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LP-cohomology of negatively 

Nader Yeganefar(1) 

curved manifolds 

Abstract. We compute the LP-cohomology spaces of some negatively curved manifolds. We 
deal with two cases: manifolds with finite volume and sufficiently pinched negative curvature, and 
conformally compact manifolds. 

1. I n t r o d u c t i o n  

Let (M, g) be a Riemannian manifold, and let p_> 1 be a real number. We denote 
by LP(A*T*M) (or L p) the space of differential forms a with I~1 p integrable, and we 
consider the space l ip(M) of elements of L p whose (weak) differential is also in L p. 
The LP-cohornology of (M, g), denoted by H~(M), is by definition the cohomology 
of the complex (~;(M), d): 

H~(M) = {a C fl~(M) l da = O} /df~kp-l(M). 

A difficulty which arises in the study of LP-cohomology is the fact that  the image 
df~kp-l(M) may not be closed in L p, so that  the topology of H~(M) may be com- 
plicated. One is then led to define reduced LP-cohomology by taking the quotient 
of {aEFtpk(M)lda=0} by the closure of df~k-l(SI) in Lp. The reduced and unre- 

duced LP-cohomology spaces of a manifold are in general quite different, but if for 
example Hkp(M) is finite-dimensional, then it is s tandard that  they coincide. This 

happens for instance when M is compact: it is known that  in this case Hkp(M) is 

finite-dimensional for all k, and in fact isomorphic to the k TM de Rham cohomology 
group of M. 

For non-compact  M,  we would like to know to what extent Hk(M) reflects 
the topology or the geometry of the manifold. There exist already a lot of works 
devoted to the s tudy of this topic, see e.g. the articles of Goltdshtein, Kuztminov. 
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Shvedov [GKS1], [GKS2], Youssin [Yo], or Zucker [Z2], and the references therein. 
Of course, the case p=2  is of particular interest. For this case, the proximity of 
L2-cohomology with the space of L2-harmonic forms allows us to compute these 
(reduced or unreduced) L2-cohomology spaces for large classes of manifolds, see 
the works of Zucker [Z1], Mazzeo [M] and Mazzeo-Phillips [MP] on some real or 
complex hyperbolic manifolds, of Dodziuk [D] on rotationally symmetric manifolds, 
or Carton [C] on flat manifolds, etc. 

In [Y1] and [Y2], we considered complete manifolds of finite volume and pinched 
negative curvature and identified the L2-cohomology spaces with topologically de- 
fined groups (with a sharp pinching condition for real manifolds, and without any 
pinching assumption for Kghler manifolds). Here. our goal is to deal more generally 
with the LP-cohomology of these manifolds. The following theorem is our main 
result. 

T h e o r e m  1.1. Let (Mn,g) be a complete n-dimensional manifold of finite 
volume and pinched negative sectional curvature K, i.e. there exists a constant a > 0  
such that - l < K < - a 2 < 0 .  Assume that p> l is a real number, and k an integer 
such that 

n+l+2(p -1 )a  
k> l+(p-x)a 

Then we have the isomorphism Hkp(M)~gkc(21l), where Hk(M) denotes the com- 
pactly supported cohomology of M. 

Thus, if the curvature is not too far from -1 .  we can compute the LP-cohomolo - 
gy spaces in terms of the topology of the manifold. Roughly speaking, to prove this 
theorem we will proceed as follows. First, there is an exact sequence (see [GKS1]) 
which relates the compactly supported cohomology of a bounded subset D c M  
to the LP-cohomology of M and M \ D .  We will then use an idea developed by 
Pansu [P] in order to prove that  the LV-cohomology of M \ D  vanishes, and finally 
conclude by invoking the exact sequence. 

We will also see that  our method works for other cases as well. For example, 
it can be applied to conformally compact manifolds (the definition will be recalled 
in the last section). The L~-cohomology of these manifolds was computed by R. 
Mazzeo [M] (see also [Y2] for a simpler proof). We then state our next result, which 
is also a consequence of [GKS1] (see the remark at the end of Section 4). 

T h e o r e m  1.2. Let (5In, g) be a conformally compact n-dimensional manifold. 
Assume that p> l is a real number and k an integer such that k<(n -1 ) /p .  Then 
we have the isomorphism ( ( M) 

The paper is organized as follows: first, in the framework of negatively curved 
manifolds of finite volume, we define a homotopy operator acting on differential 
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forms and s tudy its main properties. Then we use this operator  to prove Theo- 
rem 1.1 and deduce from this proof two interesting corollaries. We finally prove 
Theorem 1.2. 

Acknowledgements. I would like to thank my Ph.D. supervisor G. Carron for 
many helpful discussions, hints and comments.  I warmly thank J. Briining and his 
team, especially G. Marinescu, for their hospitality at the Humboldt  Universitiit 

(Berlin), while part  of this work was written. 

