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A decompos i t i on  of funct ions 
with  zero means  on circles 

Jos ip  Globevn ik  

Abs t r ac t .  It is well known that every H61der continuous function on the unit circle is the 
sum of two functions such that one of these functions extends holomorphically into the unit disc 
and the other extends holomorphically into the complement of the unit disc. We prove that an 
analogue of this holds for H61der continuous functions on an annulus A which have zero averages 
on all circles contained in A which surround the hole. 

1. I n t r o d u c t i o n  a n d  t h e  m a i n  r e s u l t s  

Given  a E C  and  CO>0 wri te  A(a ,  CO)={~cC:] I -oI<CO } and A = A ( 0 ,  1). Denote  

by B the  open  uni t  bal l  in C 2. A funct ion f on a set K c C  is cal led H61der 

cont inuous  on K (wi th  exponen t  ~)  if there  a re  cons tan t s  M < : x :  and  c~, 0 < c ~ < l ,  

such tha t  I I ( z ) - f ( w ) l < _ M I z - w l  z, w e K .  
Let  a E C ,  0 > 0  and  let f be a H61der cont inuous  funct ion f on bA(a, O). It  is 

well known t h a t  

(1.1) f = f+ + f - ,  

where  f +  and  f -  are  HSlder  cont inuous  funct ions  on bA(a. P) such t ha t  f +  

(1.2) has  a cont inuous  ex tens ion  to  ~(a, co) which is ho lomorphic  on A ( a .  co); 

and  f 

(1.3) 
has a cont inuous  ex tens ion  to  [C U { ~c }] \ A (a, 0) which is ho lomorph ic  

on [ C U { o c } ] \ / ~ ( a ,  CO) and vanishes at  ~c: 

and  this  decompos i t ion  is unique.  In fact,  

1 fb f(~)d~ {f+(z), zEA(a,o), 
(1.4) 27ri A(a,o) ~ - z  - i f ( z ) ,  z e [ C u { ~ c } l \ A ( a ,  co). 
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In the present paper we consider functions on the annulus 

A = { ~ E C : r l  < I~l-<r2}, 

where O<rl<r2<oc and ask for a decomposition similar to (1.1). Suppose that  
f is a HSlder continuous function on the annulus A. For every circle bA(a, Q)cA 
surrounding the origin we have flbA(a,e)=f+~,e+f~e, where f~Q satisfies (1.2) and 
f~,e satisfies (1.3). In general there are no functions f+ and f -  on A such that  
f+ Ib~(a,e) = f ~  and f-]bZx(~,~) = f~-.~ whenever bA(a, 6) c A  surrounds the origin. In 
the present paper we prove that  there are such functions f+ and f -  on A whenever 
f satisfies 

1 f02" (1.5) -~  f (a+ee i~ dO = 0 

for every bA(a, p )cA  which surrounds the origin: 

T h e o r e m  1.1. Let f be a H61der continuous function on A which satisfies 
(1.5) whenever bA(a, 6 ) c A  surrounds the origin. Then f = f + +  f - ,  where f+ and 
f -  are HSlder continuous functions on A such that for each bA(a, 6 ) c A  which 
surrounds the origin, f+lbA(a,v) satisfies (1.2) and f-lbA(a,e) satisfies (1.3). 

We will also show that, as in the case of the circle, we can view f+ and f -  as 
the boundary values of functions, holomorphic on appropriate domains. To describe 
this, we first rewrite the circle case in a form suitable for generalization. 

Let f be a continuous function on bA(a, p). The idea is to define a new function 
F on {(~, ~):~EbA(a, 6)}, that is, on bA(a, 6) "lifted" to 

~={(~,~):~cc}, 

by 
F(~, ~) = f(~), ~ C bA(a, 6), 

[G2] and then to write F as the sum of boundary values of holomorphic functions. 
Let 

Aa,e = {(z, w) �9 C2: (z-a)(w-?t)  = 62}. 

