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Approximation of infinite matrices 
by matricial Haar polynomials 

Sorina Barza(t), Victor Lie(2) and Nicolae Popa(3) 

A b s t r a c t .  The main goal of this paper is to extend the approximation theorem of contin- 
uous functions by Haar polynomials (see Theorem A) to infinite matrices (see Theorem C). The 
extension to the matricial framework will be based on the one hand on the remark that periodic 
functions which belong to L~176 may be one-to-one identified with Toeplitz matrices from B(12) 
(see Theorem 0) and on the other hand on some notions given in the paper. We mention for 
instance: m s - - a  unital commutative subalgebra of l ~ C(12) the matricial analogue of the space 
of all continuous periodic functions C(T),  the matricial Haar polynomials, etc. 

In Section 1 we present some results concerning the space rns--a  concept important for this 
generalization, the proof of the main theorem being given in the second section. 

O. I n t r o d u c t i o n  

0.1. T h e  classical  form of  Haar's  t h e o r e m  

Let T be the one-dimensional torus identified with the interval [0, 27r). Now we 
consider the Haar L2(T)-normalized functions hk given by ho(t)=l for t E T  and, 
for n=2k+m, k>_O, and mE{0,. . .  , 2 k - l } ,  by 

(1) 

§ (k+l) 
2 k/2, ~EA2m , 

: $ cz A (k+l) hn(t) -2k/2, ~ ~- ~2.~+1, 

0, t c T \ A ~  ) , 

where 
A ~  ) [ m  m + l  

= ~-~.27r, ~ - - z T r ) .  
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We can now state the following well-known theorem of approximation of con- 
tinuous functions on T (i.e. periodic continuous functions on [0, 27r]) by means of 
polynomials with respect to Haar functions (extended by periodicity on R) due to 
Haar: 

T h e o r e m  A. I f  f is a continuous function on T (i.e. if f E C ( T ) )  and if e>O 
then there exists a Haar polynomial of degree n = n ( e ) E N ,  

n - - 1  

S n ( f ) = E a k h k ,  a k e C ,  
k=O 

such that 

IIf - -Sn(f) l l i~(T)  < C. 

0.2. T r a n s l a t i o n  o f  t h e  s t a t e m e n t  in  t h e  m a t r i c i a l  f r a m e w o r k  

Definition 1. Let A=(aij)i,j>_l be an infinite matrix. If there is a sequence of 
[ a ~ -t- oo complex numbers ( a )a=_~,  such that  aij=aj_i  for all i, j c N ,  then A is called a 

Toeplitz matrix. 

A_~a ~+c~ and the class For simplicity we can write a Toeplitz matrix as - t  k)k=-cc, 
of all Toeplitz matrices will be denoted by T.  

We write AE B(12) if the infinite matrix A represents a bounded linear operator 
TA: 12--+12, that is, if TA(ei)=~k~__l akiek for i =  1, 2 .... , where {ei }~-1 constitute the 
standard basis in l:. The space B(12) is a Banach space with respect to the usual 

operator norm IIAIlu(~)=suptlxih~<_l llTAxltt~. 
The following well-known result (see [Zh], Chapter 9.1) as well as the subse- 

quent remark constitute the starting point of whole theory presented here. 

A ~a ~+or belongs to B(12) if and only T h e o r e m  O. A Toeplitz matrix ~ = t  k)k=-o~ 

if there exists a unique function f A E L ~ ( T )  whose Fourier coefficients fA(n)= 
(1/27r) f :~  fA(t)e -int dt are equal to an, for all nEZ.  Moreover 

[IAIIs(t~) = Itf AIIL,~(T). 

Remark. In order to develop the theory we find in the previous result two 
different "geometric" directions to be followed. 

Model 1: Diagonal matrix. For an infinite matrix A=(a i j ) ,  and an integer k, 
we denote by Ak the matrix whose entries a~i,j are given by 

I r ai,j, if j - - i =  k, 

(2) ai'j = <[ 0, otherwise. 
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Then Ak will be called the kth-diagonal matrix associated to A. 

In the preceding theorem we remark that  there is a one-to-one correspondence 
between Ak and fA(k) for AEB(12) and fAEL~(T). 

Consequently, we may imagine (Ak)kez, as the "matricial Fourier coefficients" 
associated to the matrix A. 

