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Values of the Euler phi function
not divisible by a given odd prime

Blair K. Spearman and Kenneth S. Williams

Abstract. An asymptotic formula is given for the number of integers n≤x for which φ(n)

is not divisible by a given odd prime.

1. Introduction

We denote the set of natural numbers by N and the set of integers by Z. If
a∈Z and b∈Z are not both 0, we denote the greatest common divisor of a and b

by (a, b). We let φ denote Euler’s phi function so that for n∈N we have

φ(n) := card{m∈N | 1≤m≤n and (m, n)= 1}= n
∏

p|n

(
1− 1

p

)
,(1)

where the product is taken over the distinct primes p dividing n. Throughout this
paper p denotes a prime. It is well known that for n∈N,

2 � φ(n) ⇐⇒ n = 1, 2.

We are interested in those n∈N for which q �φ(n), where q is a fixed odd prime. We
set

Eq(x)= card{n≤ x | q � φ(n)}.(2)

In 1990 Erdős, Granville, Pomerance and Spiro gave an upper bound for Eq(x),
which is valid for all sufficiently large x, see [1, Equation (4.2) with k=1, p. 191].

Both authors were supported by research grants from the Natural Sciences and Engineering
Research Council of Canada.
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In this paper we give an asymptotic formula for Eq(x) as x!∞, see the theorem
in Section 4. Let 0<ε<1. For q a fixed odd prime, we show that

Eq(x)= e(q)x(log x)−1/(q−1)+O(x(log x)−q/(q−1)+ε),

as x!∞, where e(q) is given in Definition 4.1 and the constant implied by the
O-symbol depends only on q and ε. In 2002 Luca and Pomerance [2, Lemma 2,
p. 114] proved the related result: For some constant c>0, for almost all n, φ(n) is
divisible by all prime powers pa≤c log log n/ log log log n.

2. Notation

We denote the sets of real numbers and complex numbers by R and C, respec-
tively. As usual Γ denotes the gamma function and γ is Euler’s constant. If K is an
algebraic number field we write h(K) for the class number of K and R(K) for the
regulator of K, see for example [3, pp. 97, 106]. Throughout this paper q denotes
a fixed odd prime. We set

Kq :=Q(e2πi/q)⊆C,(3)

so that Kq is a cyclotomic field with [Kq :Q]=φ(q)=q−1. For brevity we set

h(q) := h(Kq) and R(q) := R(Kq).(4)

We also let

ω := e2πi/(q−1) ∈C,(5)

so that ωq−1=1. The principal character χ0 (mod q) is defined as follows: for n∈Z
we have

χ0(n)=

{
1, if n �≡0 (mod q),

0, if n≡0 (mod q).
(6)

Let g be a primitive root (mod q). For n∈Z with n �≡0 (mod q) the index
indg(n) of n with respect to g is defined modulo q−1 by

n≡ gindg(n) (mod q).

We define a character χg (mod q) as follows: for n∈Z we set

χg(n)=

{
ωindgn, if n �≡0 (mod q),

0, if n≡0 (mod q).
(7)

There are exactly φ(q)=q−1 characters (mod q). They are

χ0, χg, χ2
g, ..., χq−2

g ,(8)

where χq−1
g =χ0.
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3. The constant C(q)

It is convenient to define the following constant involving χg.

Definition 3.1. Let q be an odd prime. Let g be a primitive root (mod q). Let
r∈{1, 2, ..., q−2}. We define

C(q, r, χg) :=
∏

χg(p)=ωr

(
1− 1

p(q−1)/(r,q−1)

)
,(9)

where the product is taken over all primes p such that χg(p)=ωr.

Note that the prime q is not included in the product as χg(q)=0 by (7). As
1≤(r, q−1)≤ 1

2 (q−1) for r∈{1, 2, ..., q−2} we have

q−1
(r, q−1)

≥ 2(10)

so that the infinite product in (9) converges. Let h be another primitive root
(mod q). Then there exists an integer s such that

h≡ gs (mod q), (s, q−1)= 1.