The intersection Aa,eNE is the circle {((, ~):ff�9 6)} whose complement in A~,e 
has two components, A~+e and AS, e, where 

Aa, e - { ( z , w ) : ( z - a ) ( w - a )  62 a n d 0 < l z - a l < 6 } ,  

ha, e =  { ( z , w ) : ( z - a ) ( w - ~ )  =62 and 6<  [z-al} 

= {(z,w): (z-a)(w-gt)  =62 and 0 <  Iw-al < 6} 

= {(z, w): (~, 2) �9 A~*,e}. 
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The sets A+,o and A~,e are closed one-dimensional complex submanifolds of C 2 \ E  
attached to E along 

bA+~ =bAg, o = {(~, ~): ~ C bA(a, Q)}. 

It is easy to see that  a continuous function h on bA(a, O) satisfies (1.2) if and only if 
the function H defined on bA+o=bAa, o by H(~, ~) =h(~), ~EbA(a, 0), has a bounded 

+ + continuous extension from bA+,o to Aa,eubAa, ~ which is holomorphic on A+0 [G2]. 
Similarly, h satisfies (1.3) if and only if H has a bounded continuous extension from 
bAa, o to A~,oUbA[~,o which is holomorphic on Ag, o and vanishes at oc. 

We now pass to functions on A which we will view as functions on 

A =  {(r : r  

The set ACE will be a common part of the boundaries of two domains f~+(A) 
and ~- (A)  which we now describe. Let f~+(A) be the union of all Aa+0 such that  
bA(a, O)CInt A surrounds the origin. Similarly, let ~- (A)  be the union of all A~, 0 
such that  bA(a,o)CIntA surrounds the origin. Clearly, f~-(A) is the image of 
~+(A) under the reflection (z, w)~-~(W, 5). It turns out that fl+(A) and ~- (A)  are 
disjoint domains in C 2 \ E  attached to E along .~. For each ~EIntA there are a 
neighbourhood UCE of (~, ~) and a wedge with the edge U which is contained in 
~+(A). An analogous statement holds for ~-(A).  

T h e o r e m  1.2. Let f be a HSlder continuous function on A which satisfies 
(1.5) whenever bA(a, ~ ) c A  surrounds the origin. There are a bounded continuous 
function G + on ~+(A)UbfP(A) which is holoraorphic on ~+(A) and a bounded 
continuous function G- on ~-(A)Ub~-(A)  which is holomorphic on ~- (A)  such 
that 

f ( z ) = l G + ( z ,  2 )+lG-(z ,2 ) ,  z E A .  
z z 

Thus, on A the function F(z, 2)=f(z)  is the sum of the boundary values of the 
holomorphic functions (1/w)G+(z,w) and (1/z)G-(z, w). 

2. F o u r i e r  c o e f f i c i e n t s  o f  f u n c t i o n s  w i t h  z e r o  m e a n s  

Suppose that  f is a continuous function on A. For each r, rl <r<_r2, let 

i f  ck(r) = ~ e-ik~ i~ dO, k E Z, 
7r 

so that  ~k~=_~ ck(r)e ik~ is the Fourier series of the function e~~176 
We shall need the following description of the Fourier coefficients of functions 

with zero means on circles. 
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T h e o r e m  2.1. ([G1], [EK], [V]) A continuous function f on A satisfies (1.5) 

for each bA(a, 0 ) c A  surrounding the origin if and only if 
(a) c0( r )=0 ,  rl___r_<r2, 
(b) for each nEZ,  n~O, there are numbers a,.o, an.a .... ,a,~.lnl_ 1 such that 

Cn(r)=r-lnl(an,o+anAr2 +...+amlnl_lr2(Inl-1)). ri <_r<_r2. 

In the rest of this section we assume that f is a continuous fimction on A which 

satisfies (1.5) for each bA(a, Q)cA surrounding the origin. 
If n > l  then writing z=re i~ we get 

" 

= (a,~,or -2~ + a n . l r - 2 ( ' - l )  +...  +an,~_lr-2)z ~ 
= ( a n , o +  a,.a a . . . - 1 )  

\ z n 5  n z n - - 1 5  n - 1  ~''""~- ZZ  z n  

1 1 
= - . . . + a n  n - 1  z n - 1  

5 

1 
= : P , - l ( z ,  1/5). 

