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The pluripolar hull of a graph and fine analytic
continuation

Tomas Edlund and Burglind Jöricke

Abstract. We show that if the graph of an analytic function in the unit disk D is not

complete pluripolar in C2 then the projection of its pluripolar hull contains a fine neighborhood

of a point p∈∂D. Moreover the projection of the pluripolar hull is always finely open. On the

other hand we show that if an analytic function f in D extends to a function F which is defined

on a fine neighborhood of a point p∈∂D and is finely analytic at p then the pluripolar hull of

the graph of f contains the graph of F over a smaller fine neighborhood of p. We give several

examples of functions with this property of fine analytic continuation. As a corollary we obtain new

classes of analytic functions in the disk which have non-trivial pluripolar hulls, among them C∞

functions on the closed unit disk which are nowhere analytically extendible and have infinitely-

sheeted pluripolar hulls. Previous examples of functions with non-trivial pluripolar hull of the

graph have fine analytic continuation.

1. Introduction

A subset E of a domain Ω⊂CN is called pluripolar in Ω, if for all z∈E there
exist a connected neighborhood Uz of z in Ω and a plurisubharmonic function
u �≡−∞ defined on Uz such that

E∩Uz ⊂{w∈Uz : u(w)=−∞}.
By Josefson’s theorem (see [J]), a set E⊂CN is pluripolar if and only if there exists
a globally defined plurisubharmonic function u such that

E ⊂{w∈CN : u(w)=−∞}.
In other words a pluripolar set is a subset of the −∞-locus of a globally defined
plurisubharmonic function. Pluripolar sets are the exceptional sets in pluripotential
theory. This motivates the interest in understanding the structure of pluripolar
sets. A set E⊂Ω is called complete pluripolar in Ω if E is the exact −∞-locus of
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a plurisubharmonic function defined in Ω. On the contrary, some subsets E⊂Ω
(e.g. proper open subsets of connected analytic submanifolds) have the property
that any plurisubharmonic function which is −∞ on E is −∞ on a larger set. This
leads to the notion of the pluripolar hull E∗

Ω (see [LP]) of a pluripolar subset E⊂Ω,

E∗
Ω

def=
⋂

{z ∈Ω : u(z)=−∞},
where the intersection is taken over all plurisubharmonic functions in Ω which
equal −∞ on E. In general, it is difficult to describe the pluripolar hull of a given
set E. Initiated by a paper of Sadullaev ([S]) the pluripolar hull of graphs of certain
analytic functions has been studied in a number of papers (see e.g. [EW1], [EW2],
[EW3], [LP], [Si1], [Si2], [W1] and [W2]).

For a subset A of the complex plane C and a complex-valued function f on A,
we denote by Γf (A) the graph of f over A,

Γf (A)= {(z, w)∈C2 : z ∈A and w = f(z)}.
Let f be a holomorphic function in the unit disk D⊂C. Clearly Γf (D) is a pluripo-
lar set. It is a natural attempt to relate non-triviality of the pluripolar hull of Γf (D)
to the existence of analytic continuation or various kinds of generalized analytic con-
tinuation of f across some part of ∂D. In [LMP] Levenberg, Martin and Poletsky
conjectured that if f is analytic in D and f does not extend holomorphically across
∂D, then Γf (D) is complete pluripolar. This conjecture was disproved in [EW2].
In [Si1], Siciak noticed that the function in [EW2] possesses pseudocontinuation
across a subset of the circle of full measure and showed that the pluripolar hull of
its graph contains the graph of the pseudocontinuation. He also noticed that if an
analytic function f in D admits pseudocontinuation through a set E of positive
measure on the circle and the graph of the non-tangential limits is in the pluripolar
hull of Γf (D), then also the graph of the pseudocontinuation is in the mentioned
pluripolar hull. In [Si1] he showed by an example that the existence of pseudocon-
tinuation of the function f is not necessary for non-triviality of the pluripolar hull
of Γf (D).

The notion of fine analytic continuation seems to us better adapted for under-
standing pluripolar completeness of graphs.

Recall that the fine topology was introduced by Cartan (see e.g. [B]) as the
weakest topology for which all subharmonic functions are continuous. A neighbor-
hood basis of a point in this topology consists of sets which differ from a Euclidean
neighborhood of this point by a set which is thin at this point. Thin sets were
introduced by Brelot. A set F⊂C is thin at a point ξ, if either ξ is not in its closure
�F or ξ∈�F and there exists a subharmonic function V in a neighborhood of ξ such
that limz∈F,z!ξV(z)<V(ξ). One can always choose V in such a way that the limit
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on the left equals −∞. For a point p∈C and a positive number r we denote by
D(p, r) the open disk of radius r and center p.

By a closed fine neighborhood V of p we mean a connected closed set which has
the form B\U for some connected closed neighborhood B of p and an open set U⊂C
which is thin at p. Note that U can be taken simply connected (but in general not
connected). We will often consider B=D(p, r) for some r>0. Since subharmonic
functions are upper semicontinuous, each fine neighborhood of p contains a closed
fine neighborhood of p.

Definition 1. A continuous function F on a closed fine neighborhood V of
a point p∈C is called finely analytic at p (on V ) if F can be approximated uniformly
on V by analytic functions Fn in a neighborhood U(Fn) of V .

