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Total curvature and rearrangements 

BjSrn E. J. Dahlberg(1) 

This posthumous paper was prepared for publication 
by Vilhelm Adolfsson and Peter Kumlin. 

A b s t r a c t .  We s t u d y  to wha t  ex t en t  r e a r r a n g e m e n t s  preserve the  integrabi l i ty  proper t ies  of  

h igher  order  derivatives.  It is well known t h a t  the  second order  der ivat ives  of  the  r e a r r a n g e m e n t  

of a s m o o t h  funct ion  are not  necessari ly in L 1. We ob ta in  a s u b s t i t u t e  for th i s  fact. Th i s  is done  

by showing  t h a t  t he  to ta l  cu rva tu re  for the  g raph  of t he  r e a r r angemen t  of  a funct ion  is bounded  

by t he  to ta l  cu rva tu re  for t he  g raph  of the  func t ion  itself. 

1. I n t r o d u c t i o n  

The purpose of this note is to study the regularity properties of the decreasing 
rearrangement of a function. Let f be a real-valued, bounded and measurable 
function on an interval I--[a, b]. Its decreasing rearrangement f* is characterised 
by the following properties: 

(a) f* is bounded and decreasing on I; 
(b) f* is right continuous on (a, b) and left continuous at b; 
(c) f* and f are equimeasurable, i.e., 

I{x E I :  f*(x) > A}I : I{/E I :  f(x) > A}[ 

for all A c R. 
Here IEI denotes the Lebesgue measure of the measurable set E. We refer to 

Hardy, Littlewood and P61ya [2] for the classical theory. The monograph by P61ya 
and Szeg5 [4] contains a wealth of applications of rearrangements to symmetrization 
and isoperimetric inequalities. 

We recall that  

(1) / ~(f*)dx-- / ~(f)dx 
(1) T h e  a u t h o r  was suppo r t ed  by a g ran t  f rom the  Swedish Na tu ra l  Science Research  Council .  



324 BjSrn E. J. Dahlberg 

for all continuous functions ~. The basic regularity result for rearrangements is 
that if l < p _ < ~  and if the derivative of f belongs to LP(I), then f* has the same 
property. More precisely, 

(2) 

where II/ i lp=(L I/I p 

dx p< t df 

We shall in this paper study how rearrangements preserve the integrability 
properties of higher order derivatives. We remark that it is easy to give examples of 
smooth functions f such that d2f*/dx 2 does not belong to L 1. For example, letting 

f(x) = 2x 3 - 9 x  2 + 12x, 

g(x) = (8x 3 - 3 6 x  2 + 3 0 x +  153)/32 

then (see Talenti [5]) 

0 < x < 3 ,  

(4) IIf*llc Ilfllc. 

We shall derive (4) by analysing the total curvature of the graphs of f and f*, 
respectively. 

T h e o r e m  1.1. 
Then 

if(x)={ S(3-x), xE[O, 1]u[~,3], 

Notice however, that in this case dS*/dx is of bounded variation. 
For a bounded function f on I = [a, b} let 

(3) I , f l l c = s u p {  ~ f ~ " d x  :~EC~(a,b)and II~ll~-<l}- 
Here C~~ b) denotes the class of infinitely many times continuously differentiable 
functions supported in (a, b). We remark that if f is smooth, then 

[If lie = ~ [/"l dx. 

We shall establish the following analogue of (2). 

Suppose f is real-valued, bounded and measurable on [a, b]. 
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Let ~/(t), a<_t<_b, be a simple curve in the plane and let X={(0 ,  ... , ~ M }  be a 
partition of [a, b], i.e., a=~0<~l  <...<~M=b and let 

7(~i+1)-3'(~i) O < i < M - 1 .  

Set 
M - 1  

i = l  

where 5i is the length of the shortest arc on S 1 ={pER2:]p l= l}  joining ei-1 and ei. 
Finally, the total curvature of ~/is 

(5) B(7) = sup B(7, X), 
x 

where the supremum is taken over all partitions X of [a, b]. We refer to Milnor [3] 
for the basic properties of the total curvature of arcs. We remark that if 3, is a 
smooth curve with curvature k, then it can be shown (Milnor [3]) that 

(6) B(~/) = f Ik I ds, 

where the integration is taken with respect to the arc length of % For f :  [a, b]-+R 
continuous let T(f)  denote the total curvature of the graph of f .  

T h e o r e m  1.2. Suppose f: [a, b]-~R is continuous. Then 

(7) T(f*) <_ T(f). 

Acknowledgement. BjSrn Dahlberg deceased on the 30th of January 1998. It 
was BjSrn's intention to submit this paper for publication, but this was prevented 
by his untimely death. His results of this paper were presented in October 1997 
at the MSRI, Berkeley, during the program Harmonic Analysis and Applications 
to PDEs and Potential Theory. Independently similar results were obtained by 
A. Cianchi [1]. The final version of this paper was prepared by Vilhelm Adolfsson 
and Peter Kumlin, Dept. of Mathematics, Chalmers University of Technology and 
G6teborg University. 
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2. P r e l i m i n a r y  results  

We shall from now on let I--[a, b] be an interval. Let C(I) be the class of con- 
tinuous and real-valued functions on I. If f cC(I ) ,  then f* denotes the decreasing 
rearrangement. Notice that f* �9  also. For x � 9  let S(x)=a+b-x.  Notice that  
S maps I onto itself. If g(x)=f(S(x)), then 

(S) g* = f*. 

If h(x)=- f (x) ,  then 

(9) h*(x)=-f*(S(x)) .  

Let X={~0, . . . ,  ~ N }  be a partition of I and let q: I_+R 2 be a simple polygon with 
nodes at {,, i.e., 7:I--+R2 is continuous, one-to-one and its restriction to the in- 
tervals [{i,{~+1] is linear for 0 < i < N - 1 .  Then it is well known (see Milnor [2]) 
that  

(10) B(~)=B(%X). 