Z 

where Pn-1 is a homogeneous polynomial of degree n - 1 .  
If n < _ - i  then we get 

Cn (r)e in~ ---- (a~,0 +a, ,1 r 2 +...  + a  . . . .  1 r 2 ( - n -  1) ) Z -  Inl 

1/" 1 1 
= z Lan'~ ~2S-l+a' ' l  zi-N~_~_2 z +... +a~.n-15 ~-l ) 

1 
= -Qlnl_l(5, l / z ) ,  

Z 

where QI,~I-1 is a homogeneous polynomial of degree In l -  1. Thus, putting z=re i~ 
into the series 

1 ~ pn(z. 1/5)+l  ~ Qn(5.1/z) 
(2.1) z z 

n=O n=O 

we get the Fourier series of the function ei~176 rl <_r<_r2. 
For each t, O < t < l ,  define the functions ft  + and ft- on A as follows 

~c 1 cc 
(2.2) f+(rei~ = E tkck(r)eikO = z E tJ+lPJ(Z' 1/5) 

k = l  j = 0  

(2.3) f t(rei~ = E tlklck(r)eikO = 1 tJ+lOj(5, I/z), 
Z 

k=--3c  j=O 
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where z=reWEA and let 

f t (z)=f~-(z)+ft(z) ,  zEA.  

Note that  for each t, 0 < t <  1, both series above converge uniformly on A. Write 

1 / f(~) d~ 
�9 r(z) = ~ /  ~(~.o) r  r l  _ ~ r ~ r 2 ,  

and observe that 

(2.4) 
{ r176176 rl <_r~_r2, 0 < t < l ,  0ER, 

~((1 / t ) reW)=-f t ( reW) ,  rl<_r<_r2, 0 < t < l ,  0 E R .  

3. P r o o f  o f  T h e o r e m  1.1 

Let f be a Hhlder continuous function on A which satisfies (1.5) for each 
hA(a, Q) which surrounds the origin. Then there are P ,  and Qn as above such 
that  (2.1) with z=re i~ is the Fourier series of ei~176 rl<r<<_r2. Using the 
decomposition (1.1) on each circle bA(O,r), rl<r<r2, we can write f = f + + f - ,  
where for each r, rl<_r<r2, f+lbzx(o,r) satisfies (1.2) and f-lbA(0,r) satisfies (1.3). 
In fact, the functions f+lbz~(0,~) and -f-Ibz~(0.~) are the limiting values of 4p~(z) as 
Izl/*r and Izl".xr, respectively. Since f is Hhlder continuous on A it follows that 
f+ and f -  are Hhlder continuous on A[M,  Sections 19 and 20]. 

For each r, rl<r<r2, the function ~ is the Cauchy integral and hence the 
Poisson integral of f+lbA(O,r) SO (2.4) implies that for each r, r]<r<r2, f~-(re i~ 
converges uniformly in 0 to f+ (re i~ as t/~l,  and since f is uniformly continuous on 
A, the standard proof of the boundary continuity of the Poisson integral shows that 
the convergence is uniform also in r, rl <r<_r2. So ft converges to f+ uniformly on 
A as t / ~ l .  Similarly ft- converges to f -  uniformly on A as t / ' l .  