We will say that a continuous function on a subset S of C has the Mergelyan
property if it can be approximated uniformly on S by analytic functions in a neigh-
borhood of S. Mergelyan’s theorem states that for compact sets K with finitely
many components of the complement all continuous functions on K which are holo-
morphic in the interior IntK have this property.

Note that the term finely analytic is well known and is used for functions
which have the Mergelyan property on a finely open set (see, e.g. [F]). Here we
consider only the local definition above (we do not require that V contains a fine
neighborhood of each of its points). Even in this local situation a weak version of
the unique continuation property holds (see Proposition 3 below).

Definition 2. Suppose that f is analytic in the unit disk D. Let p be a point
on the unit circle ∂D. We say that f has fine analytic continuation F at p if there
exists a closed fine neighborhood V of p such that V ∩D⊃D(p, r)∩D for some r>0,
and a finely analytic function F at p on V such that F|D∩V =f .

Remark 1. The conditions of Definition 2 are satisfied, in particular, if V =
D(p, r)\U , where r>0, U⊂C\�D is open and thin at p, and F=G+C on V , where
G is analytic on D(p, r) and continuous on D(p, r), and C is the Cauchy-type integral
of a finite Borel measure µ concentrated on U such that for an increasing sequence
of compacts �n⊂U the functions

Cn(z)=− 1
π

∫

�n

dµ(ξ)
ξ−z

, z /∈�n,

converge uniformly to C(z) on V .

Note that in Definition 2 we do not require that the set V \�D has interior
points. Nevertheless, by the mentioned weak unique continuation property, if fine
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analytic continuation to a given set V exists then it is unique on a, maybe, smaller
fine neighborhood.

Here are examples of analytic functions in the unit disk which allow fine analytic
continuation at certain points of the unit circle.

Example 1. The functions constructed in [Si1] and [EW2] satisfy the definition.
Indeed, they have the following form. Let {an}∞n=1 be a sequence of points contained
in C\�D which cluster to a subset of ∂D and do not have other cluster points. Let
D(an, ρn)⊂C\�D be a sequence of pairwise disjoint disks around an of radius ρn>0
such that U

def=
⋃∞

n=1 D(an, ρn) is thin at a point p∈∂D. Let cn be a sequence of
complex numbers such that

∑∞
n=1 |cn|<∞ and |cn|≤(1/n2)ρn. Define

f(z)=
∞∑

n=1

cn

z−an
, z ∈C\

∞⋃

n=1

D(an, ρn).

It is immediate to check that the conditions of Definition 2 are satisfied.

Example 2. Let U⊂C\�D be open, relatively compact and thin at every point
of the unit circle ∂D, and suppose moreover that C\U is connected. Such sets
can easily be obtained by first choosing points pn which accumulate to each point
of ∂D and to no other point, then choosing ρn>0 such that the disks D(pn, ρn)
are pairwise disjoint and do not meet �D. Then choosing an>0 so that the series∑∞

n=1 an log(|z−pn|/ρn) converges to a subharmonic function which is non-negative
outside

⋃∞
n=1 D(pn, ρn) and, finally, choosing rn>0 such that the function is less

than −1 on U
def=

⋃∞
n=1 D(pn, rn). Let F be a C1 function on Ĉ (here Ĉ denotes the

Riemann sphere), such that ∂F=0 on C\U . By the Cauchy–Green formula

F(z)=− 1
π

∫∫

U

∂F
ξ−z

dm2(ξ)+F(∞).

Since the density ∂F is bounded and the Cauchy kernel is locally integrable with
respect to two-dimensional Lebesgue measure, the function f =F|D has fine analytic
extension at each point p∈∂D, moreover, F has the Mergelyan property on Ĉ\U .

More generally, let U be as described and let g∈L2+ε(C) for some ε>0 and
g=0 outside U . The function

F(z) def= − 1
π

∫∫

C

g(ξ) dm2(ξ)
ξ−z

,

satisfies the condition of Definition 2 and has the Mergelyan property on Ĉ\U . If
g is a C∞ function then F is a C∞ function on the whole Riemann sphere. If
g is continuous and in addition g≥0 and g>0 at some point of each connected
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component of U , then f =F|D does not have analytic extension across any arc
of ∂D. Indeed, suppose it has analytic continuation fp to a disk D(p, r) for some
p∈∂D. By Proposition 3 below, fp coincides with the fine analytic continuation F
on some fine neighborhood V1⊂C\U of p. The neighborhood V1 contains a circle
∂D(p, ρ), 0<ρ<r. (This is well known. The reader who is not familiar with po-
tential theory will find a proof below in Section 2.) Let �n⊂U be an exhausting
sequence of compact subsets of U . Since V1⊂C\U , we have �n∩∂D(p, ρ)=∅ for
each n, and

0 =
∫

|z−p|=ρ

fp dz

= lim
n!∞− 1

π

∫

|z−p|=ρ

dz

∫∫

�n

∂F
ξ−z

dm2(ξ)

= lim
n!∞− 1

π

∫∫

�n

dm2(ξ)∂F(ξ)
∫

|z−p|=ρ

1
ξ−z

dz

= lim
n!∞

2πi

π

∫∫

�n

dm2(ξ)∂F(ξ)·χD(p,ρ)(ξ)

�= 0.

Here χD(p,ρ) is the characteristic function of the disk D(p, ρ). The contradiction
proves the assertion.

