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Plurisubharmonic functions characterized by
one-variable extremal functions

Sione Ma‘u

1. Introduction

This paper is a short study of certain “extremal-like” functions associated to
compact sets in CN . These functions have been studied previously in [BCL] and
[BlLM]. Much of this paper generalizes results in [BCL], and forms part of the
author’s thesis [M].

Before we begin discussing the main results, we provide some background ma-
terial that has motivated the study of these functions. Let E be a bounded Borel
set in CN . Define

VE(z) := sup{u(z) : u∈L and u≤ 0 on E},(1.1)

where

L := {u is plurisubharmonic on CN : u(z)≤ log+ |z|+C for some C ∈R}
is the class of plurisubharmonic functions of logarithmic growth. Here | · | denotes
the standard Euclidean norm: Given z=(z1, z2, ..., zN ),

|z| :=
√
|z1|2+|z2|2+...+|zN |2,

and we write log+ |z|=max{log |z|, 0}. Clearly, if E⊂F then VE≥VF . The upper
semicontinuous regularization V ∗

E(z):=lim supζ!z VE(ζ) is called the Siciak–Zahar-
juta extremal function of E. If V ∗

E =VE we say that E is regular.
We recall the definition of a pluripolar set, which generalizes the notion of

a polar set in one complex variable.

Definition 1.1. Given a set P⊂CN , suppose that for each z∈P we can find
a neighbourhood Uz and a plurisubharmonic function u on Uz such that Uz∩P⊂
{z :u(z)=−∞}. Then P is called a pluripolar set.
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We observe the following properties of pluripolar sets (cf., [BCL], [M]).

Lemma 1.2. Let p : CN!C be a nonconstant polynomial. Then
1. If E⊂CN is nonpluripolar then p(E) is nonpolar.
2. If F⊂C is polar then p−1(F ) is pluripolar.

We now recall some standard facts on the Siciak–Zaharjuta extremal function
that we will use in this paper (cf., [K1], Chapter 5).

Proposition 1.3.
1. V ∗

K≡V ∗
K\E for any compact set K and pluripolar set E.

2. For all compact sets K⊂CN , {z :VK(z)<V ∗
K(z)} is a pluripolar set.

3. V ∗
K≡+∞ if and only if K is pluripolar.

If K⊂CN is compact, then Siciak and Zaharjuta have shown (cf., [K1], Theo-
rem 5.1.7) that VK can be obtained via the formula

VK(z)= sup
{

log+ |p(z)|
deg p

: p is a nonconstant holomorphic polynomial, ‖p‖K ≤ 1
}

,

(1.2)

where ‖p‖K :=supz∈K |p(z)| denotes the uniform norm. It also turns out that a com-
pact set K is regular if and only if VK is continuous. The following result is shown
in [BCL].

Lemma 1.4. Let K⊂CN be compact and regular. Then for any nonconstant
polynomial p : CN!C, p(K) is also compact and regular.

Let K̂ :={z∈CN :|p(z)|≤‖p‖K for all polynomials p} denote the polynomial
hull of K. Then from (1.2),

1. K̂={z∈CN :VK(z)=0};
2. VK̂ =VK .

A compact set is polynomially convex if K̂=K.
Note that given a nonpolar compact set K in C, (i.e., N =1), V ∗

K is the classical
Green function of K with logarithmic pole at infinity. In particular, V ∗

K is harmonic
on C\K.

In several variables explicit computation of VE for an arbitrary Borel set E is
virtually impossible in general. For some restricted classes of sets, more information
about VE (including some explicit and semi-explicit formulae) is obtained by proving
simplifications of formula (1.1) (as, for example, formula (1.2) for compact sets).
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However, there is a simple formula for the Siciak–Zaharjuta extremal function
associated to a closed ball B(a, r)={z∈CN :|z−a|≤r}. In direct analogy to the
one-variable case,

VB(a,r)(z)= log+ |z−a|
r

.

For a closed disk in C we use the notation ∆(a, r)={z∈C:|z−a|≤r}. We will also
write B :=B(0, 1) (and ∆:=∆(0, 1)) to denote the unit ball in CN (and unit disk
in C).

If K⊂CN is compact, and pd is a polynomial of degree d, then

1
d
V ∗

pd(K)(ζ)= 0 for all ζ ∈ pd(K)\Z,

where Z :={ζ∈C: Vpd(K)(ζ)<V ∗
pd(K)(ζ)} is a polar set. Hence by Lemma 1.2 and

Proposition 1.3,

1
d
V ∗

pd(K)(pd(z))≤ 1
d
V ∗

pd(K)\Z(pd(z))≤V ∗
K\p−1

d (Z)
(z)≤V ∗

K(z),

i.e.,

1
d
V ∗

pd(K)(pd(z))≤V ∗
K(z).(1.3)

On the other hand, if ‖pd‖K≤1, then

V ∗
pd(K)(w)≥V∆(w)= log+ |w| for all w∈C;

in particular V ∗
pd(K)(pd(z))≥log+ |pd(z)|. Taking the supremum on both sides over

all nonconstant polynomials pd with ‖pd‖K≤1, and using (1.2), we have

sup
pd

1
d
V ∗

pd(K)(pd(z))≥VK(z).(1.4)

Note that for K regular, (1.3), (1.4) and Lemma 1.4 imply that

sup
pd

1
d
Vpd(K)(pd(z))= VK(z).

Fix a positive integer n; then using only the nonconstant polynomials of degree
≤n, we define

V
(n)
K (z) := sup

{
V ∗

p(K)(p(z))

deg p
: p is a holomorphic polynomial and 1≤ deg p≤n

}
.