In particular, if f is piecewise linear with nodes at ~i, O<i<_N, we have 

N - 1  

( 1 1 )  T(f) = ~ ]~rgi+l--CrTil. 

i=1  

1 where ~ i � 9  (-57r, �89 0 is defined by 

(12) t a n ~ i =  f(~i) --f(~i-1 ) 
~i - -  ~i -- 1 

For E c R  d we let Int(E)  and OE denote the interior and the boundary of the set E. 
Let 

79={xcR:0<x<�89 
and define 7:792_+79 by 

cot 7(x, y) = cot x+co t  y, if (x, y) E Int(792), 

7(x, y) = min{x, y}, if (x, y) �9 079 2. 

Then 7 is continuous on 79 2. 
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P r o p o s i t i o n  2.1. The function ~f has the following properties: 
(i) 7 ( x , y ) = 7 ( y , x )  for (x,y)�9 
(ii) 7(x, �89 = x  for x � 9  

(iii) 0<7(x ,  y) <rain{x, y} <_x for (x, y) �9  
(iv) 0 < OT(x, y) /Ox < 1 for (x, y) �9 Int (732): 

1 (v) 07 (x, y)/Ox < 07 (x, z) /Ox if  x �9 Int (7:)) and 0 < y < z < ~ ~. 

Proof. The first three properties are obvious from the definition of 3,. The last 
two follow from the identity 

O~f(x, y) _ cot 2 x + l  
(x, y) �9 Int(/)2), 

Ox c o t 2 y + l  ' 

which completes the proof of the proposition. [] 

The function ~ will be used for computing the rearrangements of piecewise 
linear functions. The following lemma gives its basic role. 

L e m m a  2.1. Let I i = ( a l , b l )  and I2=(a2,b2) be disjoint, open and bounded 
intervals of positive length. Let I be an interval of length ]I1]+]I2[. Set E=I1UI2 
and assume f : E-+ R has a linear restriction to the subintervals I1 and I2 with 
f ( I 1 ) = f ( I 2 ) .  Let (a , /~) �9  assume ] f ' ] = t a n a  in 11 and ] f ' ] = t a n 3  in I2 
and set ~/=7(a,/3). Then there is a decreasing linear function g: I--+R such that 

g l  ---- _ t a n  "~ 

and 

(13) l{x e > x}l = l{x e E: f(x) > X}I 

for all A E R .  

Proof. Let J = ( A ,  B), A < B ,  the range of f ,  i.e., 

J = f ( E )  = f ( I1)  = f(I2) .  

We may assume f ( b l ) = B ,  otherwise we replace f by f(al +bl--x) on I1. Similarly, 
we may assume f ( a 2 ) = B  so f ( a l ) = f ( b 2 ) = A .  

There is also no loss in generality in assuming a1 <bl=a2<b2 so that f is 
continuous in E =  (al, b2). Elementary geometry shows that ifg is the linear function 
on E with g ( a l ) = B  and g(b2)=A, then g satisfies (13) and g ' = -  tan ^t. The lemma 
is proved. [] 
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We shall next show some inequalities involving the function 7. We first define 

an, bn: D n • D n ----> R by al (x, y) =7(x, y) and bl (x, y) =x+y  if x, y E D .  

If n > 2  and x, y E D  n, we set 

n- -1  

an(x, y) = 7(xl, y , )+ y~  I~(x,, y~)-~(x~+,, Y~+l)l, 
i = 1  

n - -1  

bn(x,y) =x~+yl+~(Ix~-x ,+ ,F+ty~-y ,+ l l ) .  
i = 1  

We next define C~n,/3n: D n • D n • D- -+R by 

c~l(x ,y , t )=7(x ,y)+l t -7(x ,y)]  and /31(x ,y , t )=x+y+]t -x]  

for x, y, tED. If  n > 2  and if x, y E D  n, tCD, we set 

an(x, V, t) = an(x, V)+ It-7(xn, Vn)l, 
~n(X, y, t) = bn(x, y)+]t-xn[.  

We can now give some basic inequalities. 

P r o p o s i t i o n  2.2.  Let n> l and let x, yED n and tED. Then 

(14) an(x, y) <_ bn(x, y), 

(15) an (x ,  y, t) _< r (x, y, t). 

We shall base the proof  of Proposi t ion  2.2 on the following lemma. 

L e m m a  2.2.  Suppose f: D--+R satisfies 0_<f '_<l.  Let OED and A E R  and set 

g(x) = x +Ix-Ol- f(x)-If(x)-Al. 

Then g(x)>_g(O) for all xED. 

Proof. Let h(x)= f ( x ) + l f ( x ) -  A ]. Clearly 

0_<h '_<2 i n D .  

If  0 < 0 < l y r ,  we have tha t  g ' = 2 - h ' > 0  in the interval (0, �89 If 0 < 0 <  t _ _ 57r, we see 

tha t  g'=-h'<_O in (0,0) so in all cases g(x)>_9(O). [] 

Proof of Proposition 2.2. We begin by verifying the case n =  1. If  x, y, t E D ,  we 

have tha t  

al(x,y) < x < x + y = b l ( X , y )  
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which establishes (14) in this case. If t>_~/(x,y), then (~l(x,y,t)=t<_x+lt-xl<_ 
/31(x, y, t). If 0 < t < 7 ( x  , y), we have 

cq(x, y, t) = 27(x, y ) - t  < 27(x, y) <_ x+y  < 1~1 (x, y, t) 

which establishes (15) when n=l .  Let now n_>2 and assume that  (14) and (15) hold 
in the range 1, 2, ... , n - 1 .  For x E R  n let &ER n-1 be the vector (x2,xa, ... ,x~) and 
set x*=(x2,&). Let en=bn-a~ and Cn=~n--Og n. If x, yEg) ~ and tER,  it follows 
from Lemma 2.2 that  

e~(x,y) >_e~(x*,y*)= e~-~ (~, !)) _> 0. 