Example 3. The third example is related to pseudocontinuation across certain
subsets of positive length of the unit circle.

Definition 3. A function f which is analytic in D is said to have pseudocontin-
uation from D across the set E⊂∂D of positive measure to a domain De⊂{z∈C:
|z|>1} if for all z∈E the domain De contains a truncated non-tangential cone with
vertex at z, and there exists an analytic function f̃ in De, such that f and f̃ have
the same non-tangential limits at z. In this case we call f̃ the pseudocontinuation
of f .

For convenience we will specify the situation in the following way. We will
restrict ourselves to the case where E is closed and the angles and the diameters
of the truncated non-tangential cones in De are uniformly bounded from below
by positive constants. Shrinking perhaps E and De we may assume that De is
a bounded domain, moreover, that it consists of the union of all open truncated
non-tangential cones with symmetry axes orthogonal to the circle, and that all
the mentioned cones have the same angle and the pseudocontinuation is continuous
in �De. So, De has the shape of a “saw” near E . Replace D by a domain Di⊂D which
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is symmetric to De in a small neighborhood of E in such a way that the bounded
components of the complement of �Di∪�De are similar rhombs ♦l containing the
complementary arcs of E in the circle. (The endpoints of one of the symmetry axes
of the rhomb ♦l are the endpoints of a connected component of ∂D\E .) Assume
that the unbounded component of C\(�De∪�Di) intersects ∂D along a connected
arc. We may assume that the construction is made so that the original function is
continuous in �Di.

The original function together with its pseudocontinuation across E defines
a continuous function on �Di∪�De, which is analytic in Di∪De. Denote the space of
such functions by A(�Di∪�De).

It will be convenient to give the third example with D replaced by Di. It can
be stated for D instead with obvious changes.

Proposition 1. Let Di, De and E be as above and let f∈A(�Di∪�De). Put
U =C\(�Di∪�De). If U is thin at a point p∈E and f is Hölder continuous of order
α∈(0, 1], then f |Di has fine analytic continuation f |V1 at p for a fine neighborhood
V1⊂�Di∪�De of p.

Note that the fact that E has positive length follows from the fact that its
complement in ∂D is thin at p.

We will prove Proposition 1 in Section 2. The following theorem holds.

Theorem 1. Let f be analytic in D and let p∈∂D. Suppose f has fine analytic
continuation F at p to a closed fine neighborhood V of p. Then there exists another
closed fine neighborhood V1⊂V of p, such that the graph ΓF (V1) is contained in the
pluripolar hull of Γf (D).

Moreover, if IntV \�D has a connected component V̊ which is not thin at p

then, ΓF(V̊ ) is contained in the pluripolar hull of Γf (D).
If V =D(p, r)\U , with U open and thin at p and �U \�D also thin at p, then there

exists a unique connected component

IntV \�D= {z∈C : |z−p|< r and |z|> 1}\�U
which is not thin at p.

Note that Theorem 1 holds as well in the situation of Proposition 1 with D
replaced by Di. Theorem 1 can be slightly generalized.

Theorem 2. Let F be finely analytic on a closed fine neighborhood V =
D(p, r)\U of a point p∈C. Let γ be a smooth arc, γ : [−1, 1]!C with γ(0)=p,
which divides D(p, r) into two components D+(p, r) and D−(p, r). Suppose �U \γ is
thin at p. Then there are unique connected components V+ and V− of D+(p, r)\�U
and D−(p, r)\�U , respectively, which are not thin at p. For those we have that the
pluripolar hull of ΓF(V+) contains ΓF(V−) and vice versa.
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Corollary 1. Let Di, De and E be as described before Proposition 1 and let
f∈A(�Di∪�De). If U =C\(�Di∪�De) is thin at some point p∈E and f is Hölder
continuous of order α∈(0, 1] then the pluripolar hull of Γf (Di) contains Γf (De)∪
Γf (Eir), where Eir consists of all points in E at which

⋃
♦l is thin.

Theorem 2 and Corollary 1 have the following consequence.

Corollary 2. There exist univalent analytic functions in the disk which are
smooth up to the boundary, are nowhere analytically continuable and have an ana-
lytic manifold in the non-trivial part of the pluripolar hull of the graph.

Functions with the mentioned property except univalency were constructed
in [EW2]. Theorem 1 and Example 2 give further classes of functions with the
mentioned property (not necessarily univalent functions). The present constructions
are simpler then those in [EW2].

Denote by π1 the projection onto the first coordinate plane in C2, π1(z1, z2)=z1

for z=(z1, z2)∈C2. Theorem 1 and its corollaries have the following counterpart.

Theorem 3. Let f be analytic in a domain D⊂C. Then π1(Γf (D)∗C2) is open
in the fine topology.

Theorem 3 implies in particular the following corollary.

Corollary 3. Let f be analytic in D. Then for each point p in the unit circle,
either {p}×C does not meet Γf (D)∗C2 or π1(Γf (D)∗C2) is a fine neighborhood of p.

Combine the corollary with the following results of Wiegerinck and Edigarian.

Theorem 4. [EW3] Let E⊂C2 be a pluripolar subset of class Fσ. Assume
that E is connected. Then E∗

C2 is also connected.