Thus if K is regular, V
(n)
K %VK as n!∞.
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Basic properties of the functions V
(n)
K have been studied in [BlLM] and [M];

in particular, V
(n)
K is continuous if K is a regular compact set. In this paper we

will concern ourselves exclusively with the case n=1. The original motivation for
studying V

(1)
K is that

V
(1)
K ≡VK(1.5)

holds for certain compact sets. Simple examples for which (1.5) holds are N -fold
products of planar compact sets. Of greater interest is the work of Lundin and
Baran ([L], [Ba]), which shows that (1.5) holds when K is a compact, convex body
(i.e., a set with nonempty interior) in RN⊂CN which is symmetric with respect to
the origin (i.e., x∈K⇔−x∈K). The question arises as to what extent (1.5) holds in
general. The investigations in [BCL] and [M] address this question in some detail.
Define, for a compact set K⊂CN ,

R := {z∈CN : V (1)
K (z)= VK(z)}.

For a (not necessarily symmetric) convex body K⊂RN⊂CN , R contains a set of
real dimension N +1, which includes all of RN ([BCL]). However, it has been shown
that in R2, (1.5) fails for “most” convex sets ([BuLM], [M]). Altogether it appears
that in general, the notions of V

(1)
K and VK are fundamentally different in several

variables, although in one variable they both reduce to the classical Green function
for K with logarithmic pole at infinity.

Thus V
(1)
K originally arose as an auxiliary to aid in the study of VK . In the

course of investigating V
(1)
K (and its upper semicontinuous regularization V

(1)∗
K ),

some interesting properties have been discovered. They form the subject of this
paper. In Section 2 we describe K(1), the zero set of V

(1)
K associated to a regular

compact set K; in particular, we show that K(1) is a lineally convex set (see Def-
inition 2.1). At the end of that section we construct a counterexample to a result
that was claimed in the paper [BlLM] (see also [M], Lemma 1.9); however, it turns
out that one does not need this incorrect result to prove the main theorems there.
In Section 3 we introduce the projection capacity C(K) of an arbitrary compact set
K in CN . This notion was suggested by J.-P. Calvi. We show that C(K)>0 if and
only if V

(1)∗
K ∈L. In Section 4 we take a look at the notion of a C-regular set, which

was one of the ingredients used in [BCL] to prove that V
(1)
S2


≡VS2, where

S2 := {(x1, x2)∈R2 : x1 ≥ 0, x2 ≥ 0 and x1+x2 ≤ 1}
is the simplex in R2⊂C2. The simplex happens to be a C-regular set. However, this
property is not really special; we prove here that all compact sets K with C(K)>0
are C-regular. We then use this to show that for any compact set K, the Robin



Plurisubharmonic functions characterized by one-variable extremal functions 115

function of
(
V

(1)
K

)∗ (see Definition 4.6) can be obtained as the upper envelope of
the Robin functions of its complex linear images l(K) (formula (4.4)). This formula
was previously only known to be true for C-regular sets (see [BCL]).

2. Lineally convex sets

By a complex affine hyperplane in CN we will mean a set of the form

H = {z∈CN : l(z)= const.},

where l : CN!C is a linear polynomial.

Definition 2.1. A compact set E⊂CN is lineally convex if its complement
CN \E is the union of complex affine hyperplanes in CN . The lineally convex
hull Ẽ of a compact set E is the smallest lineally convex compact set containing E.

Denoting by H a complex affine hyperplane in CN , we have

Ẽ =CN \
( ⋃

H∩E=∅

H

)
.(2.1)

Remark 2.2. Every compact, convex subset X⊂CN is lineally convex. This
follows easily from the fact that any point z∈CN \X lies on a real affine hyperplane
Ĥ that avoids X , and hence lies on a complex affine hyperplane H⊂Ĥ.

Consider now a compact set K⊂RN⊂CN . Since RN is convex in CN , to
show that K is lineally convex we need only to find a complex affine hyperplane H

through each point of RN \K that does not intersect K.
In two dimensions we make the following observation. Given a point (a, b)∈R2,

the complex hyperplane given by H :={(z1, z2)∈C2 :z1−a=i(z2−b)} intersects R2

precisely at (a, b). Thus any compact subset of R2 is lineally convex.

Since V
(1)
K is defined in terms of the Green functions Vl(K), properties of V

(1)
K

depend fundamentally on properties of K which can be expressed in terms of the
collection of images l(K).

Definition 2.3. A compact set E⊂CN has the property P if for all complex
linear maps l : CN!C, l(E) is polynomially convex.

Lemma 2.4. Let K be a lineally convex compact subset of CN . If K has the
property P, then K is polynomially convex.
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Proof. Let z /∈K. Since K is lineally convex, we can find a linear map l such
that ζ=l(z)/∈l(K). Since l(K) is polynomially convex, we can find a polynomial p

such that |p(ζ)|>‖p‖l(K). Hence

|p � l(z)|= |p(ζ)|> ‖p‖l(K) = ‖p � l‖K,

i.e., z /∈K̂. This shows that K is polynomially convex. �

Remark 2.5. One needs additional conditions on lineally convex sets to ensure
polynomial convexity. The torus T ={z :|z1|=|z2|=1}⊂C2 is not polynomially con-
vex, but it is easy to see that T is lineally convex. If (a1, a2) /∈T with |a1| 
=1, then
the complex hyperplane z1=a1 intersects (a1, a2) but not T .

On the other hand, there are regular, compact sets which are both lineally and
polynomially convex, but do not have the property P . For example, let

A := {(x1, x2)∈R2 ⊂C2 : x2
1+x2

2 ∈ [1, 2]}.

Consider l(z1, z2)=z1+iz2; then l(A)={z∈C:1≤|z|≤2} which is clearly not poly-
nomially convex.

Recall that for any compact set K, VK≡VK̂ , and if K is regular we also have
K̂={z :VK(z)=0}. We have a similar type of result concerning V

(1)
K .

Proposition 2.6. Let K⊂CN be a regular compact set with the property P.
Define

K(1) := {z∈CN : V (1)
K (z)= 0}.