Model 2: Corner matrix. In the sequel we use another notation, more appro- 
priate for our aims, for the entries of the matrix A. Namely we put 

(3) a ~ = {  al,t+k, k > 0 ,  l = 1 , 2 , . . . ,  

al-k,Z, k < 0 ,  1=1 ,2 , . . . ,  

and write A sometimes as A=(a~)z>l,kez. 
Let (0 m A =(bk )keZ,m_>l, where I cN\{0} ,  be the matrix given by 

{ a ~ ,  if r e = l ,  

(4) b ~ =  0, if r e e l .  

We call the matrix A (0, the lth-corner matrix associated to A. 

Now, if for any corner matrix A(0 =(br~)k~Z,m>_l we associate a distribution on 
T, denoted by fz such that  b~=fl(k), we get, in case AETAB(12), that  fZ=fAC 
L~ for all IEN\{0}.  

Using the models. (a) The model 1. In this case we recall that  Ak plays the 
role of the "k th Fourier coefficient of the matrix A". 

It is well known that  for each f E L ~162 (T) whose Fourier coefficients are an, n E Z, 
we have 

/ c C ( T )  if and only if lim [[an(f)--fili~(T)=0, 

where 

an(f)(t)= ~-~ ( l - k - -  n+llkl ) akeikt" 

Let us recall the following definition (see [BPP]). 

Definition 2. Let AEB(12) and 

a n ( A ) =  ~ A k ( l - , k ,  ) n = l , 2 , . . .  
k=-n n + l  ' ' 

for nEN\{0} ,  the matricial Fejdr sum of order n associated to A. 
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Then we call a matr ix  A continuous and we write AEC(12) if the following 
relation holds: 

lim Ila,~(A)-AIIB(t2)=O. 
rL - -+  OC) 

Obviously C(/2) endowed with the operator  norm becomes a Banach space. 

Remark 3. The space 6 ( /2 )  does not depend on the specific choice of an ap- 
proximate unit, for instance the Ces&ro means from above. 

Proof. Indeed, by Theorem 4.2, [BPP], it follows that  AEC(12) if and only if 

fA(t)clef-- Ek=--oo~176 Ake~kt is a B(/2)-valued continuous function. So, reasoning as in 

[K], Theorem 2.11, we get that  the convolution between an approximate  unit and 
the matr ix  A (that  is, the Schur product between the Toeplitz matr ix  associated 
with the given approximate  unit and the matr ix  A) converges to A in the B(/2)- 
norm. [] 

Theorem 0 allows us to write the formula 

[TnB(12)]* = L ~ ( T ) ,  

where by [HI* we denote the image of the space H of matrices by the correspondence 

A~f~. 

Remark 4. For brevity in what follows we write equations like the previous one 
in the following manner: 

TnB(12) : L ~ ( T ) ,  

TnC(12) = C(T) .  

(b) Model 2. We can identify the matr ix  A=(A(l)) lcN �9 with its sequence of 
def 

associated distributions f = (fz)ZeN-, writing this fact as 

A=Af .  

By Theorem 0 we have 

fg C L ~ ( T )  if and only if Afg E TNB(12), where fg = (fg, fg, fg, ...). 

The matr ix  A=(aij) is said to be of n-band type if aij--0 for l i - j l  >n. 
Having these notions in mind, we introduce a commutat ive  product of infinite 

matrices. 
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Definition 5. Let A=Af and B=Ag be two infinite matrices of finite band 
type. We introduce now the commutat ive product [] given by 

A[3B d----efAfg. 

Remark 6. (1) We mention that  in the previous definition we took A=Af and 
B=Ag to be infinite matrices of finite band type since f and g being trigonometric 
polynomials, we may consider the product fg. 

(2) This product  can be defined also for all matrices A, BEB(I~), but A[3B 
does not belong in general to B(12) as the reader may easily see. 

(3) Of course, if Af, AgETNB(12) then it follows that  Af[3Ag=AfgETNB(12). 

We conclude the presentation of this model taking into account an important  
particular case: 

Let a=(a 1, a 2, ...) be a sequence of complex numbers and B=AfEB(12), where 

f = ( f l , f 2 , . . . ) .  Taking a as a sequence of constant functions on T,  we get, by 
Definition 5, 

A~[]B = A~f , 

where a f - - ( a l f l ,  a2f2, ...). 

For brevity we denote A~[]B by a| 
In what follows it will be important  to know more about  the sequences a 

satisfying the condition BE B(12) ~ aGBE B(I2). 
Actually, the entire next section will be devoted to this, but for the moment,  

to understand its implications, we will rewrite the operation (D in a different form. 
In order to do this let us recall some classical concepts. 