Theorem 5. [EW3] Let f be analytic in D. If the pluripolar hull Γf (D)∗C2 of
its graph is contained in the cylinder D×C then the graph Γf (D) is in fact complete
pluripolar.

We obtain the following result.

Theorem 6. Let f be an analytic function in D whose graph is not complete
pluripolar in C2. Then π1(Γf (D)∗C2) contains a fine neighborhood of a point p∈∂D.

Proof. Since the graph Γf (D) is a connected Fσ pluripolar set, Theorem 4
implies that Γf (D)∗C2 is connected. By assumption Γf (D) is not complete pluripolar
and hence, by Theorem 5, the connected set π1(Γf (D)∗C2 ) is not contained in D.
Therefore there exists a point p∈∂D so that p∈π1(Γf (D)∗C2). Using Theorem 3,
Theorem 6 follows. �



46 Tomas Edlund and Burglind Jöricke

Corollary 4. Let D=D∪D, where D is a domain, D⊂C\�D, which contains
a truncated non-tangential cone of fixed size with vertex z for each z∈E, E being
a closed subset of positive length on ∂D. Let f be holomorphic in D and continuous
in �D=�D∪�D (hence f |D and f |D are pseudocontinuations of each other across the
set E). Suppose that C\�D is non-thin at every point z∈∂D and Γf (�D) is complete
pluripolar. Then Γf (D) is complete pluripolar.

Note that functions f with the mentioned properties exist (see [Ed]). Corol-
lary 4 states roughly that if two analytic manifolds in C2 have contact along a set
which is not massive enough in potential theoretic terms, then the property of
plurisubharmonic functions in C2 to be −∞ does not propagate from one of the
manifolds to the other one.

Proof. The set E
def= Γf(D)∗C2 is contained in Γf (�D) since by assumption the

latter set is complete pluripolar. Hence π1(E)⊂�D and C\π1(E)⊃C\�D is non-thin
at any point p∈∂D. �

We conclude this section with an example of fine analytic continuation to a set
with no interior points outside the unit disk, with an example with infinitely sheeted
pluripolar hull and with some open problems.

Example 4. Consider all points in C\�D with rational coordinates. This set is
countable and accumulates, in particular, to the whole circle ∂D. As in Example 2
there exists a subharmonic function U which is −∞ on this set and non-negative at
each point p∈�D. Let U be the set of points on which U<−1. The set U is open,
contained in C\�D and it is thin at each point of the unit circle. Moreover C\U

is connected, i.e. U is simply connected which is a consequence of the maximum
principle.

Let F be a continuous function on C\U which has the Mergelyan property on
each compact subset of C\U and has complete pluripolar graph ΓF(C\U ). Such
functions were constructed in [Ed] for arbitrary closed subsets of C. Then f =F|D
is analytic and f has fine analytic continuation at each point p∈∂D. Hence by
Theorem 2 there exists a set A1 which contains a fine neighborhood of each point of
the circle, such that the graph ΓF (A1) is in the pluripolar hull of ΓF(D). However
the mentioned pluripolar hull is contained in ΓF (C\U ), and the set C\U does not
have interior points outside the unit disk D. Hence in this case the non-trivial part
of the pluripolar hull of Γf (D) does not have analytic structure, i.e. there is no piece
of a non-trivial analytic manifold contained in it. The following problems arise.

Problem 1. Let f be analytic in D. Suppose π1(Γf (D)∗C2) has an interior point
p outside D. Is there a neighborhood Vp of p in C and a relatively closed subset X
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of Vp×C such that X⊂Γf(D)∗C2 and X is a “limit” (e.g. in the Hausdorff metric)
of relatively closed analytic varieties in Vp×C?

Problem 2. Let f be analytic in D and suppose that Γf (D) is not com-
plete pluripolar. How big can the fiber of Γf (D)∗C2 be over a “generic point” in
π1(Γf (D)∗C2 )? Can it be more than countable? Does Γf (D)∗C2 contain the graph
of a reasonable function over a sufficiently massive subset of C which is related to
some kind of generalized analytic continuation of f?

We have the following example in mind.

Example 5. By a segment we mean the (closed) part of a real line in C which
joins two points in C. Let U be as in Example 2. Consider a sequence of pairwise
disjoint segments σn contained in U which accumulates to the whole circle ∂D and
does not have other limit points in C. Denote the endpoints of the segment σn

by an and bn, and associate to σn the branch of the function
√

(z−an)(z−bn)
on C\σn which equals z+O(1) near ∞. We will use this notation only for the
mentioned branch. Let cn be complex numbers so that

∑∞
n=1 |cn|<∞. Let F(z)=∑∞

n=1 cn

√
(z−an)(z−bn) on C\U . The series converges uniformly on compact sets

in C\U . The function f =F|D has fine analytic continuation at each point of ∂D.
Moreover, F has the Mergelyan property on compact sets in C\U . By Theorem 1
the graph ΓF({z :|z|>1}\�U) is in the pluripolar hull of Γf (D). Since F has single-
valued analytic continuation to {z :|z|>1}\⋃∞

n=1 σn, the graph of F over this set is
contained in the pluripolar hull of Γf (D) too.