Then K(1) is the lineally convex hull of K, and

V
(1)

K(1) ≡V
(1)
K .(2.2)

Proof. Denote by K̃ the lineally convex hull of K; we want to show that
K̃=K(1).

Choose z /∈K(1). Then V
(1)
K (z)>0, so we can find a complex linear function

l : CN!C such that Vl(K)(l(z))>0. Since l(K) is regular (by Lemma 1.4), l(z) /∈
l(K). Clearly the complex hyperplane H :={w∈CN :l(w)=l(z)} contains z, and
l(K)={ζ∈C:Vl(K)(ζ)=0}. Hence l(K)∩{l(z)}=∅, so that K∩H=∅. Hence z /∈K̃.

Conversely, if z /∈K̃ there is a complex hyperplane H containing z with H∩K

=∅. Choose a complex linear function l : CN!C such that H={w∈CN :l(w)=
l(z)}. Then l(z)∈l(H), so that l(z) /∈l(K), and thus Vl(K)(l(z))>0 since l(K) is
regular and polynomially convex. Hence V

(1)
K (z)>0, i.e., z /∈K(1).

Altogether, this shows that K̃=K(1).
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We now show (2.2). When z∈K(1) we get zero on both sides of the equation.
Also, clearly V

(1)

K(1)≤V
(1)
K , so it remains to show that V

(1)

K(1)≥V
(1)
K . Take z /∈K(1)

and let ε>0. Choose a complex linear function l such that V
(1)
K (z)≤Vl(K)(l(z))+ε.

First, we claim that

l(K)= l(K(1)).(2.3)

Let ζ∈l(K(1)). Then ζ=l(z0) for some z0∈K(1)=K̃. The set {w∈K :l(w)=ζ} is
nonempty, so there exists z1∈K such that l(z1)=ζ, i.e. ζ∈l(K). So l(K(1))⊂l(K).
The reverse inclusion is obvious, and thus (2.3) holds. Now

V
(1)
K (z)≤Vl(K)(l(z))+ε = Vl(K(1))(l(z))+ε≤V

(1)

K(1)(z)+ε,

where the middle equality follows from (2.3). Letting ε!0, we have (2.2). �

Lemma 2.7. Let K be a regular compact set. Then

K(1) =
⋂

l

l−1(l̂(K)).(2.4)

In particular, K(1) is lineally convex.

Proof. Denote the right-hand side by F . We need to show that K(1)=F . If
z∈K(1), we have Vl(K)(l(z))=0 for all l, and hence l(z)∈ l̂(K) for all l. This shows

that K(1)⊂F . Conversely, if z∈l−1(l̂(K)) for all l, then l(z)∈ l̂(K) for all l, so that
Vl(K)(l(z))=0 for all l. Hence V

(1)
K (z)=0, i.e., z∈K(1), which shows that F⊂K(1).

To see that K(1) is lineally convex, take z /∈K(1) and choose l such that l(z) /∈
l̂(K). Then the hyperplane H :={w∈CN :l(w)=l(z)} satisfies H∩l−1

(
l̂(K)

)
=∅, so

that H∩K(1)=∅. �

Remark 2.8. If A is given as in Remark 2.5, from (2.4) it is easy to see that

A(1) = {(x1, x2)∈R2 : x2
1+x2

2 ≤ 2}.

Another corollary of Lemma 2.7 is the following result in [BCL].

Corollary 2.9. Let K be a regular, polynomially convex, compact set. If VK =
V

(1)
K , then K is lineally convex.

Proof. We have K=K̂={z :VK(z)=0}={z :V (1)
K (z)=0}=K(1). Since K(1) is

lineally convex, the result follows. �
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Let Π be the collection of polynomially convex, regular compact sets in CN .
In [K2], Klimek has shown that one can obtain a metric Γ on Π (the Klimek metric)
via the formula

Γ(E, F )= ‖VE−VF‖CN , E, F ∈Π.

We can do a similar thing with V (1). Let Π1 denote the collection of regular, lineally
convex compact sets in CN with the property P . Note that Π1⊂Π by Lemma 2.4.
Now define

Γ(1)(E, F ) := ‖V (1)
E −V

(1)
F ‖CN , E, F ∈Π1.

Proposition 2.10. Γ(1) is a metric on Π1.

Proof. Clearly Γ(1) is nonnegative and symmetric. To check that Γ(1) is posi-
tive definite, suppose Γ(1)(E, F )=0. Then V

(1)
E =V

(1)
F , and hence E(1)=F (1). By

Proposition 2.6, this means that E=F .
For the triangle inequality, take E1, E2, E3 in Π1; then given z∈CN , we have

|V (1)
E1

(z)−V
(1)
E3

(z)| ≤ |V (1)
E1

(z)−V
(1)
E2

(z)|+|V (1)
E2

(z)−V
(1)
E3

(z)|
≤Γ(1)(E1, E2)+Γ(1)(E2, E3).

Since z was arbitrary, this gives the triangle inequality. �

It is shown in [K2] that (Π, Γ) is a complete metric space. Let χ be the
Hausdorff metric on the collection of compact sets in CN , i.e.,

χ(E1, E2) := inf{ε > 0 : E1⊂Eε
2 and E2 ⊂Eε

1},

where we write Eε :={z∈CN :|z−w|≤ε for some w∈E}.

Remark 2.11. Note that convergence in the Hausdorff metric does not imply
convergence in Γ. Given a nonregular set K, for each εj :=1/j the set Kεj is regular,
and Kεj&K in the Hausdorff metric as j!∞. However, since (Π, Γ) is complete
and on the other hand K is not regular, the sequence Kεj cannot converge in Γ
to K.

In [BlLM] and [M], the following incorrect result was claimed:
(†) Let K be a regular compact set. Given ε>0, there exists δ>0 such that

if K ′ is a regular compact set with K ′⊂Kδ and K⊂(K ′)δ, then ‖VK−VK′‖CN <ε;
i.e.,

χ(K, K ′)< δ =⇒ Γ(K, K ′)< ε.