Similarly ~n (x, y, t) > Sn (X*, y*, t) =en_ 1 (&, ~), t) _> 0. Hence the proposition follows 
by induction. [] 

3. T h e  m a i n  i nequa l i t y  

We shall in this section develop the main step in the proof of Theorem 1.2. We 
begin by defining F: Da--+/) by setting 

F(x ,y , z )=~(x ,  7(y,z)) for x,y,  zEl ) .  

Notice that  if (x, y, t)<Int(/)3),  then 

(16) cot F(x, y, z) = cot x+co t  y+co t  z, 

so F is a symmetric function. We shall now define A,~,B~: / )n•215 by 
setting Al(x, y, z )=x+z+2F(x,  y, z) and Bl(x, y, z )=x+2y+z.  It is easily seen 
that  

(17) A1 5 B1. 

For n>2 and x, y, zET) n we now set 

n--1 

An(x, y, z) =z l  +F(COl) + ~--~ I r ( ~ i + l ) -  r(~i)l  +r(co~)+z~, 
i=1  

rt--1 

Bn(x, v, z) =  (Ixi+l -x J + Jy +l -y,l+lz +l -z Jl+x, +w 
i=1  

Here coy =(z j ,  yj, zj), l <j<_n. 
We can now formulate the main result of this section. 
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(18) 

(19) 

Put  

(20) 

and let 
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T h e o r e m  3.1. Let n>_l and suppose w E / ) ~ x / ) ~ x / )  ~. Then 

A,~(w) < Bn(w). 

We will next introduce some notation. Let Un=T )'~ xT: )n •  n and let 

An = Bn - An. 

From (17) follows 

(21) 

Also set 

5n = min An 
Vn 

Dn = min{51, ..., 6n}. 

61=D1 = 0 .  

and notice that  ~nr  since An is continuous on U~. 
l < j < n  let r~(~)=r(~j, yj, zj) 

L e m m a  3.1. Suppose n>2, (in<0 and D n - l = 0 .  
WEQn, 

For w=(x,y ,z)EUn and 

Then n is odd and for all 

(22) F2j(w) < min{r2j_l(~),  r2j+l(,~)}, 2 < 2j < n, 

(23) r l ( ~ )  > rz(~),  rn(~)  > rn_l(W), 

(23) F2j+I (~) > max{r2j (w), F2j+2(~)}, 2 < 2j < n - 2 .  

Proof. Let ~=(x,y,z)EU,~, x,y. zED n. 
For p=(pl , . . . ,pn)ER n let /5=(p2,... ,pn). Let ~=(J:,~),~)cUn-1. If Fl (w)< 

r2(w), then using that  A ~ _ I ( ~ ) > D n _ I = 0  we get 

A~(~) = a~_l (~)  +x2 + Ix1 -x21-Xl  +yl +lyi - y ~ l - y 2 + z i  - z2+lz i  -z21 >_ o. 

Similarly, if F~(w)~Fn-I(w),  then an(w)_>0, which shows (23). Let now l < i < n  
and let W = ( X ,  Y, Z), where X, Y, ZED n-1 , 

X j  : x j ,  

Yj = yj,  

Z j  = zj 



for l < j < i  and 
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whenever g(~)=m(g). If 

f({) > max{a, b} 

whenever g(()=m(g) we will say that  gEA//1. 
For QER set fQ(x)=-Qx. Let A be the class of all fEC(:D) such that  f is 

continuously differentiable on Int(D) with 

0 < f ' < l  on Int(T~). 

L e m m a  3.2. Suppose gE.A41 has f as its base function. Le t tED.  If f =fo, 
then g(~)=m(g) if and only i f~E[a ,  fl]. / f  f = f l ,  then g(~)=m(g) if  and only if 
max{a, f l }<{<  ~Tr.1 If  fEA ,  then g({)=m(g) if and only i f {=max{a,  fl}. Here the 
parameters ~ and fl are defined by the relation (25). 

Proof. We may without loss of generality assmne 0 < 3  and set h(x )=ix -a]+  

I Xj :Xj+l, 
Yj = Yj+I, 

Zj = Zj+l  

for i<j_< n -  1. If Fi (w) is between Fi-  1 (w) and Fi+ ~ (w), then 

An(~)  = An_ l (W)  + Ixi-~ - x ~ l +  Ixi -x~+~ I -Ix . -~  - z~+ l  I 

+ lYi-1 -Yd  +lyi-yi+lJ-Jy,-1 -yi+ll  

+ { z ~ _ l - z ~ } + I z ~ - z i + l I - { z , _ , - Z ~ + l {  _> 0. 

Using (23), we now see that (22) holds. Again using (23), we see that n must be 
odd. Finally (23) yields (24), which completes the proof of the lemma. [] 

For fEC(~D) we let re(f) denote the minimum of f on ~D, i.e., 

re(f) = min{ f (x)  : x E T~}. 

We shall now consider functions gEC(D) of the form 

(25) g(x) = I z - a i + i x - f l I - I f ( x ) - a I - I f ( x ) - b I + c ,  

where a, fl~T~ and a,b, cER. If (25) holds, we will say that g has the function f as 
its base. We say that  gEM0 if gEC(:D) has the form (25) and 

f(~) < min{a, b} 
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If f=fo,  then g=h+C for some constant C, which concludes the lemma in this 
case. Suppose now that  g(()=m(g) and f E A U { f l } .  Since f is increasing, we have 
for x>~  that 

f(x) _> f(~) > max{a, b} 

so from (25) follows that  

g(x)=h(x)-2 f (x)+C,  x>~. 

Since f is strictly increasing and h is non-increasing on (-oc, /3) ,  we see that  if 

were less than/3,  then 
g(~) < g(~), 

which contradicts the definition of~. Hence ~>_~ if f E A U { f l } .  Ifx>~----max{a, ~}, 
then h(x)=2x-(~-~.  If now lEA, then g is strictly increasing on (/3, �89 so 
g(~)=m(g) if and only if ~--~ in this case. If f = f l ,  then it is easily seen that  
g(x)--g(~) for x > ~  which completes the proof of the lemma. [] 

A straightforward modification of the proof of Lemma 3.2 yields the following 

result. 