Let t be an integer such that st≡1 (mod q−1). Then, for n∈N with n �≡0 (mod q),
we have

indh(n)≡ t indg(n) (mod q−1)

so that

χh(n)= ωindh(n) = ωt indg(n) = (χg(n))t = χt
g(n),

that is χh=χt
g. Hence

q−2∏

r=1

C(q, r, χh)(r,q−1) =
q−2∏

r=1

∏

χh(p)=ωr

(
1− 1

p(q−1)/(r,q−1)

)(r,q−1)

=
q−2∏

r=1

∏

χt
g(p)=ωr

(
1− 1

p(q−1)/(r,q−1)

)(r,q−1)

=
q−2∏

r=1

∏

χg(p)=ωrs

(
1− 1

p(q−1)/(r,q−1)

)(r,q−1)
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=
q−2∏

r=1

∏

χg(p)=ωrs

(
1− 1

p(q−1)/(rs,q−1)

)(rs,q−1)

=
q−2∏

r=1

∏

χg(p)=ωr

(
1− 1

p(q−1)/(r,q−1)

)(r,q−1)

=
q−2∏

r=1

C(q, r, χg)(r,q−1)

so that the product

q−2∏

r=1

C(q, r, χg)(r,q−1)(11)

does not depend on the choice of primitive root g. Thus we can make the following
definition.

Definition 3.2. Let q be an odd prime. We define the constant C(q) by

C(q) :=
q−2∏

r=1

C(q, r, χg)(r,q−1).(12)

We take this opportunity to determine C(3). It is convenient to define the constant
ka,b(m) by

ka,b(m) :=
∏

p≡b (moda)

(
1− 1

pm

)
,(13)

where a∈N and b∈N∪{0} are such that 0≤b<a and (a, b)=1 and m∈N is such
that m≥2.

Lemma 3.1. C(3)=k3,2(2).

Proof. Let q=3. Then ω=−1, r=1, g=2 and χ2(n)=(−3/n). Hence

C(3)= C(3, 1, χ2)=
∏

χ2(p)=−1

(
1− 1

p2

)
=

∏

p≡2 (mod3)

(
1− 1

p2

)
= k3,2(2),

as asserted. �
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4. Statement of main result

We begin with a definition.

Definition 4.1. Let q be an odd prime. We define

e(q) :=
(q+1)(q−1)(q−2)/(q−1)Γ

(
1

q−1

)
sin

(
π

q−1

)

2(q−3)/2(q−1)q3(q−2)/2(q−1)π3/2(h(q)R(q)C(q))1/(q−1)
.(14)

Before stating our main result, we give the value of e(3).

Lemma 4.1.

e(3)=
27/2

39/4
k3,1(2)1/2.

Proof. We have Γ
(

1
2

)
=
√

π , C(3)=k3,2(2) and h(3)=R(3)=1, so that Defini-
tion 4.1 with q=3 gives

e(3)=
25/2

33/4πk3,2(2)1/2
.

As
(

1− 1
32

)
k3,1(2)k3,2(2)=

∏

p

(
1− 1

p2

)
=

6
π2

we have

k3,2(2)=
27
4π2

1
k3,1(2)

and e(3)=
27/2

39/4
k3,1(2)1/2,

as asserted. �

Our main result is the following asymptotic formula for Eq(x).

Theorem. Let 0<ε<1. For q an odd prime, we have

Eq(x)= e(q)x(log x)−1/(q−1)+O(x(log x)−q/(q−1)+ε),

as x!∞, where the constant implied by the O-symbol depends only on q and ε, and
e(q) is given in Definition 4.1.

This theorem is proved in Section 7 after some preliminary results are given in
Sections 5 and 6.
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5. Preliminary results

The following results will be used in Sections 6 and 7.

Proposition 5.1. Let n∈N and let q be an odd prime. Then

q � φ(n) ⇐⇒ n =
∏

p�≡1 (modq)

pa(p) or n = q
∏

p�≡1 (modq)

pa(p),

where the product is taken over all primes p �=q with p �≡1 (mod q) and the a(p) are
non-negative integers.

Proof. If

n = qa
t∏

j=1

p
aj

j ,

where a and t are non-negative integers, the pj are distinct primes �=q, and the aj

are non-negative integers, then by (1)

φ(n)=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t∏

j=1

p
aj−1
j (pj−1), if a=0,

qa−1(q−1)
t∏

j=1

p
aj−1
j (pj−1), if a≥1.