We sketch the following counterexample to (†) in one variable.
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Let K=[0, 2], and let Ω be a fixed neighbourhood of K (say Ω=∆(0, 3)). Fix
ε∈(

0, 1
2‖V[1,2]−V[0,2]‖C\Ω

)
. Given δ>0 we choose a finite set of points {xj}j in the

interval [0, 1] such that ⋃

j

[xj−δ, xj+δ]⊃ [0, 1].

Now take

K ′ := [1, 2]∪
(⋃

j

[xj−α, xj+α]
)

,

where α>0 is chosen so small that ‖VK′−V[1,2]‖C\Ω<ε. Then K ′ is regular, K ′⊂
Kδ, and K⊂(K ′)δ, but

‖VK−VK′‖C ≥‖VK−VK′‖C\Ω ≥‖V[1,2]−V[0,2]‖C\Ω−‖VK′−V[1,2]‖C\Ω > 2ε−ε = ε.

Thus we have shown that given ε>0 sufficiently small, then for any δ>0 we can
construct a set K ′ such that χ(K, K ′)<δ but Γ(K, K ′)>ε.

The main theorems of [BlLM] and [M] made use of results that were proved
using the incorrect claim (†). We will now reprove these results without using (†),
thus showing that the main theorems in those papers remain true. We need to
use a couple of standard properties of the Siciak–Zaharjuta extremal function for
a compact set.

Given a compact set K, we have

VK(z)= Va+T (K)(a+T (z))(2.5)

for any a, z∈CN and invertible complex linear map T : CN!CN . This is a special
case of a more general result due to Klimek ([K1], Theorem 5.3.6), but (2.5) can
also be proved easily using (1.1) and the fact that the class L is invariant under
affine transformations. Note that (2.5) implies, in particular, that T (K) is regular
if and only if K is. Recall that in one complex variable it is well-known that the
complex Green function is invariant under a conformal map.

For regular compact sets E and F in CN , we have the well-known property

‖VE−VF ‖CN = ‖VE−VF‖E∪F = max{‖VE‖F , ‖VF ‖E}.(2.6)

We now introduce the following standard notation: If T : CN!CM is a linear
transformation then ‖T ‖:=sup|z|=1 |T (z)| is the standard operator norm. We also
write (CN )∗ to denote the space of complex linear functions l : CN!C.

Proposition 2.12. Let K⊂CN be a regular compact set. Given ε>0 there
exists δ>0 such that if T : CN!CN is a complex linear map with ‖T−I‖<δ and
‖T−1−I‖<δ, then ‖VK−VT (K)‖<ε.
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Proof. Given δ∈(0, 1), let T be a complex linear mapping with ‖T−I‖<δ and
‖T−1−I‖<δ. Since K is regular, VK is uniformly continuous on a large ball BM :=
B(0, M ); let ω denote the modulus of continuity on BM . For points z∈B(0, M−δ),
we have

|VK(z)−VT (K)(z)|= |VK(z)−VK(T−1(z))| ≤ω(‖T−1−I‖|z|)≤ω(δM ).(2.7)

Since K is compact, K⊂B(0, R) for some R>0. Now ‖T−I‖<δ<1 implies that
T (K)⊂B(0, 2R); thus if we have chosen M >2R+δ, then T (K)∪K⊂B(0, M−δ),
so that, by (2.7),

‖VK−VT (K)‖CN = ‖VK−VT (K)‖K∪T (K) ≤ω(δM ).

For a fixed ε>0 we can take δ small enough so that the right-hand side of the above
inequality is less than ε. �

Lemma 2.13. Let K, K ′⊂CN be regular compact sets. For any nonconstant
holomorphic polynomial p : CN!C,

1
deg p

‖Vp(K)−Vp(K′)‖C ≤‖VK−VK′‖CN .(2.8)

Proof. First note that p(K) and p(K ′) are regular in C. Hence using (2.6), we
need only estimate |Vp(K)(w)−Vp(K′)(w)| at points w∈p(K)∪p(K ′). Fix w∈p(K ′).
Then Vp(K′)(w)=0, and writing w=p(z) for some z∈K ′, we have

1
deg p

Vp(K)(w)=
1

deg p
Vp(K)(p(z))≤VK(z)≤‖VK‖K′ ,

where the fact that (Vp(K)�p)/ deg p∈L and (Vp(K)�p)/ deg p≤0 on K implies that
(Vp(K)�p)/ deg p≤VK . Similarly, if w∈p(K) we obtain Vp(K′)(w)/ deg p≤‖VK′‖K .

Applying (2.6) to these two inequalities yields (2.8). �

Proposition 2.14. Let K⊂CN be a regular compact set. Given ε>0 there
exists δ∈(

0, 1
2

)
such that, if l1, l2 : CN!C are complex linear functions with ‖l1‖=1

and ‖l1−l2‖<δ, then ‖Vl1(K)−Vl2(K)‖C<ε.

Proof. Recall that (CN )∗ is the vector space of complex linear functions from
CN to C. Given l1 and l2, let T ∗ : (CN )∗!(CN )∗ be a complex linear transforma-
tion such that T ∗(l1)=l2. By elementary functional analysis there exists a complex
linear transformation T : CN!CN with the property that l(T (z))=(T ∗(l))(z) for
any l∈(CN )∗ and z∈CN . In particular, l1(T (z))=l2(z) for all z∈CN . Using this
and (2.8), we have

‖Vl1(K)−Vl2(K)‖C = ‖Vl1(K)−Vl1(T (K))‖C ≤‖VK−VT (K)‖CN .(2.9)
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Now if ‖l1‖=1 and ‖l1−l2‖<δ, we claim that we can always find a complex
linear transformation T ∗ such that T ∗(l1)=l2, ‖T ∗−I‖<2δ and ‖(T ∗)−1−I‖<2δ

as follows. For simplicity, we rotate our coordinates so that in our new coordinates,
l1(z):=z1; then in the dual coordinates (z∗1 , ..., z∗N) we have l1=(1, 0, ..., 0) and l2=
(1+δ1, δ2, ..., δN ) for some numbers {δj}N

j=1 that satisfy
∑N

j=1 |δj |2≤δ2. If we set

T ∗ := I+E

such that E is given by the matrix of column vectors [α 0 ... 0] with α=(δ1, δ2, ..., δN ),
then clearly T ∗(l1)=l2, and ‖T ∗−I‖=‖E‖≤δ. Now ‖(T ∗)−1−I‖≤δ/(1−δ)<2δ.
This proves the claim.