Fix a number n. The graph of the function
√

(z−an)(z−bn) over C\σn is
an open subset of the algebraic curve {(z, w)∈C2 :w2=(z−an)(z−bn)}. There is
a neighborhood Un of σn such that

∑
l �=n cl

√
(z−al)(z−bl) is analytic in Un. Hence

the analytic set

An =
{

(z, w)∈Un×C :
(

w−
∑

l �=n

cl

√
(z−al)(z−bl)

)2

= c2
n(z−an)(z−bn)

}

contains the graph ΓF(Un\σn) and is therefore in the pluripolar hull of ΓF (Un\σn)
and, hence, of Γf (D). The set An has two sheets over Un\σn, the second sheet is
the graph of the function

−cn

√
(z−an)(z−bn)+

∑

l �=n

cl

√
(z−al)(z−bl).

This function has analytic continuation to (C\�D)\�U . Moreover, it has the Mergel-
yan property on compact subsets of C\U . By Theorem 2 it has fine analytic continu-
ation at each point of ∂D to the disk D. We have obtained that the pluripolar hull of
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Γf (D) contains a two-sheeted branched covering over the set D∪(C\(�D∪⋃
l �=n σl)),

the points an and bn being the branch points. Repeating the argument for all other
endpoints of the segments, we obtain that the pluripolar hull of Γf (D) contains an
infinitely-sheeted branched covering (countably many sheets over generic points)
over the set C\∂D with branch points {an}∞n=1 and {bn}∞n=1. Note that the sheets
over D are graphs of analytic functions. Moreover, the covering is unbranched
over C\(T∪⋃∞

n=1({an}∞n=1∪{bn}∞n=1)). The infinitely-sheeted branched covering
over C\∂D can be approximated by analytic subsets of (C\∂D)×C, the sheets of
which over C\⋃n

l=1 σl are the graphs of Fn(z)=
∑n

l=1 ±cl

√
(z−al)(z−bl) with all

possible choices of + and −. Note that similar arguments as in Example 2 show
that the function f is nowhere analytically extendible across ∂D. Choosing the cn

more carefully we may obtain that f is of class C∞ on the closed unit disk.
When this paper was written we received a preprint of Zwonek [Zw] where he

constructed an analytic function in D which does not have analytic extension across
∂D and for which Γf (D)∗C2 has at least two sheets over D.

Example 5, Theorem 1 and Theorem 3 give the intuitive impression that the
key for non-triviality of the pluripolar hull of a graph of an analytic function might
be expressed by the words “branched fine analytic continuation of the function”.
At the moment we are not able to give these words a more precise meaning. In
particular, the following problem arises.

Problem 3. Let f be analytic in D. Suppose the fiber of the pluripolar hull
Γf (D)∗C2 over each point in C contains at most one point, in other words, Γf (D)∗C2

is the graph of some function F . Is F a fine analytic continuation of f?

Problem 4. Is Γf (D)∗C2 related to a suitable positive (1, 1)-current?

In Section 2 of the paper we will prove Proposition 1, Theorem 1 and its
corollaries. In the remaining Section 3 we will prove Theorem 3.

2. Non-trivial hull

In this section we will prove Proposition 1, Theorem 1 and its corollaries. Recall
that in Proposition 1 we consider domains Di and De, Di⊂D and De⊂C\�D, such
that the bounded components of C\(�Di∪�De) are similar rhombs ♦l for which the
endpoints of one of the symmetry axes are the endpoints of a connected component
of ∂D\E . Here E def=�Di∩�De. The following lemma will be useful.

Lemma 1. Let
⋃

l Il be a union of open pairwise disjoint arcs on ∂D which is
thin at p∈∂D. Denote by

⋃
l ♦l the union of closed similar rhombs with the property

that two opposite vertices of ♦l are the endpoints of Il. Then
⋃

♦l is thin at p.
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For the proof we need the following proposition which is interesting in itself.

Proposition 2. Let E⊂C be thin at the point 0∈�E. Let T : C!C be a map-
ping which satisfies a Lipschitz condition (|Tz1−Tz2|≤C|z1−z2| for z1, z2∈C) and
such that T (0)=0 and |Tz|≥c|z| for z∈C. (C and c are positive constants). Then
the set TE is thin at 0.

This proposition was known already to Brelot. Since a slightly weaker assertion
is stated in [B] (see Chapter 7, Paragraph 2) and we were not able to find an explicit
reference for Proposition 2, we sketch the proof for the convenience of the reader.

Proof. Since E is thin at 0 there exists a subharmonic function V in a neigh-
borhood of 0 with V(0)>−∞ and limξ∈E,ξ!0 V(ξ)=−∞. Using the Riesz represen-
tation theorem and subtracting a harmonic function we may assume that V has the
form

V(z)=
∫

log |ξ−z| dµ(ξ)

for a positive Borel measure µ. Define the measure µ1 by µ1(A)=µ(T−1(A)) for
each Borel set A, and put

V1(z)=
∫

log |ξ−z| dµ1(ξ).

Then

V1(Tz)=
∫

log |ξ−Tz| dµ1(ξ)=
∫

log |Tξ−Tz| dµ(ξ).