Hence q �φ(n) ⇔ a∈{0, 1} and q �pj−1 (j=1, ..., t), which proves Proposition 5.1. �

Next we define the set A by

A= {m∈N | p (prime) |m⇒ p �= q and p �≡ 1 (mod q)}.(15)

The function A(x) is defined for x∈R by

A(x)=
∑

m≤x
m∈A

1.(16)

Proposition 5.2. For x∈R and q an odd prime we have

Eq(x)= A(x)+A

(
x

q

)
.

Proof. This follows immediately from Proposition 5.1. �
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Proposition 5.3. (Wirsing’s theorem) Let f : N!R be multiplicative with
f(n)≥0 for all n∈N. Suppose that there exist constants c1 and c2 with c1>0 and
0<c2<2 such that

0≤ f(pk)≤ c1c
k
2 ,

for all primes p and all k∈N, and also that there is a constant τ with τ >0 such
that

∑

p≤x

f(p)= τ
x

log x
+o

(
x

log x

)
,

as x!∞, then

∑

n≤x

f(n)=
(

e−γτ

Γ(τ)
+o(1)

)
x

log x

∏

p≤x

(
1+

f(p)
p

+
f(p2)

p2
+...

)
,

as x!∞.

Proof. See [7, Satz 1, p. 76]. �

Proposition 5.4. (Odoni’s theorem) Let f : N!R be multiplicative with
f(n)≥0 for all n∈N. Suppose that there exist constants a1>1 and a2>1 such
that

0≤ f(pk)≤ a1k
a2 ,

for all primes p and all k∈N, and also that there are constants τ and β with τ>0
and 0<β<1 such that

∑

p≤x

f(p)= τ
x

log x
+O

(
x

(log x)1+β

)
,

as x!∞, then there is a constant B>0 such that
∑

n≤x

f(n)n−1 = B(log x)τ +O((log x)τ−β),

as x!∞. Further, for each fixed λ>0, we have
∑

n≤x

f(n)nλ−1 = λ−1Bxλτ(log x)τ−1+O(xλ(log x)τ−1−β),(17)

as x!∞.

Proof. See [4, Theorem II, p. 205; Theorem III, p. 206; Note added in proof,
p. 216]. �
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From Propositions 5.3 and 5.4 we obtain the following corollary.

Proposition 5.5. Let f : N!R be multiplicative with 0≤f(n)≤1 for all
n∈N. Suppose that there are constants τ and β with τ>0 and 0<β<1 such that

∑

p≤x

f(p)= τ
x

log x
+O

(
x

(log x)1+β

)
.

Then

lim
x!∞

1
(log x)τ

∏

p≤x

(
1+

f(p)
p

+
f(p2)

p2
+...

)

exists, and
∑

n≤x

f(n)= Ex(log x)τ−1+O(x(log x)τ−1−β),

with

E =
e−γτ

Γ(τ)
lim

x!∞
1

(log x)τ

∏

p≤x

(
1+

f(p)
p

+
f(p2)

p2
+...

)
.

Proof. The conditions of Odoni’s theorem are met (with a1=a2=2) so by (17)
with λ=1 there is a constant B>0 such that

∑

n≤x

f(n)= Bxτ(log x)τ−1+O(x(log x)τ−1−β).

The conditions of Wirsing’s theorem are also met (with c1=c2=1) so that

∑

n≤x

f(n)=
(

e−γτ

Γ(τ)
+o(1)

)
x

log x

∏

p≤x

(
1+

f(p)
p

+
f(p2)

p2
+...

)
.

Equating the two expressions for
∑

n≤x f(n), and dividing by x(log x)τ−1, we obtain

Bτ+O((log x)−β)=
(

e−γτ

Γ(τ)
+o(1)

)
(log x)−τ

∏

p≤x

(
1+

f(p)
p

+
f(p2)

p2
+...

)
.

Letting x!∞ we have

lim
x!∞(log x)−τ

∏

p≤x

(
1+

f(p)
p

+
f(p2)

p2
+...

)
= BτΓ(τ)eγτ .
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Thus
∑

n≤x

f(n)= Ex(log x)τ−1+O(x(log x)τ−1−β),

with

E = Bτ =
e−γτ

Γ(τ)
lim

x!∞(log x)−τ
∏

p≤x

(
1+

f(p)
p

+
f(p2)

p2
+...