Fix ε>0. Using Proposition 2.12 we choose δ>0 such that if T : CN!C is
a complex linear map with ‖T−I‖<2δ and ‖T−1−I‖<2δ then

‖VK−VT (K)‖CN < ε.(2.10)

Now for such a δ, if ‖l1‖=1 and ‖l2−l1‖<δ, we obtain, by the previous argument,
a linear transformation T ∗ with ‖T ∗−I‖≤2δ and ‖(T ∗)−1−I‖≤2δ. Using the fact
that the dual transformation T on CN satisfies ‖T ∗‖=‖T ‖ and ‖(T ∗)−1‖=‖T−1‖,
we have, by Proposition 2.12, that (2.10) holds for T . Applying this to (2.9) yields
the result. �

These results show that in certain cases we can estimate Γ(K, K ′) in terms of
χ(K, K ′) if K and K ′ have additional nice properties. Siciak has observed in [S]
that a sequence of compact sets {Kj}∞j=1 converging in χ to a compact set K also
converges to K in Γ if and only if the family {VKj}∞j=1 is equicontinuous.

3. The projection capacity

For a linear polynomial l(z)=a0+a1z1+a2z2+...+aNzN , it follows from (2.5)
that

Vl(K)(l(z))= Vtl(K)+c(tl(z)+c) for any c, t∈C with t 
= 0.

Hence we may assume that the supremum in the definition of V
(1)
K is taken over

a normalized set of linear polynomials; in particular, those with no constant term
(i.e., a0=0), and with

|a1|2+|a2|2+...+|aN |2 = 1.

This allows us to rewrite the the definition of V
(1)
K as follows:

V
(1)
K (z) := sup{Vl(K)(l(z)) : l∈ (CN )

∗
and ‖l‖= 1}.(3.1)
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We now recall the logarithmic capacity, of one-variable complex potential
theory. Let X⊂C be compact. The Robin constant ρX is given by

ρX = lim sup
|t|!∞

(VX(t)−log |t|) = lim
|t|!∞

(VX(t)−log |t|).

The logarithmic capacity of X is given by cap(X)=e−ρX . A compact set E is
polar if and only if cap(X)=0. There are other characterizations of the logarithmic
capacity in terms of transfinite diameter and Chebyshev constants (see [R]), which
provide the basis for several applications of complex potential theory.

Definition 3.1. Given a compact set K⊂CN , we define the projection capacity
of K by the formula

C(K) := inf{cap(l(K)) : l∈ (CN )
∗

and ‖l‖= 1},
where, as before, cap(E) denotes the logarithmic capacity of E⊂C. It follows
immediately from the definition that C(K1)≤C(K2) if K1⊂K2, i.e., we have mono-
tonicity on compact sets.

We also have continuity under decreasing limits.

Proposition 3.2. Let {Kn}∞n=1 be a decreasing sequence of compact sets
Kn+1⊂Kn, and let K :=

⋂∞
n=1 Kn. Then

lim
n!∞C(Kn)= C(K).

The above result follows from the fact that cap( · ) is continuous under decreas-
ing limits, together with the fact that for a monotone decreasing sequence of sets
{Kn}∞n=1 and a linear map l, we have

⋂∞
n=1 l(Kn)=l(

⋂∞
n=1 Kn). For details, see

[M].

Remark 3.3. Following Brelot ([Br]), one can define the inner capacity C∗ and
the outer capacity C∗ for an arbitrary set A as follows:

C∗(A) := sup{C(K) : K is compact and K ⊂A},
C∗(A) := inf{C∗(U ) : U is open and U ⊃A}.

A is called capacitable if C∗(A)=C∗(A). Both the open sets and compact sets
are capacitable. The capacitability of open sets is a simple consequence of the
definition, and the capacitability of compact sets uses Proposition 3.2 (cf., [M]).
Thus the projection capacity can be extended to a larger class; however, in what
follows we will continue to work exclusively with compact sets. It is not yet known
whether or not C∗ or C∗ are Choquet capacities.
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The projection capacity is closely related to the (V (1))
∗

function. Before prov-
ing the main result of this section we recall the following important property of
upper envelopes of functions in the class L (cf., [K1], Proposition 5.2.1).

Proposition 3.4. Let U⊂L be a nonempty family, and define u(z):=
supv∈U v(z). Then either u∗∈L or u∗≡+∞.

Theorem 3.5. For a compact set K⊂CN , C(K)>0 if and only if (V (1)
K )

∗∈L.