Observe that  for each bA(a, Lo) that surrounds the origin, the restriction of 
1/~ to bA(a, O) satisfies (1.2) and the restriction of 5 to bA(a, c0) has a continuous 
extension to [CU{oc}]\A which is holomorphic on [CU{~c}]\/~. The uniform 
convergence of the series (2.2) implies that for each t, 0 < t < l ,  f~-IbA(a,o) satisfies 
(1.2) whenever hA(a, ~) c A  surrounds the origin. Similarly, the uniform convergence 
of the series (2.3) and the multiplication with 1/z imply that for each t, 0 < t < l ,  
f t  ]b~(a,o) satisfies (1.3) whenever bA(a, Q)cA surrounds the origin. The uniform 
convergence of ft  + to f+ and f /  to f -  as t / ~ l  imply that the analogous statements 
hold for f+ and f . This completes the proof. 
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Remark 1. Note that the proof of Theorem 1.1 becomes simpler in the special 
case when f is smooth, say of class r on A. Recall that putting z=re ie into the 
series (2.1) we get the Fourier series of the function eie~-4f(re~6). Integrating by 
parts we see that  there is a constant M < o c  such that each of the series in (2.1) is 
dominated on A by the series ~ = 1  Mn-2  which implies that  one can define 

oo 
1 

Qn(5,1/z), z c A ,  f+ (z) = zl ~ Pn(z, 1/5), f - ( z )  = -z 
rt~O rt~O 

where each of the series converges uniformly on A. 

Remark 2. If f in Theorem 1.1 is HSlder continuous on A with exponent a, 
0 , = a < l ,  then for any ~, 0</~<a ,  the functions f+ and f -  are HSlder continuous 
on A with exponent ~. This follows from [M, Sections 19 and 20]. 

4. D o m a i n s  ~ + ( A )  a n d  ~ - ( A )  

We list some simple facts about the domain ~+ (A). Analogous statements hold 
for ~-(A) ,  the image of ~+(A) under the reflection (z, w)~-~(~, 5). The proofs are 
elementary, they can be found in [G2]. 

Recall that  ~+ (A) is defined as the union of all A~+e such that bA(a, 0)CInt A 
surrounds the origin. 

1 P r o p o s i t i o n  4.1. Let ~f=~(rl+r2). The set ~+(A) is a disjoint union of all 
A+a,.y such that bA(a, ~)CInt A: it is an unbounded open connected set whose bound- 
ary consists of ft together with the union of all those A+~,~ for which bA(a, ~f)C A is 
tangent to both bA(O, rl)  and bA(0, r2). For each ~Elnt A there are a neighbourhood 
U c E  of (~, ~), an open cone V in iE, a real two-plane perpendicular to E, and a 
5>0 such that U+(VASB)c~+(A) .  

P r o p o s i t i o n  4 .2 .  + § If Aa,~A5.  5 then the sets A+~,~ and Ab+~ intersect if and 
only if a~b and one of the circles bA(a, Q), bA(b, 5) surrounds the other. The sets 
A+,e and Ag,~ intersect if and only if/~(a, O)N~(b. 5)=0. 

Proposition 4.2 implies that  f~+(A)Nt2-(A)=O. 

5. P r o o f  o f  T h e o r e m  1.2 

Recall that  f+ is the uniform limit of It + as t /~ l .  where for each t, 0 < t < l ,  

f?(z)  = zl ~-~tj+lpj(z,  1/2). z E A ,  
j=0 
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with the series converging uniformly on A. It follows that  on A, 2f+(z) is a uniform 
limit of a sequence of polynomials in z and 1/2, 

(5.1) 5f+(z) = lim Sm(Z, 1/5), Z E A. 
rn---~or 

Now we reason as in [G2]: The functions Sm(z, 1/w) are bounded and continuous 
+ + 

on Aa,eUbAa, e and holomorphic on A~+,e whenever bA(a, Q)cA surrounds the ori- 
gin. Since A+,e is biholomorphically equivalent to the punctured disc the maximum 
principle implies that  for each (z, w)EA+,e we have 

ISm(z, 1/w)-Sj(z ,  1/w)l < max{iSm (~, 1 /7 / ) -Sj (~ ,  1/~)1 : (~, 77) �9 bA+,~} 

_< max{ISm((,  1 / ~ ) - S j ( ~ ,  1/~)1 : r �9 A}. 