)
,

as asserted. �

Proposition 5.6. Let k∈N and l∈N be such that 1≤l≤k and (k, l)=1. Then
∑

p≤x
p≡l (modk)

1 =
1

φ(k)
x

log x
+O

(
x

(log x)2

)
, as x!∞.

Proof. This is the prime number theorem for the arithmetic progression {kr+l|
r=0, 1, 2, ...}, see for example [5, p. 139]. �

Let k∈N. Let χ be a character (mod k). Let χ0 be the principal character
(mod k). The Dirichlet L-series corresponding to χ is given by

L(s, χ)=
∞∑

n=1

χ(n)
ns

,(18)

where s=σ+it∈C. For χ �=χ0, the series in (18) converges for σ>0 and

L(1, χ)=
∞∑

n=1

χ(n)
n

=
∏

p

(
1−χ(p)

p

)−1

�= 0.(19)

For each character χ (mod k) we define a completely multiplicative function kχ(n)
(n∈N) by setting, for primes p,

kχ(p)= p

[
1−

(
1−χ(p)

p

)(
1− 1

p

)−χ(p)]
.(20)

The Dirichlet series corresponding to kχ is given by

K(s, χ)=
∞∑

n=1

kχ(n)
ns

,(21)

where s=σ+it∈C. It is shown in [6] that the series in (21) converges absolutely
for σ>0 and that

K(1, χ)=
∞∑

n=1

kχ(n)
n

=
∏

p

(
1− kχ(p)

p

)−1

=
∏

p

(
1−χ(p)

p

)−1(
1− 1

p

)χ(p)

�= 0.
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Proposition 5.7. Let k∈N and l∈N be such that 1≤l≤k and (l, k)=1. Then
∏

p≤x
p≡l (modk)

(
1− 1

p

)
= A(l, k)(log x)−1/φ(k)+O((log x)−1/φ(k)−1),

as x!∞, where

A(l, k)=
(

e−γ k

φ(k)

∏

χ�=χ0

(
K(1, χ)
L(1, χ)

)
�χ(l))1/φ(k)

.

Proof. This proposition is Mertens’ theorem for the arithmetic progression
{kr+l|r=0, 1, 2, ...}, which was first proved by Williams [6] in 1974. �

Proposition 5.8. Let k, m, r∈N. Let ωk be a primitive k-th root of unity.
Then

k−1∏

j=0

(
1−ωjr

k

m

)
=

(
1− 1

mk/(k,r)

)(k,r)

.

Proof. Let k, r∈N. Set

h =
k

(k, r)
and s =

r

(k, r)
.

As (h, s)=1 the h-th roots of unity are ωjs
h , j=0, 1, ..., h−1. Thus ωjs

h , j=0, 1, ..., k−1
comprise the h-th roots of unity each repeated k/h times. Hence

(xh−1)k/h =
k−1∏

j=0

(
x−ωjs

h

)
.

Taking x=m∈N, and dividing both sides by mk, we obtain
(

1− 1
mh

)k/h

=
k−1∏

j=0

(
1−ωjs

h

m

)
=

k−1∏

j=0

(
1−ωjr

k

m

)
,

which is the asserted result. �

6. Estimation of
∏

p≤x
p≡1 (mod q)

(1−1/p)

We begin with the following result.

Proposition 6.1.
q−2∏

j=1

K
(
1, χj

g

)
=

1
C(q)

.
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Proof. By Definition 3.1 we have

q−2∏

r=1

C(q, r, χg)−(r,q−1) = lim
x!∞

q−2∏

r=1

∏

p≤x
χg(p)=ωr

(
1− 1

p(q−1)/(r,q−1)

)−(r,q−1)

.

Next, as

q−2∑

j=0

ωjr =

{
q−1, if r=0,

0, if r=1, 2, ..., q−2,

we have

q−2∏

r=1

∏

p≤x
χg(p)=ωr

(
1− 1

p(q−1)/(r,q−1)

)−(r,q−1)

=
q−2∏

r=0

∏

p≤x
χg(p)=ωr

(
1− 1

p(q−1)/(r,q−1)

)−(r,q−1)(
1− 1

p

)∑ q−2
j=0 ωjr

.