Proof. Suppose C(K)>0. For any R>0 such that K⊂B(0, R), we have, for
z∈B(0, R),

V ∗
l(K)(l(z))=

∫
log |l(z)−t| dµl(K)(t)−log cap(l(K))

≤ log 2R−log cap(l(K))≤ log 2R−logC(K)

if ‖l‖=1. Hence V
(1)
K (z)≤log 2R−logC(K) for all z∈B(0, R), so by Proposition 3.4,

(V (1)
K )

∗∈L.
Conversely, if (V (1)

K )
∗∈L, then for all z∈CN , (V (1)

K )
∗
(z)≤log |z|+C for some

C∈R, and hence V ∗
l(K)(l(z))≤log |z|+C for all l. Take l∈(CN )∗ with ‖l‖=1. Given

t∈C, set z1=tā1, ..., zN =tāN (here a1, ..., aN are the coefficients of l). Then l(z)=t

and |z|=|t|. Thus for such z and t with |z|=|t|≥1, we have

V ∗
l(K)(t)= V ∗

l(K)(l(z))≤C+log |z|= C+log |t|.
Letting |t|!∞, we get cap(l(K))≥e−C. Thus C(K)≥e−C>0. �

Remark 3.6. It follows immediately that C(K)=0 if and only if (V (1)
K )

∗≡+∞.
Hence if C(K)=0, then V ∗

K≡+∞ too, so K is pluripolar (Proposition 1.3). However,
we give here an example of a pluripolar set in C2 with positive projection capacity.
Let

K := {(z, 0) : z∈ [0, 1]}∪{(0, w) : w∈ [0, 1]}.
Then K is pluripolar, being the union of two pluripolar sets. K is also lineally
convex. If l(z, w)=az+bw with |a|2+|b|2=1, then l(K) contains the line segment
joining 0 and a, and the line segment joining 0 and b in C. So

cap(l(K))≥max
{ |a|

4
,
|b|
4

}
≥ 1

4
√

2
,

where we have used the fact that a line segment in C of length l has logarithmic
capacity l/4 ([R]).

For a=b=1/
√

2, the lower bound is attained and hence C(K)=1/4
√

2.
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4. C-regular sets

We close the paper with a discussion of C-regularity, which was first defined
in [BCL]. For convenience, from now on all linear maps l∈(CN )∗ that we consider
will have the normalization ‖l‖=1.

Definition 4.1. A compact set K⊂CN is C-regular if there exists b0∈(0, 1) and
R≥1 such that for all |η|>R,

sup
l

V ∗
l(K)(bη) ≤ inf

l
V ∗

l(K)(η) for all 0<|b|<b0.

The main aim here is to show that compact sets with positive projection cap-
acity are C-regular. First we need some lemmas. Recall from the previous section
that cap(X)=e−ρX for any compact set X⊂C.

Lemma 4.2. Let X⊂∆(0, R0)⊂C be a nonpolar compact set. Then

V ∗
X(ζ)= ρX +log |ζ|+O

(
1
|ζ|

)
,(4.1)

where O(1/|ζ|) depends only on R0.

Proof. First, for |ζ|>R0, we have

V ∗
X(ζ) =

∫

X

log |ζ−t| dµX(t)+ρX

≤
∫

X

log(1+|t|/|ζ|) dµX(t)+log |ζ|+ρX ≤ log(1+R0/|ζ|)+log |ζ|+ρX

Similarly, for |ζ|>R0, we can also get the estimate

V ∗
X(ζ)≥ log(1−R0/|ζ|)+log |ζ|+ρX .

Since log(1±δ)=O(δ) for δ>0 sufficiently small, (4.1) follows. �

The following two lemmas exploit the fact that the Green function for a com-
pact set X in classical potential theory is harmonic away from the set.

Lemma 4.3. Let K⊂CN be a compact set with C(K)>0, and let R0 be such
that l(K)⊂∆(0, R0) for all l. Suppose that there exists R>R0 such that (V (1)

K )
∗
(0)<

inf l V
∗
l(K)(η) for all |η|=R. Then there exists b0>0 such that for all b with |b|≤b0,

sup
l

V ∗
l(K)(bη)≤ inf

l
V ∗

l(K)(η) for all |η|= R.
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Proof. For convenience, we set F (η):=inf l V
∗
l(K)(η). Suppose the conclusion

of the lemma is false. Then we can find sequences {l̃j}∞j=1, {lj}∞j=1, {ηj}∞j=1 and
{bj}∞j=1 such that ηj!η̃ (with |ηj |=|η̃|=R) and bj!0, and such that

V ∗
lj(K)(ηj)< V ∗

l̃j(K)
(bjηj) for all j.

Pick ε∈(0, R−R0). For all j, the functions uj :=V ∗
lj(K) are harmonic on

Uε := {η : |η| ∈ (R−ε, R+ε)}
and uniformly bounded there, using (4.1) (the term ρX in (4.1) is uniformly bounded
above by − log C(K)). Hence we can find a subsequence j′ of j and a harmonic
function u on Uε such that uj′!u locally uniformly on Uε. In particular,

‖uj′−u‖{η:|η|=R}−! 0 as j′ −!∞,

so that
lim

j′!∞
uj′(ηj′ )= lim

j′!∞
u(ηj′)+ lim

j′!∞
(uj′(ηj′ )−u(ηj′))= u(η̃).

Since uj(η)≥F (η) for all j and |η|=R, we have u≥F on {η :|η|=R}. Note that
l̃j=aj1z1+...+ajN zN for some coefficients aj1 , ..., ajN . Setting aj :=(aj1 , ..., ajN ),
we have |aj |=1, and

F (η̃)≤ u(η̃)= lim
j′!∞

uj′(ηj′ )≤ lim sup
j!∞

V ∗
l̃j(K)

(bjηj)

= lim sup
j!∞

V ∗
l̃j(K)

(l̃j(bjηj āj))≤ lim sup
j!∞

V
(1)
K (bjηj āj)≤ (V (1)

K )
∗
(0),

(where āj=(āj1 , ..., ājN ) for each j), i.e., inf l V ∗
l(K)(η̃)≤(V (1)

K )
∗
(0), contradicting the

hypothesis. �
Lemma 4.4. Let R0 be such that l(K)⊂∆(0, R0) for all l. Suppose that for

some b∈C\{0} and R>R0 the inequality

sup
l

V ∗
l(K)(bη) ≤ inf

l
V ∗

l(K)(η)(4.2)

holds for all |η|=R and is finite on both sides. Then (4.2) holds for all |η|≥R.