L e m m a  3.3. Suppose gE~40 has f as its base function. Let ~E'D. If f=fo,  
then g(~)=m(g) if and only if~E[(~,~]. If f = f l ,  then g(~)=m(g) if and only if 
0<_~_<min{a,~}. If fEA,  then g(~)=m(g) if and only if ~=min{(~,~}. Here the 
parameters a and/3 are defined by the relation (25). 

Let Vc{1,2, . . . ,n},  x E R  n and tER .  We define qv(x,t) as the point y E R  n 

with yi=xi for i~V and y~=t when iEV. If w=(x,y,z)EUn, we put Qv(w,t)= 
(qv (x, t), y, z) and 

(26) E~'V(t) = A~(Qv (w, t)). 

In the special case when V={k} ,  l<_k<_n, we will write E~'k=E~ 'V. For w-- 

(x, y, z)EU,~ we set 

Oi(w)=~(yi,zi) and )~i,~(t)=~(t, Oi(w)). 

We observe that  E~ ,k has ~k,~ as its base function. We remark that  if wEf~n, then 

under the conditions of Lemma 3.1 we have 

(27) E~ 'k E .M1 

for k odd and 

(28) E~ 'k E M0 

for k even. 
The following result is an immediate consequence of the previous two lemmas. 

The verification is left to the reader. 
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L e m m a  3.4. Suppose n> 3, 5n<0 and Dn-1 ----0. Assume w=(x,  y, z) Cl2n and 
1 < k < n. If  k is odd, then 

= E ,  (max{xk-l,Xk+l}) 

and if k is even, then 
5~ = E~'k (min{xk-1, Xk+l }). 

If  Ok(w)=O and l < k < n ,  then 

5~ =E~'k(t) for all tE  [Xk-l,Xk+l]. 

If  Ok(w)>O, then 
Xk_>max{xk--l,Xk+l} for k odd 

and 
Xk ~ min{xk-l ,Xk+l} for k even. 

We shall next analyse the function E~ 'V. 

L e m m a  3.5. Suppose n>3, 5~<0 and Dn-l=O. Assume j >  l satisfies 2 j<n  
and set V={1,  2, ..., 2j}. Let ~ED and assume w=(x,  y, z)E~t~ satisfies 

X 1 ~ X  2 ~ ... ~ - X 2 j  ~ .  

If  ~_x2i+l, then 
~n = E~'V(x2j+l) 

so Qv(~, x2j+l) E~n. 

Proof. We need only treat the case when ~<x2j+l .  Setting Oi=Oi(w) we see 
from Lemma 3.1 that  

~(~,02k_l)>~(~,O2k), l < k < j .  

From Proposition 2.1 follows that for all t CT) 

~/(t, O2k-1) >~(t ,02k) and O~(t, O2k-1) > O~/(t, O2k) 
- O t  - O t  ' 

whenever 1 < k < j .  
Also -~(~, 02j) <F2j+I (w). Letting 

a = sup{u E [~, x2j+l]: ~/(t, 02j  ) ~_ F 2 j + I  (02) for ( < t < U} 

we have that ~<a~_x2j+l. If tC [~, a], then 

J 

E~'V (t) = -2t+2 ~ (~(t, 02k)-~(t, 02k-1 ))+~, 
k=l  

where (I) is independent of t. Hence E~ ,v is decreasing on [~, a] so 5,=E~'V(a) and 
Q v (w, a)c ~t~. In particular, ~/(a, 02i)<F2j+I (w) so we cannot have a E (~, x2y+l), 
i .e.,  a:x2j+l, which yields the lemma. [] 
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L e m m a  3.6.  S u p p o s e  n > _ 3 ,  5n<O and D n _ l = 0 .  Assume that j>_l satisfies 
2j<n and put V = { 2 j ,  2 j + l } .  Assume w=(x, y, z ) � 9  satisfies 

X2j ~ X2j+I  ___~ X2j--1. 

T h e n  

5~ = E~ 'v (x2j- t ) 

SO Qv(w, x2j-1)�9 

Proof. Put  ~--x2j =x2j+l. We need only t rea t  the case when ~ < x 2 j - 1 .  Set t ing 
Oi=Oi(cd) w e  find from Lemma 3.1 tha t  

~'((,02j) <~ (~ ,02 j+ l )  and 7(~,02j) < F 2 j - l ( w ) ,  

so from Proposi t ion  2.1 it follows tha t  for all t � 9  

"7(t, O2j) <~f(t, O2j+l) and O~[(t'O2j) < O~/(t'O2j+l) 
- O t  - Ot 

Suppose now tha t  2 j + l = n .  Let  

a = sup{u �9 [~, x2 j - l ]  : 7(t, 02j) <_ r2j-1 (w) for all t �9 [~, u]}. 