Definition 7. Let A and B be infinite matrices. Then 

C = A , B  

is called the Schur product  of the matrices A=(aij) and B--(b/ j )  if the entries of 
C--(c~j) satisfy the relation qj =aijbij. 

Definition 8. An infinite matr ix  A is called a Schur multiplier if A*BEB(12) 
for all BEB(12). 

The space M(12) of all Schur multipliers, endowed with the norm 

IIAIIM(I~) = sup [IA*BIIB(t~) 
IIBIIB(,2)<I 

becomes a Banach space. 
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We associate to any sequence c[:(o~ 1, ~ 2  ...), the matrix [c~] whose entries [c~]~ 
are equal to c~ l, for l >_ 1 and k E Z. 

Then it is clear that  

(5) s o B  = 

Definition 9. Define ms to be the space of all sequences a such that  

a6)B E B(12) for all B E B(12), 

or equivalently, 

e M(12). 

On ms we consider the norm Iialims d--efii[a]iiM(t~). Then ms is a unital com- 
mutative Banach algebra with respect to the usual multiplication of sequences. 

Remark 10. Any constant complex sequence a = ( a ,  a, ...) belongs to ms. 

In order to get an extension of Haar's theorem we had to find the appropriate 
analogues in the matrix context. They are summarized below. 

The function case The matrix case 

norm [[. IIL~(T) norm I1" IIB(12) 

space C(T)  space C(12) 

multiplication of a function by a scalar multiplication (~ 

The correspondence given by (3) becomes more transparent if we remark that  
for a c C  and for f E L ~ ( T ) ,  denoting by G the sequence (ct, ct,...), and by f the 
constant sequence (f ,  f ,  ...), we get that  5 G A f = [ a ] * A f = A ~ f .  

Denoting by Hk the Toeplitz matrix associated, like in Theorem 0, to the Haar 
function hk, for k=O, 1, ..., and by Sn(f, c~k) the sequence (Sn(f ,  c~k), Sn(f ,  C~k), ...), 
where Sn(f ,  ~k) n-1 = ~ k = o a k h k ,  for f E C ( T ) ,  a k e C ,  and kc{0,  n - 1 } ,  we get the 
following translation of Theorem A in the Toeplitz matrices setting. 

T h e o r e m  B.  Let A=AfEC(12)  be a Toeplitz matrix and let e>0.  Then there 
is a matricial polynomial given by 

n-1 n-1 
AS,~(r = ~--~ olkHk = ~ ~ k Q H k  

k=O k=O 
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such that 

IlA-Asn(f,~k)lIB(12) < ~, 

where 5k = ((~k, (~k, ...). 

Now it is natural  to ask ourselves about  the existence of a class of matrices 
larger than TNC(12) such that  Theorem B still holds. 

The aim of our paper  is to give an answer to this question. More precisely we 
prove the following result. 

T h e o r e m  C. Let A=(a~)t>_l,k~z be a matrix which belongs to C(12) such that 
def/  l x all sequences ak = (ak)~>_l, k E Z ,  belong to ms. 

Then, for any ~>0 there are an n = n ~ E N \ { 0 }  and sequences akEms ,  k c  
{0, ..., n - l }  such that 

A-~-_o ak |  B(12) < e. 

I t  is also worthwhile to mention the following open problem. 

O p e n  p r o b l e m .  Does Theorem C still hold if  the matrix A satisfies only 
condition AEC(12)? I f  not, what is the best version of Theorem C? 

Acknowledgement. We thank the referee for his advice, which has improved the 
presentation of the paper. 

1. A b o u t  t h e  s p a c e  ms 

As we remarked in the previous section (see also the s ta tement  of Theorem C) 
the space ms plays an important  role for our theory and, consequently, it is desirable 
to know more facts about  it. 

In this context, we saw in Remark 10 that  any constant sequence belongs 
to ms. Our pr imary goal here is to prove that  this algebra is far richer than that;  
this richness will quantify the level of extension of the theorem of Haar  in the matr ix  
case, since in the function case, corresponding to Toeplitz matrices, (see Theorem B) 

the algebra ms is reduced to exactly the constant sequences. 
Here is an outlook for this section: 
We give some sufficient conditions for a sequence to belong to ms, following 

two complementary ways: 
The first one is based on defining a particular algebra pms and showing that  

pros is intimately connected with ms. (See Proposition 12.) 
As a consequence we derive properties for ms displaying some necessary and 

sufficient conditions for a sequence to belong to pms (see Theorem 13); the second 
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approach (Theorem 15) is concerned with the structure of ms rather than that 
of pms. 