Proof. Fix l1 and l2. Since V ∗
l1(K) is harmonic on C\∆(0, R), the function

u(η) := V ∗
l2(K)(bη)−V ∗

l1(K)(η)

is subharmonic on C\∆(0, R), u≤0 on {η :|η|=R}, and using (4.1),

|u(η)| ≤ |ρl2(K)|+|ρl1(K)|+
(

1+
1
|b|

)
O

(
1
|η|

)
,

as |η|!∞, which is bounded. Hence by the extended maximum principle for sub-
harmonic functions (cf., [R]), u≤0 on {η :|η|≥R}. Since l1 and l2 were arbitrary,
this proves that (4.2) holds for all |η|≥R. �
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Proposition 4.5. If K is a compact set with C(K)>0, then K is C-regular.

Proof. First, K⊂B(0, R0) for some R0>0, and so for all l, l(K)⊂∆(0, R0).
Now (V (1)

K )
∗∈L by Theorem 3.5, and so (V (1)

K )
∗
(0)<+∞. Using (4.1), we can

choose R>R0 sufficiently large so that

(V (1)
K )

∗
(0)< inf

l
V ∗

l(K)(ζ) for |ζ| ≥R.

By Lemma 4.3, there exists b0>0 such that for all b with |b|<b0 and |η|=R,

sup
l

V ∗
l(K)(bη)≤ inf

l
V ∗

l(K)(η).(4.3)

By Lemma 4.4, (4.3) holds for all |η|≥R. This proves that K is C-regular. �

Definition 4.6. The Robin function ρu associated to a function u∈L is defined
for z∈CN by

ρu(z) := lim sup
|λ|!∞

(u(λz)−log |λ|).

Directly from the definition, we see that ρu is logarithmically homogeneous,
i.e., ρu(λz)=ρu(z)+log |λ| for any λ∈C\{0}. Also, we will use the fact that ρu is
known to be a plurisubharmonic function ([Bl]). Note that in C, the well-known
Robin constant is the value of the Robin function on the unit circle.

The Robin function is an important tool in the study of functions in the class L.
We will use the notion of C-regularity to prove the following result about the Robin
function of (V (1)

K )
∗
.

Theorem 4.7. Let K⊂CN be compact. Then for all z∈CN \{0},

ρ
(V

(1)
K )

∗(z)=
[
sup

l
ρV ∗

l(K)
(l(z))

]∗
.(4.4)

To prove the above theorem we need the following result about C-regular sets.

Lemma 4.8. Suppose that K⊂CN is compact and C-regular. Then there
exists a∈(

0, 1
2

)
and R′≥1 such that for all |λ|>R′ and |z|=1, if l1 and l2 satisfy

|l1(z)|≤a and |l2(z)|≥1−a, then

V ∗
l1(K)(λl1(z))≤V ∗

l2(K)(λl2(z)).
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Proof. Let a:=b0/(b0+1) and R′ :=R/(1−a), where b0 and R are as in Defini-
tion 4.1. Fix λ and z with |λ|≥R′ and |z|=1. Then

|λl2(z)| ≥R′(1−a)= R.

Also, l1(z)=l2(bz) where b:=l1(z)/l2(z). Note that

|b|=
∣
∣
∣
∣
l1(z)
l2(z)

∣
∣
∣
∣≤

a

1−a
= b0,

so from the definition of C-regularity,

V ∗
l1(K)(λl1(z))= V ∗

l1(K)(bλl2(z))≤V ∗
l2(K)(λl2(z)). �

Proof of Theorem 4.7. We consider two cases, namely, C(K)>0 and C(K)=0.
Case I. Suppose C(K)>0. By Proposition 4.5, K is C-regular. Fix z∈CN \{0}.
Then for any l, we have

ρV ∗
l(K)

(l(z))= lim sup
|λ|!∞

(V ∗
l(K)(λl(z))−log |λ|)

≤ lim sup
|λ|!∞

((V (1)
K )

∗
(λz)−log |λ|) = ρ

(V
(1)

K )
∗(z).

Hence ρ
(V

(1)
K )

∗(z)≥supl ρV ∗
l(K)

(l(z)). Since ρ
(V

(1)
K )

∗(z) is a plurisubharmonic func-
tion, it also follows that

ρ
(V

(1)
K )

∗(z)≥
[
sup

l
ρV ∗

l(K)
(l(z))

]∗
.(4.5)

For the reverse inequality, let a and R′ be as in Lemma 4.8. Fix a linear
map l1. If |l1(z)|<a|z|, let l2 be any map satisfying |l2(z)|>(1−a)|z|. If |l1(z)|≥a|z|
then take l2=l1. For any |λ|>R′/|z|, we have, using Lemma 4.8,

V ∗
l1(K)(λl1(z))−log |λ| ≤V ∗

l2(K)(λl2(z))−log |λ|,
with |l2(z)|≥a|z|. Thus

V ∗
l1(K)(λl1(z))−log |λ| ≤V ∗

l2(K)(λl2(z))−log |λ|
= V ∗

l2(K)(λl2(z))−log |λl2(z)|+log |l2(z)|

= ρl2(K)+log |l2(z)|+O

(
1

|λl2(z)|
)

= ρV ∗
l2(K)

(l2(z))+O

(
1

|λl2(z)|
)

≤ sup
l

ρV ∗
l(K)

(l(z))+O

(
1

a|λ||z|
)

,
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where the equality in the third line above follows from (4.1). Note that since l1 was
arbitrary and the last expression above is independent of l1, we have for |λ|>R′/|z|,

V
(1)
K (λz)−log |λ| ≤ sup

l
ρV ∗

l(K)
(l(z))+O

(
1

a|λ||z|
)

.(4.6)

Now (4.6) holds for all z 
=0, so taking the upper semicontinuous regularization of
both sides, we get

(V (1)
K )

∗
(λz)−log |λ| ≤

[
sup

l
ρV ∗

l(K)
(l(z))

]∗
+O

(
1

a|λ||z|
)

.