If t C [~, a], then  
E~ 'V (t) = 2("/(t, 02j) - 7(t, 02j+l )) + (I), 

where (I) is independent  of t. Hence E~ ,v is decreasing on [(, a] so 5n=E~'V(a) and 

Qv(~,a)Cf~n.  
In part icular ,  "~(a, O2j)<F2j_l (w) ,  so we cannot  have aC(~, x2j-1), i.e., a =  

x2j-1 which establishes the lemma in this case. 
We shall now t rea t  the remaining case, so we assume now tha t  2 j + l < n .  In this 

case  ~/(~,02j+l)>F2j+2(w) so we now se t  b=sup{uC[~.x2j-1]:~f(t, O2j)<_F2j-l(W) 
and "y(t, 02j+1) > F2j+2 (w) for all t E [~, u] }. If t �9 [~, b], then  

E~ ,V (t) = - t  + I t -  x~j+21 + 2(-y(t, 0~j) - 7(t, 02j+1 )) + ~ ,  

where r is independent  of t. Hence E~ 'v is decreasing on [~, b] so 5n=E~'V(b) and 
Qv(w, b)�9 In part icular ,  ~(b ,02 j )< r2 r  and y(b, O2j+l)>F2j+2(w), so we 
cannot  have b � 9  x2j-1) ,  i.e., b=x2 j -1 .  This  concludes the proof  of the lemma. [] 

The  next  lemma will provide the crucial par t  of the proof  of Theorem 3.1. For 
~ � 9  we let Qn(~) denote  the point  in R n with all components  equal to ~. 
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L e m m a  3.7". Suppose n> 2, 5,~<0 and D~_t =0.  Assume W = ( X ,  Y, Z ) E ~ .  
Then there exists a ~ED such that (Qn(~), Y. Z ) E ~ n .  

Proof. Let ~tn(W)={w=(x, y, z )E~n  :y=Y and z=Z} and notice WEan(W).  
For w=(x, y, z)EUn let N(w) be the largest integer pE{1, ..., n} such that  xi=xl 
for l < i < p .  Set 

N = max{N(w):w E ~n(W)}  

and pick w=(x,y,z)E~n(W) such that  N=N(w). Assume that  N<n. We shall 
show that  this assumption leads to a contradiction. Note that  n is odd by Lemma 3.1, 
so that  n>3 .  

Suppose first that  N = n - 1 .  From Lemma 3.2 follows that  5n=E~'~(XN) so 
~ = Q n  (w, xg)E ~,~ (w) with N ( ( ) = n .  This contradicts the definition of N. 

Suppose next that  N < n - 1 .  Put  Oi =?(Yi, z,). From Lemma 3.4 it follows that  

5n=E.~'N+I(xN), if ON+] =0.  Hence, if 0N+ 1 =0  we have ~=QN+] (w, XN)EQn(W) 

with N ( ( ) > N + I .  Again this contradicts the definition of N, so we must have 

0N+I >0.  

We can therefore from now on assume that  0N+1>0 and l < N < n - 2 .  Also 
recall that  n must be an odd integer. 

We first t reat  the case when N is even, say N=2j. Since N + I  must be odd 
with 0N+1>0 it follows from Lemma 3.4 that  XN+I~X N. Setting V={1 ,  ... ,N}  it 
follows from Lemma 3.5 that  (=Qv(W, XN+])E~(W). But N ( { ) _ > N + I ,  which 
again leads to a contradiction. 

It  remains only to treat  the case when N is odd and 0N+1>0. Setting #N = 
min{xN,xg+2} it follows from Lemma 3.4 tha t  XN+I~aON~XN. Put t ing now ~ =  
QN+t(w, LON), we also see from Lemma 3.4 that  q E ~ ( W ) .  If  LgN:XN then N(q)>_ 
N + I ,  which is a contradiction. If ~ON<XN, then ~ON:XN+ 2 SO if q=(~,  Y, Z), then 

~N+I :~N+2:LON<XN . Hence ~ fulfils the assumptions of Lemma 3.6. Setting S =  
{N+I ,N+2} ,  we therefore have q=Qs(p, x N ) E ~ ( W ) .  But N(q)>N+2 which 
again contradicts the definition of N. 

So in all cases the assumption N<n is impossible, which yields the lemma. [] 

We can now prove the main result of this section. 

Proof of Theorem 3.1. Since An(0)=0 ,  we see that  ~ < 0  for all n > l .  Hence 
it is enough to show that  D,~=0 for all n > l .  From (17) it follows that  S t = D r = 0 .  
We shall now proceed by induction. 

Suppose n>_2 and 

(29) Dn-1 = O. 
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We shall prove that  D~=0.  It is enough to show that  5n=0. We shall argue by 
contradiction, so assume 

(30) 5 ,<0 .  

Define the mapping 6: R ~--+Rn by 

Q(X):(Xn,...,Xl) for X:(Xl,...,Xn). 

For w = (x, y, z) E Un we set 

R(~)=(o(z),o(~),e(x)) EUn. 

Since A~(R(w))=An(w),  we have that  

R: ~ -----+ ~n- 

From Lemma 3.7 follows the existence of ~ E 9  and y, z E R  n such that  if x=Qn(~) ,  
then w=(x, y, z) Egtn. 

Since 0 (x ) =x  in this case, we have that  R(w)=(Q(z),Q(y),x)El2n. Using 
Lemma 3.7 one more time, we see that there is an ~ET) such that  if p=Qn(~), 
then Y=(p, Q(y),x)Egtn. Hence W=R(V)E~n. Since W=(x,y,p), we see by set- 
ting 0='y(~, ~) that  

(~n: An(W) 
n-1 

=Y~+~n--(~(Yl,0)+~(Yn,0)I+~(lY~--Yi+II--I~(~,0I--~(Y,+I,0)I) > 0, 
i=l 

by Proposition 2.1. This contradicts the assumption (30) which completes the proof 
by induction. [] 

4. T o t a l  c u r v a t u r e  o f  p i ecewise  l inea r  f u n c t i o n s  

Let I=[a~ b] be an interval and let fEC(I). We will say that  f is unimodular if 
there exists a c E  [a, b] such that the restrictions fl[a,c] and fi[c,b] are both monotone. 
We shall begin by showing that  if f is unimodular and piecewise linear, then T(f*) <_ 
T(y). 
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L e m m a  4.1. Let n> l and assume 

Xn < X n - - I < . . . < X l  <X0 ~ 0  <~1 < . . . < ~ n - 1  <~n'  

Put a=x~ and b=~n. Suppose Yo>Ya >...>Yn and assume that f is piecewise linear 
on [a, b] with nodes {x,~, xn-1,  ..., x0, ~o,-.., ( . } .  Assume that f ( x i ) = f ( ~ i ) = y / ,  0<< 
i<_n. Then 

T ( f* )  <_ T ( I ) .  