I t  follows that  the sequence Sin(z, i/w) converges uniformly on Q+(A)LJbf~+(A) to 

a function G+(z, w). Since each Sin(z, 1/w) is bounded and continuous on Q+(A)U 
bf~+(A) and holomorphic on 12+(A) the same is true for G +. Obviously, f + ( z ) =  
(1/2)G+(z, 5), z �9  In the same way we prove that  f-(z)=(1/z)G-(z,~), z �9  
A, where G -  is bounded and continuous on ~-(A)UbQ-(A) and holomorphic on 
~ - ( A ) .  This completes the proof. 

6. Dropping  the  a s s u m p t i o n  on H61der cont inuity  

The map ~ + ~ *  = 1/~ is the antiholomorphic reflection across bA which fixes bA. 
Similarly, given a C C and ~) > 0, the map ~ ~-~ ~* -- a + Q2 / (~_ ~) is the antiholomorphic 
reflection across bA(a, ~) which fixes bA(a, ~) and maps a point on a ray emanat ing 

from a at a distance 7 > 0  from a to the point on the same ray at a distance Q2/7 
from a. 

If f is a continuous function on bA(a, Q) which is not necessarily HSlder con- 
tinuous then the functions f+  and f -  defined by (1.5) are well defined away from 
bA(a, p) but need not have boundary values as we approach bA(a, Q). The following 
still holds and is well known: 

L e m m a  6.1. ([Z, Vol. 1, p. 288]) Let f be a continuous function on bA(a, Q). 
Define f+ and f -  by (1.4). Then the function 

z, ~{ f+(z)+f-(z*),  zEA(a , • ) ,  

f(z), z E bA(a, Q), 

is continuous on A(a, ~). In fact, on A(a,  Q) it coincides with the Poisson integral 
o f f .  

We want to show that  a generalization of this holds for continuous functions 
on the annulus A with zero means on circles surrounding the origin. 
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Suppose that  f is a continuous function on A which satisfies (1.5) whenever 
bA(a, o) cA  surrounds the origin. Recall that for each nonnegative integer n there 
are homogeneous polynomials P,, and Qn of degree n such that putting z=re i~ into 

~X3 2X2 

1_ E Pn(z, 1 /5)+  1 ~ Qn(L l/z) 
Z Z 

rt~O n= 0  

we get the Fourier series of the function ei~176 r l  <_r<_r2. We now show that 
one can define a holomorphic function F + on ft § (A) by 

(6.1) F + ( z , w ) = l  ~-~ Pn(z. 1/w). (z.w) Efl+(A), 
W 

n = 0  

where the series converges uniformly on compact sets in ft + (A) and a holomorphic 
function F -  on f t - (A)  by 

(6.2) F -  (z, w) = 1 ~ Q,,(u,. 1/z). (z, w) e f l -  (A), 
Z 

n = 0  

where the series converges uniformly on compact sets in f~-(A). 
Recall that for each t, 0 < t < l ,  the series (1/2) Y~=I tJ+lPJ( z, 1/2) converges 

uniformly on A which, by a reasoning similar to the one in Section 5 implies that 
the function 

~c  

(6.3) Ft+(z.w) = 1 ~-~,)+i , ,  -- ~ rjtz. l /w)  
IL' 

j = 0  

is well defined, bounded and continuous on f~*(A)tAbf~+(A) and holomorphic on 
~+(A) since the series (6.3) converges uniformly on fF(A)Ubft+(A). We have 

F~-(z, 2~)=f~(z), zEA. Similarly, the function 

F t- (z, w)= z E t~+lQJ (w, 1/z) 
j=O 

is well defined, bounded and continuous on ft-(A)Ubfl (A) and holomorphic on 
f~- (A) since the series converges uniformly on ft-  (A) Ubf~- (A). We have F t (z, 2) = 
fi-(z), zEA. 