2. The homotopy operator 

In this section, we will introduce a "homotopy operator" acting on differen- 
tial forms, which will be used to prove Theorem 1.1. We are inspired by Pansu's  
work [P]. From now on (M, g) will be a complete n-dimensional manifold of finite 
volume and pinched negative sectional curvature K,  i.e. there exists a constant a > 0  
such that  

- 1  < K < - a 2  <0 .  

2.1. G e o m e t r y  o f  s u c h  m a n i f o l d s  

Here, we briefly recall some standard facts about  the topology and geometry 
of these manifolds (see [El and [HI D. First, 21I has a finite number of ends, and one 

has M=MoUEi,  where M0 is a compact  manifold with boundary, and the OE~'s 
are the components of 92~I0. To each ray of Ei, we can associate a Busemann 
function r~ which is a priori only C2-smooth. Two such functions are equal up to 
an additive constant. The set E/ is C2-diffeomorphic to R + •  DE/. Moreover, the 
slices {t} • OEi are the level sets of a Busemann function. Finally, the metric on 

each end E / h a s  the form 

g = dr~ + h~,, 

where h~ is a family of metrics on the compact  manifold 0E~, and satisfies e-r'ho <_ 
h~ <e-a"~ ho . 

2.2. T w o  t e c h n i c a l  l e m m a s  

In order to prove Theorem 1.1, we need to first prove two results which are 

the analogs of [P, Propositions 8 and 10]. To simplify notation, we assume that  
our manifold M has only one end, and we choose an associated Busemann function 
r such that  outside the bounded open subset D={xlr(x)<O }, we have M \ D  ~- 
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[0, e c ) x O D .  Let  V r  denote  the  gradient  of r, with flow c2t. On M \ D  the flow Pt is 
jus t  t - t rans la t ion  on the first factor  [0, ~c); more  precisely, if x=(ro,Oo) is a point  
in M \ D ,  then  we s imply  have 

~t(ro, 0o) = (ro+t, 0o). 

Following [P], we now introduce the  opera to r  B which acts  on a differential form a 
by 

(2.1) = dr. 

where i w a  denotes  interior product .  In the next  two lemmas,  we s tudy  the ma in  
proper t ies  of this opera tor .  

L e m m a  2.1.  Denote by Jac(c2t ) the Jacobian of ~t. For an integer j ,  set 

r] = ( j  - 1 ) ( p -  1 ) a - ( n  - j ) .  

Then for every j-form c~ defined on M \ D ,  and for all x in M \ D ,  we have 

Iv; (iw )(x)I p _< e - ' t  (x))I p 

In particular, /f  ~l>0, B is well defined and bounded on LP(AJT*(SI\D)). 

We do not  give the  proof.  The  one in [P, Propos i t ion  8] can be appl ied word 
by word to our case: roughly speaking,  we have to es t imate  the derivat ive of 

plog(l~;(iwa)(x)l / la(~t(x))l)- log(Jac(~t)(x))  with respect  to t, and to do this 
we have to es t imate  the principal  curva tures  of the  level sets {t} x OD of the Buse- 
m a n n  function. T h e  only difference is tha t  these principal  curva tures  are between 

- 1  and - a ,  and not  be tween a and 1 as in the case of negat ively curved s imply 
connected manifolds  considered in [P, Propos i t ion  8]. 

L e m m a  2.2.  Let a be a j-form in ~J(~ l \O) .  Suppose that ( j - 1 ) ( p - 1 ) a -  
(n- j )>O.  Then we have the following homotopy formula 

dBc~ + Bda = -c~. 

Proof. We first assume tha t  c~ is smoo th  and with compac t  suppor t  in M \ D  
(this suppor t  can meet  the  bounda ry  OD). By C a r t a n ' s  formula,  we get 

. 0 . 
d ~  ivTa + ~t ivrda = ~t ( d i w a  + iwdc~ ) = ~t L w a - ~  ( ~t a) ,  
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where L w  is the Lie derivative with respect to the vector field Vr.  It follows that  

f0  ~x2 I~ * . dBa+Bda= -~ (pta) dt= t~clim ~ t ~ - a .  

By the properties of the flow ~2t, we have l i m t - ~  ~ 2 a = 0  because a has compact  
support.  Therefore the homotopy formula holds for smooth compactly supported 
forms. Now, the assumption on the numbers a. p and j implies that  the operator  B 
is bounded on j -  and ( j + l ) - f o r m s  which are in L p (M\D) (see Lemma 2.1). But 
the space of smooth j - forms with compact  support  in ~I\D is dense in fPp(3,I\D), 
so that  the formula is valid on fPp(M\D). [] 

3. LP-cohomology o f  n e g a t i v e l y  c u r v e d  m a n i f o l d s  

3.1. P r o o f  o f  T h e o r e m  1.1 

We keep our previous notation. By IGKS1. Lemma l0 l, we have the exact 
sequence 

Hpk_I (M\D)  b H~(D) ~ )Hk(M) r H~(M\D), 

where b is the coboundary operator,  e is extension by zero. and r restriction. Thus, 
to prove Theorem 1.1, it is enough to show that  the LP-eohomology spaces at infinity 
HJp(M\D) vanish for j=k-1 ,  k. 