For an infinite matrix A=(a~j)i>_l.j>_l, let us define its upper triangular pro- 
jection 

P T ( A ) = {  ai.j, ifi<_j, 
O, otherwise. 

Definition 11. A sequence b=(bn)n>_l belongs to pros if and only if 

(6) B ~ f  {b} = PT([b]) E M(12). 

Then pms endowed with the norm IibII = II {b} ][M(12) becomes a Banach algebra with 
respect to the usual product of sequences. 

P r o p o s i t i o n  12. Let b=(bn)n>>A be a sequence of complex numbers. Then 
(1) bEpms ~ b~ms (so pmsCms); 
(2) /f  we write 

(bl, b2, ..., b . . . . .  ) = (bl, 0, b3, ..., b2n-1, ...)+ (0, b2, 0, b4, ..., b2n, ...), 

or equivalently b=bl~ 2~ and denotin 9 with bl=(bl,b3,... ,b2n-1,-.-) and b2= 
(b2, b4,...,b2n,...), we have biEpms r bi~ for iE{1,2} and so if biEpms, 
iE{1,2}, then betas. 

Proof. (1) The statement is obvious. 
(2) We first show that [bl~ implies that {bl}EM(12) and similarly for 

[b2~ 
For, let (/31j) C B (12) and remark that 

0 0 0 
~3n 0 ~12 

0 0 0 
Ad___ ef ~21 0 1322 

0 0 0 
~31 0 332 

: ! : 

"" / 1313 ... 
O .~ 

~23 -.. 
0 

~33 
J 

e B(12). 

Put  A*[bl~ and, since [bl~ then XcB(12). 
But 

//b1~11 0 0 0 ...'~ 
[ bl/321 b3~22 0 0 ) 
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since IIX'IIB(Z~)<_ IlXlIBq~). 
Now observe that  (/3ij) * [b 1 ]t = X' .  

For the converse just observe that  {bl}EM(12) implies that PT([bm])EM(lz) 
and apply (1). [] 

We pass now to the study of the algebra pms. 
Let us introduce a new method to estimate the norm on the space B(12). 

We associate to every sequence x=(xj)j>_l from 12(N) the function h(t)= 
~j~=l xj e 2€ e H3 ([0, 1]), where Ho 2 ([0, 1]) consists of all functions h: [0, 11 --4 C from 

the Hardy space H 2 such that  fo h(t) dt=O. 
If A =  (akj)eB(12), let us denote by s176176 akje 2'~ijt ell2([0, 1]). 
It follows that 

(7) [[AIIB(t2) = sup s  < cxD (for every s). 
I lh l f2_< l  ~ = 1  

T h e o r e m  13. Let b=(bn)n>l be a sequence of complex numbers. 
(1) If (i~)n>_l is a strictly increasing sequence of natural numbers with il =0, 

define z,~ =maxi~<k_<i~+l Ibk]. Then there exists a constant R > 0  such that 

I[{b}HM(Z~) = IIBIIM(t~) < n inf (ll(zi.)n>lll2+ll(zi. log(in+l--in))n]lcr 
(i,~),~>~ 

(2) I fb~pms then 

sup (logn) 2 n+p 
n_>l;p_>l n E Ibkl2 < 00. 

k----p 

(3) If (Ibkl)k>_l is a decreasing sequence then bEpms if and only if {bkl= 
O(1/log k). 

Proof. (1) Let AEB(12) and xEI2(N). It is easy to see, by (7), that 

o~ 2 ~01 (h))(- t )  dt 2, II(g*A)xll~ = ~ Ibkl s 
k=l  

where Sk(h) is the Fourier partial sum of order k (i.e. if Dk is the Dirichlet kernel, 
then Sk(h)(t)=(h*Dk)(t) is the convolution of h and Dk). 
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Therefore, we have 

[/01 II(B*A)xlI~<_2EIbkl 2 s  + s  
k = l  

< 2 E ]bk] f--k(t)Sk-1 (h)(-t)  +2[,bll ~ s 
k = l  k = l  I J ~  

co : f l  s 2 _< 2 E ]b'~l +2llb]l~ IIAIt~('~) ]lhll~" 
Jo k = l  

Let (in)n>l be a strictly increasing sequence of natural numbers such that 
il  --0. 