Proof�9 We define for l < i < n  the angles Oti ,~ic(O , 17r) by 

t anc~ i -  Y i - Y i - 1  and t a n / ? / -  Y i - l - y i  
X i - - X i - - 1  ~ i - -~ i - -1  

Notice that f ' ( x ) = t a n  c~/ for xE (xi, xi-1),  and f ' ( x )  = -  tan/?i for x 6  (~i-1, ~) .  It 
is easily seen that  

n--1 

T ( f )  = cq +ill  + Z (Io~/+1 - ~ / I  + I~z+a -~/I)-  
i=1 

Let E=I  if ~0>x0 and e--0 otherwise. From Lemma 2.1 it follows that  

n--1 

T( f* )  = ~7(al ,  i l l )+  Z t~/(c~i+l, r 
/=1 

Hence the lemma follows from Proposition 2.2. [] 

We will need the following variant of Lemma 4.1. 

L e m m a  4.2. Let m > n >  l and assume 

Xn < X n - - 1  < ' - - < X l  <X0- -~0  <~1 < - . -<~m--1  <~rn.  

Put a =xn and b=~m. Suppose Yo > Yl >... > ym and assume that f is piecewise linear 
on [a, b] with nodes {xn, Xn-1, . . . ,  xo, ~0, ..., ~m}. Assume that f ( x , )= Y i  for 0 < i < n  
and f (~i )=y/  for 0 < i < m .  Then 

T ( f* )  <_ T ( f ) .  

Proof�9 We define for 1 < i < n the angle ai 6 (0, �89 7r) by 

Yi -- Yi- 1 tan c~i -- - -  
X i - -Xi--  1 
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For l < i < m  we define/3i �9 (0, 17r) by 

tan3~ - Yi-l-Yi 

It is easily seen that  

n--1 

T ( f )  = ol1 +t3, + ~ (Ioq+ z - oq I+ - ~ I) + - A + I  I + T ( g ) ,  
i = 1  

where g=fl[~n,b]" Let e = l  if (0>x0 and e=0  otherwise. From Lemma 2.1 it follows 
that 

n - 1  

T ( f * )  = ~7(o~1, f l l  ) '~ Z (l~f (a i+ l ,  3i+1 ) - ? (a i ,  .3i )1) + I 3n+, - '7 (~ , , ,  ~ . ) I  + T(g). 
i = l  

Hence the lemma follows from Proposition 2.2. [] 

We can now analyse the total curvature of the rearrangement of a unimodular 
piecewise linear function. 

L e m m a  4.3. Let I=[a, b] be an interval. If f EC(I) is unimodular and piece- 
wise linear, then 

T(f*) <_ T(f). 

Proof. Let cE[a,b] be such that f][a.cl and fi[c.b] are monotone. We may with- 
out loss of generality assume that f is non-decreasing on [a, c]; otherwise we consider 
- f  instead. The result is trivial if f is also non-decreasing on [c, b] so we may as- 
sume that  f is non-increasing on [c, b]. The result is also trivial if f (c) �9 {f(a) ,  f(b)}, 
so we will assume that  f(c)>max{f (a), f(b)}. 

Pu t  xo=inf{xqI:f(x)=f(c)} and ~o=sup{xeI:f(x)=f(c)}. Clearly f ( x ) =  
f(c) for all x�9 By approximation, it is enough to treat the case when 
f is strictly increasing on [a, x0] and f is strictly decreasing on [~o, b]. Also, we 
may assume that  f(b)<f(a); otherwise we consider g(x)=f(a+b-x).  Set M={xG 
I :  x is a node for f}  and set V={f(x):xEM}.  Let y0>...>Ym be listing of the 
distinct numbers in V. For l < i < n  let xi=inf{xGI:f(x)=yi} and ~i=sup{xGI:  
f(x)=yi}. For n<i<_m let ~i be the unique solution of the equation f(x)=yi, xEI. 

Clearly, the function f can be viewed as a piecewise linear function with nodes 
{xn, ..., xo, 40,-.-, ~m}. If m=n the lemma follows from Lemma 4.1. If re>n, then 
the lemma follows from Lemma 4.2. [] 
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Let I=[a, b] be an interval. We let N'(I)  denote the class of functions f E C ( I )  
that  satisfy the following two properties: 

(i) There are two points el, c2 E I such that a<cl <c2 <b and the restrictions 
f[[~,~], f[[~,~s] and f[[~2,b] are all monotone. 

(ii) Set m=min{ f (a) ,  f(b)} and M=max{ f (a ) ,  f(b)}. Then m < f ( x ) < M  for 
all x E (a, b). 

We shall next establish the inequality T(f*)<_T(f)  for the case when f E N ( I )  
and f is piecewise linear. 

L e m m a  4.4. Let n > l  and assume that xo< . . .<x~ ,  ~n<---<~o, 77o<...<~?~ 

and Yo>-..>Y~- Assume also that Xn<_(n, ~0<_~0, a<xo and ~?,~<b. Suppose f E 
C([a, b]) is piecewise linear with nodes { a, xo, ..., xn, (n, ..., ~o, ~o, ..., ~?n, b }. Suppose 
furthermore that f (a)>yo,  f(b)<y,~ and y~=f(xd=f(~d=f(od for 0 < i < n .  Then 

T( f*)  < T( f ) .  

Pro@ Let y_l= f(a),  x_ ,=a,  Yn+l ~- f(b), 7]n+l = b  and define ai,bi,c~E (0, 17r) 
by 

tana i  -- Yi -Y i -~  tanbi Y i - Y i - 1  tanci  - Yi-Yi-1 
Xi--1 - -Xi '  ~i --~i-1 ' r]i-1 --~i 

It is easily seen that  

n - 1  

T ( f )  = lal -a01 + E ( l a i + l  -a~l + Ibi+l -bi l  + Ici+1 - e d )  
i=1 

+bl +e l  +a,~ +bn + Icn+ l -cnl.  