By Proposition 5.8 with m=p, k=q−1 and ω=ωq−1 we have

(
1− 1

p(q−1)/(r,q−1)

)(r,q−1)

=
q−2∏

j=0

(
1−ωjr

p

)

so that

q−2∏

r=0

∏

p≤x
χg(p)=ωr

(
1− 1

p(q−1)/(r,q−1)

)−(r,q−1)(
1− 1

p

)∑ q−2
j=0 ωjr

=
q−2∏

r=0

∏

p≤x
χg(p)=ωr

q−2∏

j=0

(
1−ωjr

p

)−1(
1− 1

p

)ωjr

=
q−2∏

j=1

q−2∏

r=0

∏

p≤x
χg(p)=ωr

(
1−ωjr

p

)−1(
1− 1

p

)ωjr

=
q−2∏

j=1

∏

p≤x

(
1−χj

g(p)
p

)−1(
1− 1

p

)χj
g(p)

.
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Finally by Definition 3.2 we obtain

1
C(q)

=
q−2∏

r=1

C(q, r, χg)−(r,q−1) =
q−2∏

j=1

lim
x!∞

∏

p≤x

(
1−χj

g(p)
p

)−1(
1− 1

p

)χj
g(p)

=
q−2∏

j=1

∏

p

(
1−χj

g(p)
p

)−1(
1− 1

p

)χj
g(p)

=
q−2∏

j=1

K(1, χj
g),

as asserted. �

Proposition 6.2.

q−2∏

j=1

L
(
1, χj

g

)
= 2(q−3)/2q−q/2π(q−1)/2h(q)R(q).

Proof. The cyclotomic field Kq is a totally complex field which contains exactly
2q roots of unity, namely {±1,±ωq,±ω2

q , ...,±ωq−1
q }. Hence, by the class number

formula for abelian fields applied to the cyclotomic field Kq, we have

h(q)R(q)= 2q|d(Kq)|1/22−(q−1)/2π−(q−1)/2

q−2∏

j=1

L
(
1, χj

g

)
,

where d(Kq) is the discriminant of Kq, see for example [3, Theorem 8.4, p. 436].
Now the discriminant of Kq is given by

d(Kq)= (−1)q(q−1)/2qq−2,

see for example [3, Theorem 2.9, p. 63]. Hence

q−2∏

j=1

L(1, χj
g)= 2(q−3)/2q−q/2π(q−1)/2h(q)R(q),

as asserted. �

Proposition 6.3. Let q be an odd prime. Then

∏

p≤x
p≡1 (modq)

(
1− 1

p

)
= λ(q)(log x)−1/(q−1)+O((log x)−q/(q−1)),

as x!∞, where

λ(q)=
(

e−γ2−(q−3)/2q(q+2)/2π−(q−1)/2

(q−1)h(q)R(q)C(q)

)1/(q−1)

.
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Proof. By Propositions 6.1 and 6.2 we obtain

q−2∏

j=1

K(1, χj
g)

L(1, χj
g)

=
2−(q−3)/2qq/2π−(q−1)/2

h(q)R(q)C(q)
.

By Proposition 5.7 with k=q and l=1, we have

∏

p≤x
p≡1 (modq)

(
1− 1

p

)
= λ(q)(log x)−1/(q−1)+O((log x)−q/(q−1)),

where

λ(q) = A(1, q)=
(

e−γ q

q−1

q−2∏

j=1

K(1, χj
g)

L(1, χj
g)

)1/(q−1)

=
(

e−γ q

q−1
2−(q−3)/2qq/2π−(q−1)/2

h(q)R(q)C(q)

)1/(q−1)

=
(

e−γ2−(q−3)/2q(q+2)/2π−(q−1)/2

(q−1)h(q)R(q)C(q)

)1/(q−1)

,

as asserted. �

Proposition 6.4. Let 0<ε<1. Then

A(x)= α(q)x(log x)−1/(q−1)+O(x(log x)−q/(q−1)+ε),

as x!∞, where

α(q)=
(q−1)(q−2)/(q−1)Γ

(
1

q−1

)
sin

(
π

q−1

)

2(q−3)/2(q−1)q(q−4)/2(q−1)π3/2(h(q)R(q)C(q))1/(q−1)
.