Then we have 

(8) Ilbll~ ~ I](z,,~)n>~ll 2 

and 

E~ lbkt 2 ~ol s (h)(-t)  dt 2 
k = l  

1 th3(-,~ dt 2 

n = l  k = i ~ + l  

+ 2  = k=~§ s 

_< 2 E z2i~ ( s (h)(-t) dt 
n = l  k = / n + l  0 

-]-2n~=lZi2(k=in§ 0 ~'k(t)(Sk-l-Si~)(h)(-t)dt 2)" 

Using the formula (7), we get 

Z /o C~(t)S~o 
k = i n + l  

_< IIAIl~(~)llhll~- 
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On the other hand 

in+l 1 2 

E fO s  dt 
k=in + l 

in+l --in 1 2 

"~ ~ ~o Dk-l(t){[s 
< sup IIDk-xllLl(0,,) 

l<k<in+l - in 

in+l --in 1 
x ~ fo IDk-x(s)ll(s176 

k=l 

) ( f o  x ) ~_ Clog(in+x-in sup [Dk-x(S)l ds 
l ~_k~__in+l-in 

in+l--in 

• )12 L ~ I(Z:k+i,, * (S,, ,+, - Si,. ) ( h ) ) (  �9 

t 2 _< c IIAIIm~=)II (Si , ,+ l  - & .  )(h)[[~ [log(in+x - in)]  2. 
Thus, using (8), we get 

I[(A* B)xI[2 <- RIIAIIB(t2)[Ihll2(ll(zi,~ )n_>1112 -]-IlZin log(in+l --in)[[oo)" 
(2) Let BEM(12). 
Taking AETNB(12) such that  l _  aj--1/j for all j e Z \ { 0 }  and for all / c N \ { 0 }  

and a~=0 for a l l /EN,  we obtain tha t /3 . .4EB( /2) ,  where 

b l b l b x b x " "  I / 1 X / 
b2 b2 b2 b2 1 2 g "'" 

1 1 ! : : : : 2 
B : =  and .,~:= 21 1 1 �9 

bn bn bn bn 3 2 
i : : : : : : 

ndefz \ Letting Xp = txk)k>l with 

Xk={ 1, i f k E { p , . . . , n + p } ,  
O, otherwise, 

where p, nEN\{O} are fixed, we get 

n+p 

0og(n+l)) 2 ~ Ib~l ~ _< CIl(~*~4)x;ll~ _< C(~+1). 
k=p 
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Thus 
(log(n+ 1))2 n+~ 

s u p  Ibkl 2 < o r  
n>l n + l  p~_l k=p 

(3) Let (]bkDk_>l be a decreasing sequence. Then by (2) we get ]b,~]=O(1/logn). 
Conversely, defining r=(rn)n>x with rn=l/ log(n+l)  for all n_>l, we have 

IIBIIM ,   = II{b}llM(,   --< CIl{r}llM(,  - 

For in=2  n for all n_>2 and i1=0, it follows by (1) that zi, =r2 ,+l~l /n .  
Consequently 

,,{r},,M(t2)<_R{ (1)n_> 1 2-}-(llog2n),~>l ~ } < e c .  

That is, BEM(12). [:3 

Observe that  results like Theorem 7.1 or Theorem 8.6 in [B] cannot be applied 
in our situation. 

Remark 14. Prom the previous results we deduce that 

12(N) C msC I~(N)  

and that  {(bn),~_>l I[bn I--O(1/log n)} C ms, with proper inclusions. 

Now changing the point of view we will obtain another set of sufficient con- 
ditions so that betas. These results use the estimate on the absolute value of 
differences of terms rather than the absolute value of the terms themselves. 

T h e o r e m  15. Let b=(b,~)n_>l be a sequence of complex numbers. 
(1) / f  SUPn_>l(Y]~jn__l [bj--bnl2)<CXD then bcms. 

(2) / f  [Ib[[sg(N)d--e---flbll+~n~__l Ibn+l-b,~l<oc then betas. 

Proof. (1) We will use the following result from [B]. 

T h e o r e m .  A matrix M belongs to M(12) if and only if there exists a PE 
B(12, lee) and QEB(I1,12) such that 

M =  PQ and I[MllM(z2)<IIP[12,~[[QI[1,2. 

We recall that  if Q=(qjk)j>l,k>_l and P=(Pjk)j>l,k>_l then 

= sup E [IQl[1.2:snp(E,qjk,2) 1/2 and [[P['2.c~ ,>_l(k>l[PJk'2)l/2. 
k_>l \ j > l  
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Let [b] = Bb + Cb, where 

B b = 

!i b2 b3 ... 
b2 b3 ... 
b~ b3 ... 