Letting |λ|!∞ on both sides of the above equation yields

ρ
(V

(1)
K )

∗(z)≤
[
sup

l
ρV ∗

l(K)
(l(z))

]∗
,

which together with (4.5), yields (4.4).
Case II. Suppose C(K)=0. Then (V (1)

K )
∗≡+∞, and hence ρ

(V
(1)

K )
∗ =+∞. Hence

we only need to show that the right-hand side of (4.4) is +∞. Let

u(z) := sup
l

ρV ∗
l(K)

(l(z)).

Note that for each l, either ρV ∗
l(K)

�l∈L, or ρV ∗
l(K)

�l≡+∞. We need to show that
u∗≡+∞. By Proposition 3.4, it is sufficient to show that u∗ /∈L. To this end,
take a sequence {aj}∞j=1⊂CN with |aj |=1 for all j, such that cap(lj(K))≤1/j,
where lj(z)=aj1z1+...+ajNzN . We may take a convergent subsequence j′ of j

such that aj′!a for some a with |a|=1; hence lj′(z)!l(z)=a1z1+...+aNzN . Now
l(ā)=|a1|2+...+|aN |2=1, and for all z∈B

(
ā, 1

2

)
, writing η=z−ā, we have

|l(z)|= |l(ā+η)|= |1+l(η)| ≥ 1−‖l‖|η|=1−|η| ≥ 1
2 .

Since aj′!a, we can find j0 such that

|lj′(z)| ≥ 1
4 for all z ∈B

(
ā, 1

2

)
and j′ > j0,

and hence
ρV ∗

l
j′ (K)

(lj′ (z))= ρlj′(K)+log |lj′(z)| ≥ log j′−log 4.

Thus for all z∈B
(
ā, 1

2

)
,

u(z)≥ ρV ∗
l
j′ (K)

(lj′(z))≥ log j′−log 4

for all j′>j0; clearly u∗ /∈L, and so by Proposition 3.4, u∗≡+∞. �
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For regular sets, (4.4) simplifies as follows.

Corollary 4.9. Let K⊂CN be a regular compact set. Then

ρ
V

(1)
K

(z)= sup
l

ρVl(K)(l(z)).(4.7)

The proof of Corollary 4.9 is identical to the proof of Theorem 4.7, but with
no need to take any upper semicontinuous regularizations. Since K is regular, we
can use the fact that V

(1)
K is continuous ([BLM]), and for each l, Vl(K) is continuous

(Lemma 1.4).

Remark 4.10. In [BCL], (4.7) is proved for regular compact sets in essentially
the same way. In that paper C-regularity is an additional assumption, but here it
is seen to be superfluous. Since K is regular, and hence nonpluripolar, C(K)>0
(Remark 3.6) and therefore K is C-regular (Proposition 4.5).

We close this paper by using (4.7) to construct an example of a sequence of
functions {uj}∞j=1⊂L that increase to (V (1)

K )
∗

for a regular compact set K, with the
property that ρuj%ρ

V
(1)

K

.

Example 4.11. Let K⊂CN be compact and regular, and let {lk}∞k=1 be an
enumeration of the normalized linear maps with rational coefficients (i.e., if lk(z)=
a1z1+...+aNzN then for each i=1, ..., N , �(ai) and �(ai) are rational). For each
k=1, 2, ..., define the increasing sequence of functions

uk(z) := max
j≤k

Vlj(K)(lj(z)).

Clearly uk≤V
(1)
K , and hence ρuk

≤ρ
V

(1)
K

for all k.

On the other hand, fixing z∈CN \{0} and ε>0, we take l̃ such that ρ
V

(1)
K

(z)≤
ρVl̃(K)

(l̃(z))+ε/3. Using the fact that {lk}∞k=1 is a dense subset we can find an lj in
the sequence so that

∣
∣log |lj(z)|−log |l̃(z)|∣∣ < ε/3 and ‖Vlj(K)−Vl̃(K)‖C < ε/3,

where the second inequality follows from Proposition 2.14. Note that the second
inequality also implies that |ρl̃(K)−ρlj(K)|<ε/3. Using this, we have

ρ
V

(1)
K

(z)≤ ρl̃(K)+log |l̃(z)|+ε/3≤ ρlj(K)+log |lj(z)|+ε = ρVlj(K)(lj(z))+ε,

and hence ρ
V

(1)
K

(z)≤ρuk
(z)+ε for all k≥j. Since ε was arbitrary, this shows that

ρuk
%ρ

V
(1)

K

as k!∞.
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Note that in general, the pointwise convergence of an increasing sequence of
functions in L does not imply convergence of the corresponding Robin functions to
the Robin function of the limit. The following counterexample is based on ideas of
Siciak.

First we construct a compact set K⊂C such that 0 is an irregular point of this
set. Let ε>0, and set

K := {0}∪
( ∞⋃

k=1

[
1
2k

,
1
2k

+
1

2k2+ε

])
.

Every nonzero point of K is regular, and 0 is an irregular point by Wiener’s criterion
in C (see e.g., [R]).

For each j=1, 2, ..., consider the set Kj :={z∈C:dist(z, K)≤ 1
j }. The sets Kj

are compact and regular, so the functions

uj(z)=

⎧
⎨

⎩
VKj

(
1
z

)
+log |z|, if z 
=0,

ρKj , if z=0,

are continuous in C, and for each z∈C we have uj(z)%u(z), where u is given by

u(z) :=

⎧
⎨

⎩
V ∗

K

(
1
z

)
+log |z|, if z 
=0,

ρK , if z=0,

and is clearly continuous in C. We have limj!∞ ρuj (1)=limj!∞ VKj (0)=0, but on
the other hand ρu(1)=V ∗

K(0)>0 by the irregularity of K at 0.

Remark 4.12. For a decreasing sequence of functions in L, pointwise con-
vergence to a limit does imply pointwise convergence of the corresponding Robin
functions to the Robin function of the limit.
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