(The constant implied by the O-symbol depends only on q and ε.)

Proof. By (16) we have

A(x)=
∑

n≤x
n∈A

1 =
∑

n≤x

f(n),

where

f(n)=

{
1, if n∈A,

0, if n /∈A.
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Clearly f(n) is a multiplicative function by (15). Moreover 0≤f(n)≤1 for all n∈N.
By Proposition 5.6 we have

∑

p≤x

f(p)=
∑

p≤x
p∈A

1 =
∑

p≤x
p�≡1 (modq)

1+O(1)=
q−2
q−1

x

log x
+O

(
x

(log x)2

)
,

as x!∞. Hence, by Proposition 5.5 with τ=(q−2)/(q−1) and β=1−ε, the limit

lim
x!∞

1
(log x)(q−2)/(q−1)

∏

p≤x
p�=q

p�≡1 (modq)

(
1− 1

p

)−1

exists, say equal to M(q), and

A(x)=
e−γ(q−2)/(q−1)

Γ
(

q−2
q−1

) M(q)x(log x)−1/(q−1)+O(x(log x)−q/(q−1)+ε),

as x!∞. Now for x≥q

∏

p≤x
p�=q

p�≡1 (modq)

(
1− 1

p

)
=

∏

p≤x

(
1− 1

p

)

(
1− 1

q

) ∏

p≤x
p≡1 (modq)

(
1− 1

p

) .

By Mertens’ theorem we have

∏

p≤x

(
1− 1

p

)
= e−γ(1+o(1))

1
logx

,

as x!∞, so appealing to Proposition 6.3, we obtain

∏

p≤x
p�=q

p�≡1 (modq)

(
1− 1

p

)
=

e−γ(1+o(1))(log x)−1

(
1− 1

q

)
λ(q)(1+o(1))(log x)−1/(q−1)

=
qe−γ

(q−1)λ(q)
(1+o(1))(logx)−(q−2)/(q−1),
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so that

1
(log x)(q−2)/(q−1)

∏

p≤x
p�=q

p�≡1 (modq)

(
1− 1

p

)−1

=
(q−1)eγλ(q)

q
(1+o(1)).

Hence

M(q)=
(q−1)eγλ(q)

q
.

Finally

A(x)=
eγ/(q−1)

Γ
(

q−2
q−1

)
(q−1)

q
λ(q)x(log x)−1/(q−1)+O(x(log x)−q/(q−1)+ε),

as x!∞, so that as

Γ
(

1
q−1

)
Γ
(

q−2
q−1

)
=

π

sin
π

q−1

we have

α(q)=
eγ/(q−1)

Γ
(

q−2
q−1

)
(q−1)

q
λ(q)=

(q−1)(q−2)/(q−1)Γ
(

1
q−1

)
sin

(
π

q−1

)

2(q−3)/2(q−1)q(q−4)/2(q−1)π3/2(h(q)R(q)C(q))1/(q−1)
.

This completes the proof of Proposition 6.4. �

7. Proof of the theorem

By Propositions 5.2 and 6.4 we have

Eq(x) = A(x)+A

(
x

q

)

= α(q)x(log x)−1/(q−1)+O(x(log x)−q/(q−1)+ε)

+α(q)
x

q

(
log

x

q

)−1/(q−1)

+O

(
x

q

(
log

x

q

)−q/(q−1)+ε)

= α(q)x(log x)−1/(q−1)+O(x(log x)−q/(q−1)+ε)

+
α(q)

q
x((log x)−1/(q−1)+O((log x)−q/(q−1)))+O(x(log x)−q/(q−1)+ε)
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= α(q)
(

1+
1
q

)
x(log x)−1/(q−1)+O(x(log x)−q/(q−1)+ε)

= e(q)x(log x)−1/(q−1)+O(x(log x)−q/(q−1)+ε),

as x!∞. �

By Lemma 4.1 and the theorem (with q=3), the number of n≤x for which
3�φ(n) is

27/2

39/4

( ∏

p≡1 (mod3)

(
1− 1

p2

))1/2

x(log x)−1/2+Oε(x(log x)−3/2+ε),

as x!∞, for any ε>0.
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