: : %. 

and Cb= 

! bl-b2 bl-b3 . . . )  
0 b2 - ba 
0 0 ' 
! 

Clearly BbEM(12) for any bEl~ and, since IlCblll,2 =sup.(~2y~l Ibj-bda)l/2< 
co, by Bennett's theorem it follows that CbcM(12). 

(2) If AEM(12), (s hEH2([0, 1]), xCI2(N) and hk=h*Dk are as before 
(7) and defining f(t)=~j~=l bje 2'~ijt (in the sense of distributions) we get that 

II ([b]* A)xll2 =k=~ f~ f(t)(s dt + ffo ~ f(t)(f-.k *(h-hk))(O)e -2=ikt dt 2 

< 2 cx~ 1 2 

where gk (s) = E~=l(f(k) - ](j))e 2~ijs = E~---~ (](J + 1) - ](j))Dj (s). 
But 

12 ) k [ lgk(s)(f~k*h)(-s)ds <- I](J+l)-f(J)l  
k = i t J O  -= 

• ~ {f(j+ i ) -  ](J)l l(hy *s 2 
j = l  \ k = 2  " 

( k ] J : (  ),)2 h2  A 2 _< j + l ) - f i ( j  II 11211 IIm~=), 
j 1 

so that 

[[([b]*A)x[12 <_CilAIIB(~=)IIxIi2 I b r  �9 

That is [b]EM(12). [] 

A continuous version of this result was obtained in [AJPR]. We thank the 
referee for pointing out this fact. 
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2. Extens ion  of  Haar's t h e o r e m  

As we announced, this section will be dedicated to proving the generalized Haar 
theorem--see Theorem C from the introduction. We will start  our exposition by 
introducing a vector space E(12). After that,  we will define the notion of generalized 
scalar product for matrices which allows us to give a more useful form for E(12) and 
also to see some similarities with the function case. 

Remark 16 is needed to identify the constraints of the definition of E(12) and 
also to remark some of the difficulties of this theory. 

Finally, we define the space Cr(12) and prove that  this one admits a Schauder 
type basis (see Theorem 18). In this vein Theorem C will follow as a corollary. 

Let us consider the vector space given by: 

E(12)= A =  aaQHaEB(12) IaaQHkEB(12) for all 0 < k < n ,  n E N  , 
k=0 

where ak ElM, and aa(DHa =[aa]*Ha with the notation in (5). 
We introduce a generalized scalar product of matrices (A, B) for A=Af and 

B=Bg, where f = ( f l ,  f2,---) and g=(g l ,g2 ,  ...), in the following way: 

(9) (A, B) = ((f~,g~), (f2,g2), ...). 

We say that  a family of matrices (Ok)keN is an orthonormal system if the 
following orthogonality relations hold: (Ok, Ol) -- 0 E l~  for k ~ l and (Ok, Ok ) = 1 E l~  
for all k E N*. 

By the orthogonality of the system (Ha)k>1 we deduce that A~E(12) implies 

A= Eta1 (A, Ill) | E E(12). 
Therefore 

E ( / 2 ) =  A =  A, Hz}QH1EB(12)I(A, Ht}| forI<n, n E N \ { O  . 
/=1 

Remark 16. (1) There is AEB(12) such that  (A, H1)Elo~ and (A, H1}| q~ 
B(12). 

(2) If 0<p_<2 and AESp, where Sp is the Schatten class of order p, (see, for 
instance, [Zh] for the definition of a Schatten class) then [(A, Hk)] EM(12), which in 
turn implies that  (n,  Hk)QHkEB(12) for any k E N \ { 0 } .  

Proof. (1) Let A=A1 with a 2 k - l = l ,  a21k=O for k E N \ { 0 }  and a t = 0 ,  if k r  
and k E N \ { 0 } .  

Then (A, H1) = (Xl, 0, xl ,  0,...) E l~ ,  where Xl is some constant. 
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Hence (A, H1)GHI=2iBXl/Tr, where 
1 0 1 0 1 0 ~ ... 

- 1  0 0 0 0 0 ... 
1 0 0 0 1 0 ~ ... 

1 B =  - 5  0 - 1  0 0 0 ... 
0 0 0 0 0 1 ... 

1 _�89 - ~  0 0 - 1  0 ... 

: : : : : : " . .  