Let O=lao-r(al,bl,el)l if ~0=r/0 and O=ao+F(al.bl,Cl) otherwise. Let 4 =  
tcn+l - F ( a n ,  b,~, cn)l if x~ =~n and c2=c~+1 +r(a~,  b., cn) otherwise. From the def- 
inition of F and Lemma 2.1 it follows that  

n--1 

T(f*) =0+y] 
i=1 

where b. 1 <i<n. We now set a~=(al, ..., a,~, bl, ..., b,, cl, . . . ,  c,~)EU,, 
We find by Theorem 3.1 that  

Z ( f ) - T ( f * )  > An(co) + l a 0 - a l  [+ [Cn+l --Cn I - -a0  + a l  --Cn+l +Cn >_ An(CO) >_ 0 

which establishes the lemma. [] 

We can now study rearrangements of piecewise linear functions of the class 
Af(I). 
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L e m m a  4.5. Let I--[a, b] and suppose fEAr(I) is piecewise linear. Then 

T(f*) <_ T(f). 

Proof. Let a<cl<c2<b be such that f has a monotone restriction to each of 
the intervals [a, cl], [cl, c2] and [c2, b]. We may assume that  f is non-increasing on 
[a, cl] since otherwise we consider - f .  

We may also assume that  the restriction of f is non-monotone on any of the 
intervals [a, c2] of [cl, b] since otherwise f is unimodular and the result follows from 
Lemma 4.3. Hence f must be non-increasing on the intervals [a, cl] and [c2, b] and 
non-decreasing on [cl, c2]. Consequently, 

f(b) < f(cl) < f(c2) < f(a). 

Let /1  =[a, c2] and I2=[cl,  b]. Put  Ak=inf{xEIk:f(x)=f(ck)} and Bk=sup{xEIk: 
f(x)=f(ck)}. Then 

a<A1 <_B1 <A2 <_B2<b. 

By approximation it is enough to treat the case when f is strictly monotone on 
the intervals [a, A1], [B1,A2] and [B2,b]. Let A0 solve the equation f(x)=f(c2), 
x E [a, A1], and let B3 solve the equation f (x) = f (cl), x E [B2, b]. Let R =  {~0, .-., ~-~ } 
be the set of nodes of f and let ~=sup{~ER:~<A0} and ~)=inf{~ER:~>B3}. 

It is easy to see that  possibly after introducing additional nodes, we have that  
g=fl[a,~] satisfies the assumptions of Lemma 4.4. Let f l  =fl[a,Ao], f2=fl[B3,b] �9 Then 

T(f)  = T(g) + T(fl)+ T(f2) 

and 

T(f*) = T(g*) +T(f~) +T(f2) 

which yields the lemma. [] 

5. P r o o f  o f  t h e  m a i n  resu l t s  

We shall in this section finish the proofs of our main results. We begin with 
the following lemma. 
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L e m m a  5.1. Let I= [a ,  b] be an interval. If f cC(I) is piecewise linear, then 

(31) T(f*) < T(I). 

Proof. Let n > 2  be the number of nodes of f .  The result is trivial if n=2 .  If 
n=3 ,  the result follows from Lemma 4.3. We shall prove (31) by induction over the 
number of nodes of f .  

We shall therefore assume that  n > 4  and that (31) holds for all piecewise linear 
functions with less than n nodes. 

Let Y={1, ... ,n}, Y*={2, ... , n - l } ,  and let ~1 = a < ~  < . . .<~n=b  be the nodes 
of f .  Set ~/ i=f(~) ,  m=min{~:iEV}, M=max{~:icV}, m*=min{~:iEV*} and 
M*=max{~h:iCV*}. We will first treat the case when M*=M. Pick jEV* such 
that  ~j=M=M*. Set gl=fI[a,~A and g2=fI[~j,b]. Let G1 be the increasing re- 

G * [0, arrangement of gl, and put 2=g2 . Define 0, ~ c  �89 by 

(32) t a n 0 = f ' ( ~ j - )  and t a n ~ = - f ' ( ~ j + ) .  

Then 

T(f) = T(gl)+ T(g2)+0+4. 

Define 0", ~* E [0, �89 by 

(33) tanO*=G'l(~j- ) and t a n ~ * = - G ~ ( ~ j + ) .  

Set G(x)=Gl(x) if a<x<~y and G(x)=G2(x) if ~j<x<b. Now 

T(G) = T(G1) +T(G2) +0" +~*. 

By the induction assumption T(G1)<_T(gl) and T(G2)<_ T(g2). Since 0 < 0"< 0 and 
0_< ~*_< ~, we find that  T(G)<_ T(f). Because G and f are equimeasurable, f* =G*. 
Since G is unimodular, we have T(f*)=T(G*)<_T(G)_<T(f), which establishes the 
induction step in this case. 

If m* =m,  the previous reasoning applied to - f  shows again that  T(f*)<_T(f). 
We are now left with the case m<m*<_M*<M. We may assume f (~n)<M*,  since 
otherwise we consider - f .  Pick jEV* such that ~?j=M*<M. Set gl=f[[a,r 
g2=fl[r162 and let O, ~C [0, �89 be defined by (32). Then 

T(f) = T(gl) + T(g2) +0+ ~. 

Let g(x)=f(x) for a<x<~j, g(x)--g~(x) for ~j <x<b. Then g and f are equimeasur- 
able so f* =g*. Furthermore, gcC(I) is piecewise linear. Let ~*c [0, �89 be defined 
by tan ~ * = - f ( ~ j + ) .  Since 0_<~* _<~, we have from the induction assumption that  

(34) T(g) = T(gl)+T(g~)+O+~* <_ T(f). 
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Set #=min{f(x):xE[a,~j]}. T h e n / z < M *  and if p=M*, we must have f(x)=M* 
for ~2<x<~j and consequently g is decreasing on [a, b]. Hence, if p=M*, we have 
f* =g,  so (31) follows from (34) in this case. 