Hence V1(Tz)≤V(z)+logC ·‖µ‖ and V1(0)≥V(0)+log c·‖µ‖. �

Proof of Lemma 1. Note first that
⋃

l Īl is thin at p if
⋃

l Il is, since the sets
differ by a countable (and hence thin) set. Denote by Λ the union of the boundaries
of the rhombs. Let Λ+ and Λ− be the parts of Λ which are contained outside the
closed unit disk and inside the closed unit disk, respectively. Both Λ+ and Λ− can
be represented as graphs over a part of ∂D;

Λ+ =
{

r+eiφ : r+ = r+(φ) and eiφ ∈
⋃

l

Il

}
,

Λ− =
{

r−eiφ : r− = r−(φ) and eiφ ∈
⋃

l

Īl

}
.

The mapping T (eiφ)=r+eiφ, where eiφ∈⋃
l Īl can be extended to the whole plane

as a Lipschitz continuous mapping which satisfies the conditions of Proposition 2
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with 0 replaced by p. (The same is true for the mapping T (eiφ)=r−eiφ). Since
thinness is invariant under translation, Proposition 2 shows that both Λ+ and Λ−

are thin at p. Therefore their union Λ+∪Λ−=Λ is thin at p. Since the union of
the boundaries of the closed rhombs is thin at p we conclude that the union of the
closed rhombs is thin at p. �

We need the following immediate consequence of Lemma 1.

Corollary 5. If U =
⋃

l ♦l is thin at p∈∂D then also �U \�D is thin at p.

Proof. Indeed, �U \�D=
⋃

l ♦l\�D. �

We will make use also of the following three observations.
If the union of rhombs

⋃
l ♦l is thin at p there are arbitrarily small numbers

r>0 with the property that ∂D(p, r)∩⋃
l ♦l=∅. (See [B] or Proposition 2 with

Tz=|z| after suitable translation).
Moreover, looking at connected components of the union of closed intervals

and replacing the previous rhombs by closed rhombs associated to these connected
components in the same way as above, we may assume that the ♦l’s are pairwise
disjoint.

If
⋃

l ♦l is thin at p then there exists another sequence of similar (open)
rhombs ♦′

j associated to disjoint open arcs I ′j of ∂D, such that
⋃

j ♦′
j is thin at

p and
⋃

l ♦l⊂
⋃

j ♦′
j . In fact,

⋃
l Īl is thin at p. If for a subharmonic function V ,

limz∈⋃
l Īl,z!pV(z)<a<V(p), then for each Īl contained in a small neighborhood Vp

of p, supĪl
V<a, hence supĨl

V<a for some open arc Ĩl⊃Īl. Take also for the other
arcs Īl suitable open arcs Ĩl containing them. The set

⋃
l Ĩl is thin at p. Let the I ′j

be the connected components of the latter union and associate rhombs ♦′
j to them.

Proof of Proposition 1. We will assume that the ♦l in the statement of Proposi-
tion 1 are pairwise disjoint (shrinking otherwise the sets Di and De) and prove fine
analytic continuation to D(p, r)\⋃

j ♦′
j for a suitable small r>0 and the rhombs

♦′
j described above. We may assume that r>0 is chosen so that ∂D(p, r) does

not meet
⋃

j ♦′
j (by the remark above). Keep the notation ♦l for only those of

the original rhombs which are contained in D(p, r) and ♦′
j for those of the en-

larged rhombs which are contained there. The function f is analytic in each of the
domains D′

i
def= D(p, r)∩D\⋃

l ♦l and D′
e
def= D(p, r)∩(C\�D)\⋃

l ♦l and Hölder con-
tinuous in the union of the closures. Both domains have rectifiable boundary, hence
by Cauchy’s formula

f(z)=
1

2πi

∫

∂D′
i

f(ξ)
ξ−z

dξ+
1

2πi

∫

∂D′
e

f(ξ)
ξ−z

dξ, z ∈D′
i∪D′

e.
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The contours of integration are always oriented as boundaries of relatively compact
domains. Note that one of the integrals in the sum above will be equal to zero.
Using that ∂D∩D(p, r)\⋃

l ♦l=E∩D(p, r)=∂D′
i∩∂D′

e and integration over this set
is provided twice with opposite orientation we obtain

f(z) =
1

2πi

∫

∂D(p,r)

f(ξ)
ξ−z

dξ− 1
2πi

∑

l

∫

∂♦l

f(ξ)
ξ−z

dξ

def= J(z)−
∑

l

Jl(z), z ∈D′
i∪D′

e.

By Privalov’s theorem J(z) extends to a Hölder continuous function of order α in
D(p, r) if α<1 and of any order less than 1 if α=1. The measure f(ξ) dξ on

⋃
l ∂♦l

is a finite Borel measure concentrated on a subset of
⋃

j ♦′
j . To prove Proposition 1

let �n=
⋃n

l=1 ♦l and Fn(z)=J(p+(1−1/n)(z−p))−∑n
l=1 Jl(z), z∈D(p, r)\�n. We

have to check that the Fn converge uniformly to f on �D′
i∪�D′

e=D(p, r)\⋃
j ♦′

j . To
obtain a uniform estimate of Jl on D(p, r)\♦l we use that for z /∈♦l the Cauchy
type integral with pole at z of the constant function f(z) along ∂♦l vanishes. We
get for z∈D(p, r)\♦l,

|Jl(z)|=
∣∣∣∣

1
2πi

∫

∂♦l

f(ξ)−f(z)
ξ−z

dξ

∣∣∣∣≤C

∫

∂♦l

|ξ−z|α
|ξ−z| |dξ|.