But, clearly, oo = II I -  PT (B)II B(12) ~ II BII B(12), where I is the unit for the usual 
non-commutat ive multiplication of infinite matrices. 

This result is not surprising, since using Proposition 12 and Theorem 13 we 
obtain that  

(Xl,O, x l , O , . . . ) E m s  ~ x 1 =0.  

(2) Let p <  2. By [Zh], A E B(12) belongs to Sp if and only if, for any orthonormal 
basis (ek)k>_l in 12, we have ~ - - 1  [IAeklf <cx~" 

Thus, for A=(akd), we get 

E ( E ] a k j l  2) < o c  and ]akj] 2 <oo. 
k = l  " j = l  / - -  _ 

Then, using the Cauchy Schwarz inequality and the above inequalities, we get 
that n (A, Hk)II p <_CIIHk H~(12)]IAH}p <oo for some constant C>0. 

By Remark 14 it follows that [(A, Hk)]EM(12). The last implication is now 
obvious. [] 

Observe also that  there exists A C B(12) such that  (A, Hk / |  Hk E B (/2), for all 
k c N ,  but for some koEN,  we get (A, Hkol~ms. Indeed A=Ao=(an)n>_lEl~\ms 
gives an answer to the above problem for ko=0. 

Therefore, in the definition of E(/2), we prefer the weaker condition (A, Ilk)| 
HkcB(12) for all k rather  than (A, Hk)cms for all k. 

On the ms-module E(12) we consider the norm 

m Q H k  (10) I[IAI[[ = sup E ( A ,  Hk) < oc. 
m<_n k=O B(12) 

Since TAE(12) can be identified with Ed([0, 1]), the space of all dyadic step 
functions, whose completion with respect to supremum norm is equal to the space 

of all countable piecewise continuous functions with discontinuities at dyadic points 
of [0, 1], a space denoted by Cr([0, 1]), we call Cr(/2) the completion of (E(/2), H[" [[[). 

In what  follows we will give some known classes of matrices which are embedded 
in C~(/2). 
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Examples. (1) Obviously all Toeplitz matrices associated to functions from 
C~([0, 1]) belong to C~(12). 

(2) The Hilbert-Sehmidt matrices A=(a})jez.  z_>~, with 

IIAIIHs = la} l  2 < ~ c  

belong to C~(12) and I IAIIc ,~(~)~  IIAIIHs. 
p~ ~c ~c We write ) ( t ) = g ( - t )  and t(~j=_~aje2'~Ot)=}-~r , where lEZ. 

Then by Fubini's theorem and the Cauehy Sehwarz inequality we get 

IIPT( S~ ( A ) ) II~(,~) ~ foo 1 dt 

1191lH2fl0nl)- <1 _ 

2 < IIAII2s sup IIPtgllL~ 
IlgllH2(:o.1])<- 1 

= I IAt l~s -  

Hence IIAIIc~(12)_<v~ IIAIIHS. 
(3) Let A be a diagonal matrix having as non-zero entries the elements of the 

sequence cr=(ai)~_>l 6 ms. Then A6C,-(12) and IlAIIc,.(~) --_ Ilall~.s. 
The proof is straightforward using the trivial observations that  ms is an algebra 

with respect to usual multiplication and C,.(12) is an ms-module with 1 1 1 ~ o X l l l  < - 

II~It.~AIxIII. 
(4) If A=(a~)jcz , lk t  is such that  ~ . def, l" j = _ ~  Ila j llms < ~c, where aj = [ aj )l>_l , then 

IlAllcr(~) <_ ~j~_-_~ IIaj IIm, and AEC~(12). 
The statement follows easily by (3). 
(5) If A is the main diagonal matrix having as non-zero entries the elements aj 

with (aj)j>_lCl~, then AcC~(12) and IlAllB(t=)= IlAllc,.(e=). (Note that (aj)j>_l m a y  

not belong to ms.) 

P r o p o s i t i o n  17. I f  the sequence of matrices (An)n>1 is a Cauchy sequence in 
E(12) with respect to the norm Ill Ill, then (A n, Hk}.~Hk converges to some akQHk 
in this norm. Moreover ak~HkEB(12)  and (A% Hk}--+nc~k in l~:. 

Proof. Step I. We first prove that  

(11) I[<A, Hk>ll,~= ~211AlIB(t~) for all k E N  and Ac:_B(12). 