We suppose now that #<M* and pick k, l<k<j, such that r/k=#. Put  h i =  
flla,~] and h2=fl[~,~jl .  Let H1 be the decreasing rearrangement of hi and H2 the 
increasing rearrangement of h2. Define H by 

Hi (x )  f o r a < x < ~ k ,  

H(x) = H2(x) for ~k < x < ~j, 

9(x) for ~j < x < b. 

Then H and f are equimeasurable, HEC(I) is piecewise linear and arguing as in 
the derivation of (34) one finds 

T(H) < T(g) < T(f). 

By the construction the function HCA/'(I) so T(f*)=T(H*)<T(H)<T(f). The 
proof of the induction step is complete, which establishes the lemma. [] 

Proof of Theorem 1.2. Let X={~o,...,~}, n > l ,  be a partit ion of I. For 
f eC(I) let 

T(I, X) = 13('~, X), 

where ~, is the graph of f .  Let Oi E ( -  1 1 

tan0i = f(~i)-f(~i-1), 1 <i<n. 

Then 
n - - 1  

T(f, X) = E I0i+1 -Oil. 
i=1 

Notice that  if fnEC(1), f ~ f  uniformly, then T(f ,~,X)~T(f ,X).  Also f , ~ f *  
uniformly. 

Pick f~EC(I) such that  f~-+f uniformly and f~ is a piecewise linear function 
for all n, such that  f~ has its nodes on the graph of f .  Then T(f~)<T(f) so 

T(f*, X) = lira T(f~, X) <_ lim sup T(f*) < T(f) 
~'t, - -+ ~ n -- '~ CX2 

by Lemma 5.1. Since 

T(f*) = sup T( f* ,  X),  

where X ranges over all partitions of I, we have proved the theorem. [] 
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L e m m a  5.2. 

Also 

Suppose f cC(I) ,  I=[a, b], is piecewise linear. 

I}fllc = lim iT(e f). 
e$O C 

IIf*llc ~ Ilfllc. 

Proof. Let a = ~ o < ~ l < . . . < ~ n = b  be the nodes of f .  Set 

Qi = f (~ i ) -  f(~i-1) 1 < i < n. 
~ i - - ~ i - 1  ' 

N o w  

Then 

n--1  n--1 

1 T ( e f  ) = _1 Z i arctan(eQi+l)_arctan(eQi) l - -~ ~ [Qi+l-Q~I = Ilfllc 
i=1 i=1 

L e m m a  5.3. 
Then 

z<_(, 
x>_~. 

a,(x) = rj01 a(x, ~) d.(~). 

Let I=  [a, b]. Suppose f is twice continuously differentiable on I. 

Ilf*llc ~ Ilfllc- 

Proof. By rescaling there is no loss in generality in assuming that I =  [0, 1]. Let 
h= f ' .  Then 

f(x) = (1 - x ) f ( 0 ) + x f ( 1 ) - O h ( x )  

and Ilfllc= f 1 Ih(x)l dx. 
Let X={~o,  ... ,~n}, 0=~0<. . .<~n =1 be a partition o f / .  Let F = A x ( f )  denote 

the piecewise linear function in I whose set of nodes equals X and F(~i)=f(~i). 
We claim that  

(36) IIAx(f)llc ~ Ilfllc- 

the Green function 

C(x,~) = 
(1 -~)x ,  

(35) 
[ (1 -x )~ ,  

For a measure # on (0, 1) set 

as e$0. Since f* is piecewise linear, the lemma follows from Theorem 1.2. [] 

We shall next prove Theorem 1.1 in the case of smooth functions. We will use 
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If g is twice continuously differentiable with g" >_0, then G =  Ax (g) is convex. Hence 

IIAx (g)IIc = G ' (1 - )  - G'(0+) = g'(p) -g'(q) 

for some p, qE (0, 1). As g" >0, we have that g'(p) -g'(q)_<g'(1) - g ' ( 0 ) = f t  g" dx= 
Ilgllc, Hence IIAx(g)llc<_ Ilgllc- Notice that we can write f = f ~ - f 2 ,  where f l  and 
f2 are both twice continuously differentiable, convex and 

IlflIc = Ilfl l ie+ IIf211c 

Hence (36) is proved. By selecting a suitable sequence X (m) of partitions we con- 
clude the existence of a sequence {fm}~=] of piecewise linear functions in C(I) 
such that  ]]fmiiC<[iflic and fm-+f uniformly. If p E C k ( 0 ,  1) with ]~0_<1, then 
the previous lemma gives that  

ficp"f* dx -- lim f ~"f~ dx l imsup IIS~llc M IISlIc. _< 
77~ "-+ (X) . ] /  rg l  --~- o o  

Hence IIf*llc<flfllc which shows the lemma. [] 

Proof of Theorem 1.1. By rescaling we may without loss of generality assume 
that  I=[0 ,  1]. Suppose feC(I)  with Ilfllc<~- Then there is a measure # on (0, 1) 
such that  

(37) f(x) = (1-x)f(O)+xf(1)-Glz(x), x 6 [0, 1]. 

In addition Ilfllc equals the total variation of #. Notice that  G is defined for all 
x , [ C R  by (35). From (37) it follows that  f can be extended to a function F on 

R such that  eli ~"Fdx]<-][cPi[~[if]] C whenever ~26C~(R).  Let ~ E C ~ ( - 1 ,  1) be 
nonnegative with fl r For ~>0 set 

Let F~=F.qo~ be the convolution of F with ~p~. Putt ing f~=F~lz, we have that  

ilf~]Ic -< ]]$Iic 

and f~-+f uniformly on I. If ~eC~(O, I) with [~I_<I, then the last lemma implies 
that 

f~ "f* dx lira f ~"F dx < iiStLc- 
Jt ~ - 

The theorem is proved. [] 
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