Let [a] be an element in H~(M\D), with j=k -1  or j=k. and let aef~(l~l\D) 
be a representative of this class. The hypothesis 

n+l+2(p-1)a 
k> 

implies that  the assumptions of Lemma 2.2 are satisfied for j = k - l , k .  As a is 
closed, we therefore get 

a = d(-Ba). 

But a is in gt~(M\D), s o  that  B a  is also in gt~(M\O) by Lemma 2.1: hence a is 
zero in H~(M\D). 

3.2. F u r t h e r  r e s u l t s  

If  we only assume tha t  
n+(p-1)a 

k >  
l + ( p - 1 ) a "  
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then the proof of Theorem 1.1 still gives the vanishing of the LP-cohomology group 
at infinity H~ (M\D) .  This shows, via the exact sequence, that  there is a surjection 
of H~(D) onto Hk(M) ,  so that  Hkp(5l) is in particular finite-dimensional. A well- 
known consequence of this finite dimensionality is the following result. 

C o r o l l a r y  3.1. We keep the same notation as in Theorem 1.1, and assume 
that 

k> n+(p-1)a  
l + ( p - 1 ) a "  

Then the range of d: glkp-I(M)--+LP(AkT*M) is closed. 

Question. Under the assumption of this corollary (on k), which is weaker than 
the one in Theorem 1.1, is there still an isomorphism Hk(M)~--Hk(M)? 

If p=2,  then the answer is "yes" by [Y2, Proposition 5.1]. It seems reasonable 
to believe that  this is also true for general p, but we have no proof. 

By a duality argument, we can obtain another corollary from Theorem 1.1. 
Namely, for any real number p > l ,  denote by q the conjugate exponent, i.e. 1/p+ 
1/q=1.  If we assume that  M is orientable, then the bilinear form H~ • H q - k - + R  
given by 

]M 
# 

is well defined and is non-degenerate (see e.g. [P, Lemme 81]). We therefore obtain 
the following result. 

C o r o l l a r y  3.2. Let M be a complete orientable n-dimensional Riemannian 
manifold with finite volume and pinched negative curvature - l < K < - a 2 < 0 .  If 
p> 1 and k satisfy 

k> n+l+2(p -1 )a  
l + ( p - 1 ) a  

then we have the isomorphism H~-k ( M)~--H'-k( M). 

4. Conformally compact manifolds 

The method of proof of Theorem 1.1 can be extended to other situations, too. 
As an illustration, we will consider the case of conformally compact manifolds. Let 
us recall some basic facts about the geometry of such manifolds. 

Let M be a compact manifold with boundary, equipped with a Riemannian 
metric ~ which is smooth up to the boundary. Let y: M - + R  + be a nonnegative 
smooth defining function for the boundary OM: OM=y -1(0) and dy#O along OM. 
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We endow M with the metric g=~/y2; this metric is complete, and we say that  

(M, g) is a conformally compact manifold. The typical example of such a situation 
is the ball model of the real hyperbolic space. With  these preliminaries in mind, we 
can now prove Theorem 1.2. 

Proof of Theorem 1.2. It is well known (see e.g. the proof of [Y2, Corollary 6.2]) 
that  outside a compact  subset D, M is quasi-isometric to a warped product  ([0, oc) x 
OM, dr2+e2rh), where h is a metric on OM which does not depend on r. As L ~- 

cohomology is by definition invariant under quasi-isometries, it will be enough to 
consider this warped product  case. We follow the same line of reasoning as in 
the proof of Theorem 1.1. Thus, we define the operator  B by formula (2.1). The 
principal curvatures of the level sets {t} • OM of the function r are all equal to 1. 
Hence the proof of [P, Proposition 8] shows that  for every j - form c~ defined on 
M \ D ,  we have 

Iqo~(ivr~)(x)l p ~ e-(~-l-(J-1)P)tle~(~t(x))lP Jac(~t)(x) .  

Therefore, if n - l - ( j - 1 ) p > O ,  then B is bounded on LP(AJT*(M\D)) .  Now, if 
n - l - k p > O ,  B is bounded on ( k - l ) -  and k-forms, so that  we have the homotopy 
formula of Lemma 2.2 for elements of akp- l (M\D)  and ~kp(M\D). From this, we 
deduce the vanishing of the LP-cohomology spaces at infinity in degrees k - 1  and 
k, and finally complete the proof by using the exact sequence of [GKS1]. [] 

Remark. As pointed out in the introduction, Theorem 1.2 is also a consequence 
of [GKS1]. Namely, for warped products, Gol'dshtein, Kuz 'minov and Shvedov get 
vanishing results for some LP-cohomology spaces at infinity, and we can then use 
the exact sequence. 
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