Approximation of infinite matrices by matricial Haar polynomials 267 

If A--Af, where f = ( f l ,  f2, .--), and QlA is the matrix with entries 

{ a ~ ,  k=l,  jEZ ,  
[QzA]k= O, k r  

by the Cauchy Schwarz inequality, it follows that  

II(A, Hk)ll~=l]((ft,hk))t>_ln~< sup I]fZ]IL:= sup 
/eN\{0} IEN\{0} 

_<v~ sup HQzAHB(12) <_2HAHB(12). 
/eN\{0} 

la}l 2 
j = - -  

Step II. Let now (An)n_>~ be a Cauchy sequence in E(/2). Then, for a fixed 
kEN,  we have that  {An, Hk}-aak, as n-+oc, in l~ .  

Indeed, using Cll) and the fact that ]lAIIB(12)_< II[A]ll, the statement follows by 
Step I. 

Step III. If (An)n>>l is a Cauchy sequence in E(12), then (CA n, Hk)QHk)n>_l is a 
Cauchy sequence in E(/2) for all k and hence (A n, Hk)Q)Hk-~BkEC~(12), as n-~ec, 
in the norm I[[' III- Thus, by Cll) it follows that l i m n - ~  II ( An, H k ) -  {B k, Hk)l l~=0,  
and by Step II it follows that  a k = ( B  k, Hk). 

Step IV. If we show that  Bk={B k, Hk)QHk then Proposition 17 is proved. But 
by Step III we have that  (A n, Hk)QHk--~B k, as n-+oc, in B(12). Then the entries of 
the matrices CA n, Hk)QHk converge with respect to n to the corresponding entries 
of the matrix B k. By Step I, CA n, Hk)-~ CB k, Hk), as n - - ~ ,  in l~ ,  hence it follows 
that  (Bk,Hk)Q)Hk =B k. [] 

We use Proposition 17 in order to prove the existence of some kind of Schauder 
basis in C~(12) given by the sequence (Hk)k>o. 

More specifically, we have the following result. 

T h e o r e m  18. Let AECr(12). Then we have the decomposition 

oo 

A = Z ( A ,  Hk)GHk, 
k=O 

in the norm II1" III. 

Proof. Let AECr(12). Then there is a Cauchy sequence AnEE(12) such that  
A=lim,~_~o~ A n. By Proposition 17 we get limn-~=r IIICA n, Hk)QHk--O~kQHklII---O 
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for all k>0. Let e>0. Then there is n~_>0 such that for all n>n~ and all k>j, we 
get 

k k k k H i } |  i~_j{An,Hi}(i)Hi-~e~i@Hi <_limsup ~ { A n ,  Hi}(!)Hi-~-~<A m, 
-- z=j rn-+cc i=j i=j 

k 
(12) + l i m  ~ II[(A m, Hi} @Hi-o~iQHilll <_ e 

i=j 

Using (12) and the orthogonality relations satisfied by the sequence (Hk)k>O 
we find that  there exists l~ such that  III y-~.ik=j C~i Q Hi Itl < e for all k > j  > l~. 

Therefore y'~.i~=0 c~i| Taking j = 0  and k>_max{k(n), l~}, where 

~k(n)/An Hi}(i)Hi=A n, in (12), we get that  IIIAn-y~ki(_o ) ai(i)Hilll<e for all ~>0 i=0 \ ' 
and for all n>n~. 

Thus A = B = ~ o ( ~ i Q H  i and, using the orthogonality relations satisfied by 
(Hk)k_>0 and the fact that the operator A~-+(A, Hi}:C~(12)~-+l~ is continuous, we 
get A= y~.~=o(A, Hi}QHi. [] 

Now we get the extension of Haar's theorem for matrices. 

A C o r o l l a r y  19. Let AcC~(12). Then A = ~ k = 0  ( ,Hk)| in the norm of 
B(Z~). 

Of course there exists AcC(12)\C~(12). For instance, A being the diagonal 
matrix A1 given by the sequence (an)n>_1, where a 2 n _ l = l  and a2n=O for all n= 
1,2,. . . .  

Proof of Theorem C. Let A be an infinite matrix as in Theorem C and let c>0.  
Since AEC(12) there is k c N  such that  Ilak(A)--AIIs(12)< 1~. Then by hypothesis 
and by Example (4) it follows that  ak(A)cC~(12). Consequently, by Theorem 18, 

n--1 n--1 
there is a Haar polynomial Y'~-i=o oeiQHi such that  [[crk(A)-~i=o oeiQHi[[B(12)< 
1 [] 
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