)ld # for all polynomials p. 

For each m>_l we set p,~(w)=(Mw+l)~r"/2"rr'. It  is easy to see that  p,~ peaks at M 
on the closed disk { (z, w): I w]< M}. Apply (11) to p,~ and let m tend to cc we obtain 
via the Lebesgue convergence theorem that  supppCKN{(z, w):w=M}. It implies 

that  z0~S.  The claim is proved. It  now follows fi'om (10) that  F ( z ) - - l o g M  for 

every point z~Q satisfying (z,M)~I~. Combining this and the claim above one 
obtains 

F ( z ) - - l o g M ,  zcSNf t .  

Next, observe tha t  GA,~>F on f~, so we have GA,f~(z)>_- log M, zC,ffNfl. Now 

the maxinmm principle implies tha t  r  From this and the last inequality 
we deduce that  

9(~): ( G x , a o e ) ( ( ) + l o g M _ > 0 ,  ~ D .  

As ~2 has a strong plurisubharmonic barrier at every point along q~(OD), in view 
of Proposition 2.1 we have g = 0  on OD. Because 9 is subharmonic on D, applying 
again the maximum principle we get g--0 on D. This concludes the proof. [] 

As an application of the preceding result, we give an explicit formula of GA,f~ 
in the case f~ is the unit ball in C 2 and A is the union of coordinate lines. 

E x a m p l e  3.3. Let ~ be the unit ball in C 2, A be the (singular) complex curve 
{ ( ~ , ~ ) : ~ = 0 } .  we  set 

Then we have 

l o g l z l - ~  

c~ ,~ , (~ ,~)  = log I ~ l - l o g  �89 

log I~ - -~ log( l -I~l~) ,  2 

(z, w) E f~l, 

(z, w) ~ U2, 

(z, w) c ~3. 
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Pro@ First it is immediate to check that  the function on the right-hand side 
belongs to the class 5a , a .  Second, it is clear that  the function f(z, w)=zw attains 
its maximum modulus precisely on the torus 

Notice further that,  to each point x in ft2, there is an analytic disk in C 2 passing 
through x whose boundary is contained in S. Applying Proposition 3.2 we obtain 

GA,a(~, ~)  = log I ~ r - l o g  1 5, ( z , w ) ~ 2 .  

On the other hand, by the definition of GA,~ we have 

GA,a(Z, W ) ~ GAI,g~(Z, W ) = l o g  I~1 

and 

a~,~(~,  ~) < G~,~(~, ~) = log I~ l -  �89 log(l-I~l~), (~, w) ~ a, 

where Al={(z,w):z=O} and A2={(z,w):w--O}. [] 

Remarks. (a) It is of interest to notice that  in f~l (resp. ft3) the function GA,a 
coincides with GAI,a (resp. GA~,a). This might be considered as an analogue to the 
complex cones Fp and Fq discovered independently by D. Coman and F. WikstrSm 
for the Green function with two poles p and q of equal weights inside the ball 
(see [Co], p. 260). 

(b) It is proved in [LS2], p. 1528, that  if Ga,a(x)--infaeA Ga(x), where G~ 
denotes the Green function of t2 with single pole a, then the complex geodesic 
realizing the hyperbolic distance from x to A hits A in only one point. Using 
our Example 3.3 we will show that  the converse statement is false. Indeed, it is 
elementary to see that  for every point xC~2\A and close enough to A1 (resp. A2), 
the complex geodesic realizing the hyperbolic distance from x to A is the complex 
line passing through x and orthogonal to A1 (resp. A2). Therefore it meets A only 
at one point. However we have 

GA,~(X) < Inin{GA 1 ~2(x), GA2,~2(x) } = inf Ga(x ). 
' aEA 

(c) After completing this paper, the author has learned from Professor Peter 
Pflug that  a generalization of Example 3.3 to complex ellipsoids has been obtained 
in [Ja]. 

We finish this paper by proving the following result which generalizes in part 
Example 3.4 in [LS2] about the boundary behavior of GA,~ when ~ is the unit 
bidisk and d is the line {(z, w) :z=0}.  
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P r o p o s i t i o n  3.4. Let ~ be the unit bidisk D x D in C 2. Let A be a complex 
hypersurface defined by a holomo~phic function f on a neighborhood of ft. Assume 
that f does not vanish on a neighborhood of { ( z ,w) : l z l= l  and Iwl<l}.  Then for" 
every ~=(z0,wo) with Izol=l and IWol<l we have 

Remark. The above mentioned example in [LS2] shows that  the conclusion in 
Proposition 3.4 may fail if ]z01<l m~d Iw01=l. 

Proof. We set 

K = {(z, w, u): (z, w) �9 On and [u[ <_ If(z, w)/}. 

By Lemma 2.6 there exists F lower semicontinuous on ~ such that  F*_<GA,a and 

(12) K n  (a x C) -- {(z, w, u):  log lul +F (z ,  w) < 0}. 

On the other hand, by repeating the argument used in the proof of Proposition 3.2 
we obtain 

(13) ~ n  ({~o} • c 2) : ( K ~  ({~o} • C~)) ~. 

Notice that  

KIq({z0} x C 2) : {(z0, w, u):  lwl < 1 and log lu l - log If(zo, w)t < 0}. 

Since f (zo, .  ) does not vanish on a neighborhood of {w: Iw[ _< 1} we infer that  log I~1- 
log If(z0, w)l is plurisubharmonic on C x D', where D' is a neighborhood of D. It 
follows that  KN({z0} x C 2) is polynomially convex. Combining this and (13) we 
get 

KN ({zo} x C 2) = K n  ({zo} x C2). 

It follows that  

Let 

~ n  ( K }  • c )  : K n  ({,1} • c ) .  

c~ = lira inf F(x).  
x-+~ 
xE~ 

As K is closed, it follows from (12) that  

{(~, u):  lul _< e -~ } c . kn  ( { ( }  • C). 

Thus - log I.f(~)l_<~. So 

- log If (~)1 < lira inf GA,~ (x). 
x ~  
xC~2 

The desired conclusion now follows. [] 
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