Let N >n be a natural number and let z∈D(p, r)\⋃N
l=n ♦l. Then

∑

n≤l≤N

|Jl(z)| ≤C

∫
⋃

n≤l≤N ∂♦l

|ξ−z|α
|ξ−z| |dξ| ≤C

∫
⋃

l≥n ∂♦l

|ξ−z|α
|ξ−z| |dξ|.

Represent the contour of integration on the right-hand side as the union of its
part Λ−

k contained in �D and its part Λ+
k contained in C\�D. Each of the parts is

the graph of a Lipschitz continuous function over a subset of (∂D)∩D(p, r) with
uniform estimate for the Lipschitz constant (which depends on the angle of the
truncated non-tangential cones contributing to Di and De). For a point ζ �=0 we
denote by ζ′ its radial projection to the circle, ζ′=ζ/|ζ|. Using the inequality |ξ−z|≥
const|ξ′−z′| and estimating the arc-length on Λ+

k and on Λ−
k by arc-length of the

radial projection, we obtain

∑

n≤l≤N

|Jl(z)| ≤ C

∫

∂D∩⋃
l≥n ♦l

|ξ′−z′|α−1|dξ′|

≤ C′
∫

γn

|eiφ−1|α−1|deiφ|, z ∈D(p, r)\
N⋃

l=n

♦l,
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where γn is the arc of the circle which is symmetric around the point 1 and has
length mes1(∂D∩⋃

l≥n ♦l). Since α>0 the right-hand side converges to zero for
n!∞. This proves the proposition. �

For a domain G⊂C, a Borel subset E of ∂G and a point z∈G we denote by
ω(z, E , G) the harmonic measure of E with respect to G computed at the point z.

Proof of Theorem 1. Let V =D(p, r)\U , where U⊂C\�D is open and thin at p.
We will first obtain a harmonic measure estimate. Let ρ>0 be small enough and
such that {z :|z−p|=ρ}∩U =∅. Since U is thin at p such ρ exists. Let J be a closed
subarc of ∂D(p, ρ) contained in D. Decreasing ρ we may assume that the length of
J is at least 5πρ/6. Let Kn be an increasing sequence of compact subsets of U , each
Kn being the finite disjoint union of closures of smoothly bounded simply connected
domains. Then D(p, r)\Kn is connected. We claim that if ρ is small enough there
exists a number r1, 0<r1<ρ, and an open set U1⊃U∩D(p, ρ), which is thin at p,
such that the following harmonic measure estimate holds:

ω(z, J, D(p, ρ)\Kn)≥ 1
4 for each z ∈V1 = D(p, r1)\U1 and each n.(2.1)

In fact, since U is thin at p there is a subharmonic function U in a neighborhood of
p which is finite at p and tends to −∞ along the set U . Taking ρ small enough and
adding a constant to U we may assume that U is defined and less than 0 in D(p, ρ).
Multiplying U by a positive constant we may assume that U(p)>− 1

12 . Taking ρ

small enough, we may assume that U<−1 on U∩D(p, ρ). Then

ω(z, J, D(p, ρ)\Kn)≥ω(z, J, D(p, ρ))+U(z), z ∈D(p, ρ)\Kn.(2.2)

Indeed, the boundary of D(p, ρ)\Kn is smooth, and hence regular for the Dirichlet
problem. The left-hand side is harmonic in this domain and extends continuously to
all but two points of its closure, the right-hand side is subharmonic in the domain,
bounded from above and its boundary values at all but two points are majorized
by those on the left-hand side. Denote by U1 the set U1

def=
{
z∈D(p, ρ):U(z)<− 1

12

}
.

The set U1 is open and since U(p)>− 1
12 the set U1 is thin at p. Clearly U1⊃

U∩D(p, ρ). By the assumption on the length of J we have ω(p, J, D(p, ρ))≥ 5
12 . Let

r1∈(0, ρ) be so small so that

ω(z, J, D(p, ρ))> 4
12 for z ∈D(p, r1).(2.3)

Then by (2.2), the definition of U1 and by (2.3),

ω(z, J, D(p, ρ)\Kn)> 4
12− 1

12 = 1
4 for z ∈D(p, r1)\U1

def= V1 for each n.

The inequality (2.1) is proved.
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Suppose now that f has fine analytic continuation F at p to a fine neighborhood
V =D(p, r)\U , i.e. there exist analytic functions Fn in neighborhoods U(Fn) of V

which converge uniformly to F on V . Shrinking the neighborhoods U(Fn) we
may always assume that supU(Fn) |Fn|≤C for all n and a constant C>1. Since
U is simply connected one can choose an increasing sequence of compact subsets
Kn of U , each being the finite disjoint union of closures of smoothly bounded
simply connected domains such that D(p, r)\Kn⊂U(Fn). Hence Fn are analytic
in D(p, r)\Kn and continuous in D(p, r)\Kn and their maximum norms in these
sets are bounded by the constant C. Take ρ, r1 and V1 as above. Fix an arbitrary
point z∈V1 and define Qn,z(ξ)=Fn(ξ)+F(z)−Fn(z), ξ∈D(p, r)\Kn. Then Qn,z

are analytic and uniformly bounded on D(p, ρ)\Kn and continuous on D(p, ρ)\Kn,
Qn,z(z)=F(z), and Qn,z!F uniformly on V as n!∞.