Using the homogeneity of Pj we rewrite (6.3) to 

1 pc 

Ft'(z, w) = ~ ~ Pj(tz, 1/(w/t)) 
j=O 
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and we see that  (6.1) converges uniformly on Tt(f~+(A)), where Tt(z, w)=(tz,  w/t). 
Given a compact set KCf~+(A) there is a t. 0 < t < l .  such that KcTt(Ft+(A)), so 
(6.1) converges uniformly on compact sets in f~*(A). We have 

F~-(z ,w)=r(T, (z ,w)) ,  (z,u')ET[-I(~+(A)). 

Since T, converges uniformly to the identity as t -+ l  it follows that  

(6.4) F+(z, w) = lim F?(z, w), (z. w) E Q'(A).  
t - + l  

where the convergence is uniform on compact sets in Q+(A). In the same way we 
see that 

(6.5) F- ( z ,w)=l imF{- ( z ,w) ,  (z. w) e fF (A) ,  

where the convergence is uniform on compact sets in Q-(A).  
One can verify that  for each r, rl<<_r<r2, and for each t, 0 < t < l ,  

ft(rei~176 OER. 

where 7~ is the Poisson integral of the function ei~176 Now. 7~,.(tei~ 
f (re  ~~ uniformly in 0 as t / ~ l  and since f is uniformly continuous on A, the standard 
proof of the boundary continuity of the Poisson integral shows that the convergence 
is uniform also in r, ra ~r~r2.  Thus, 

(6.6) ft--+ f uniformly on A as t / ~  1. 

7.  C o n t i n u o u s  f u n c t i o n s  w i t h  z e r o  m e a n s  o n  c i r c l e s  

T h e o r e m  7.1. Let f be a continuous function on A which satisfies (1.5) for 
each bA(a, Q)c A which surrounds the origin. There are a holomorphic function F + 
on ~+(A) and a holomorphic function F-  on Q (A) such that the function 

{ F+(z,w)+F-(W. 5). (z,w) ef~+(A), 
(7.1) (z, w), > 

f(z),  (z, 5) C A. 

has a bounded continuous extension to Q+ ( A )UbI~+ ( A ). 

Thus, for each zEA we have 

f (z)  = lim [F+(~, ~) + F -  (0, ~)]. 
(~,,)-~(z,~) 

( ~,rI )CVI+ ( A ) 
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Theorem 7.1 is the analogue of Lemma 6.1 where bA(a, 8) is replaced by A and 
A(a, 8) is replaced by ~+(A). The function (7.1) is the analogue of the Poisson 
integral of f .  It is the bounded continuous extension of F(z, 2)=f(z) to fl+(A)U 
b~+(A) which is pluriharmonic on fl+(A). 

Proof of Theorem 7.1. For each t, 0 < t < l ,  define 

r (z,w) EQ+(A)UbFt+(A), 

where Ft + and F t- are as in Section 6. The properties of Ft + and F t imply that  ~t  is 
bounded and continuous on f~+ (A)Ub~+(A), pluriharmonic on f~+ (A) and satisfies 

qtt(z, 2)=f~(z)+f[(z)=ft(z),  zEA. It follows that for each t, s, 0 < t < l ,  0 < s < l  
the function 

(7.2) (z,w), ) l~(z ,w)-~s(z ,w) l ,  

restricted to Aa,~UbAa,e, attains its maximum on bAa,e whenever bA(a, Q)C A sur- 
rounds the origin. This is so since Aa,Q is biholomorphically equivalent to the 
punctured disc and since isolated singularities are removable for bounded harmonic 
functions. Thus, the function (7.2) attains its maximum on ~+(A)Ub~+(A) on ,4. 
By (6.6) the restrictions of functions kot to A converge uniformly as t / Z l  which, by 
the preceding discussion implies that as t / Z l  the functions ~t  converge uniformly 
on ~+(A)Ub~+(A) to a bounded continuous function �9 which is pluriharmonic on 
f~+(A) and which satisfies ~P(z, 2)=f(z), zEA. Now (6.4) and (6.5) imply that 
tP(z,w)=F+(z,w)+F-(z,w), (z,w)Ef~+(A), where F + and F -  are given by (6.1) 
and (6.2). This completes the proof. 
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