Let B be a ball in C2 which contains the graphs ΓQn,z(D(p, r)\Kn) for all n

and z. Fix z∈V1. Let u be a plurisubharmonic function in C2 which equals −∞
on Γf (D). Adding a constant, we may assume that u<0 in B. The set J⊂V ∩D
and for large n the set ΓQn,z(J ) is uniformly close to Γf (J )=ΓF(J ). Since u is
upper semi-continuous for each large N there exists n such that u(ξ, Qn,z(ξ))<−N

for ξ∈J . The function ξ �!u(ξ, Qn,z(ξ)) is a negative subharmonic function on
D(p, ρ)\Kn which is upper semi-continuous on the closure of this set, hence by the
estimate of harmonic measure we obtain

u(z,F(z))= u(z, Qn,z(z))≤−Nω(z, J, D(p, ρ)\Kn)<−N

4
.(2.4)

Since N was arbitrary we obtain u(z,F(z))=−∞ for all z∈V1 if u=−∞ on Γf (D).
Suppose now that IntV \�D has a connected component V̊ which is non-thin

at p. Then V̊ ∩V1=V̊ ∩D(p, r1)\U1 is non-thin at p (since V̊ ⊂(V̊ ∩D(p, r1)\U1)∪
{z :|z−p|>r1}∪U1 and the last two sets are thin at p). Hence V̊ ∩V1 is not polar,
and therefore, since F is analytic on V̊ , ΓF(V̊ ) is contained in the pluripolar hull
of Γf (D).

Suppose �U \�D is thin at p. There exist arbitrarily small numbers ρ>0 such
that {z :|z−p|=ρ} does not meet �U \�D, hence for those ρ the set {z :|z−p|=ρ}∩
{z :|z|>1} is contained in the complement of �U \�D in C\�D, namely in IntV ∩
{z :|z|>1}. There cannot be two disjoint open connected subsets of C\�D for which
p is an accumulation point, which both contain half-circles {z :|z−p|=ρ}∩{z :|z|>1}
for some positive numbers ρ. Since the open set C\(�D∪�U) is not thin at p it has
exactly one such component and this component is non-thin at p. Theorem 1 is
proved. �

The proof of Theorem 2 is a slight modification of the proof of Theorem 1. We
will omit it.
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Proposition 3. Suppose the continuous function F on a closed fine neighbor-
hood V =D(p, r)\U of p is finely analytic at p. Suppose γ :[−1, 1]!C is a smooth
arc with γ(0)=p which divides D(p, r) into two connected components D+(p, r) and
D−(p, r). Then there is a smaller fine neighborhood V1 of p such that F|D+(p,r)∩V1

is uniquely determined by F|D−(p,r)∩V .

Proof. It is enough to show that if F is finely analytic at p on V and
F|D−(p,r)∩V ≡0 then F|V1 is equal to zero for some fine neighborhood V1⊂V of p.
As in the proof of Theorem 1 there exist compact subsets Kn of U , each being
the finite disjoint union of closures of smoothly bounded simply connected domains
and analytic functions Fn on D(p, r)\Kn which are continuous on D(p, r)\Kn and
uniformly bounded by a constant C>1, and converge to F uniformly on V . Let J

be a closed arc of a circle ∂D(p, ρ) for some ρ>0 which is contained in D−(p, r)∩V

and has length at least 5πρ/6. Since F=0 on J , the numbers εn
def= maxJ |Fn| are

less than 1 for n>n0 and tend to zero for n!∞. The same arguments as in the
proof of Theorem 1 give a number r1>0 and an open set U1 which is thin at p

and a harmonic measure estimate analogously to (2.1) such that the two-constant
theorem gives for z∈V1=D(p, r1)\U1 and all n>n0,

log |Fn(z)| ≤ log εn ·ω(z, J, D(p, ρ)\Kn)+logC ·(1−ω(z, J, D(p, ρ)\Kn))

≤ log εn · 14 +logC.

Hence F(z)=limn!∞ Fn(z)=0 for z∈V1. �

Proof of Corollary 1. By Proposition 1, f |Di has fine analytic continuation to
a set V1=D(p, r1)\U1⊂�Di∪�De for some r1>0, where U1 is an open set which is thin
at p. Moreover, this fine analytic continuation equals f |V1 . Hence, the pluripolar
hull of Γf (Di) contains Γf (V2) for a fine neighborhood V2⊂V1 of p, in particular it
contains Γf ({p}). In the same way it contains the graph of f over each point at
which U is thin.

The domain De is non-thin at p, since De contains D(p, ρ)∩{z :|z|>1}\�U,
where �U is thin at p. Hence, as in the proof of the second part of Theorem 1,
Γf (De) is contained in the pluripolar hull of Γf (Di). �

Proof of Corollary 2. Let
⋃

l Il be a union of disjoint open arcs on ∂D such
that

⋃
l Il is dense on ∂D, its linear measure is less than 2π and

⋃
l Il is thin at 1.

Let G⊂D be a domain whose boundary γ is a smooth, nowhere analytic Jordan
curve obtained from ∂D by replacing each arc Il by a curve in D∩♦l with the
same endpoints as Il. Here the ♦l’s are similar rhombs corresponding to the arcs
Il like in Section 1. Let f be a conformal mapping of G onto D. f extends to
a smooth homeomorphism of �G onto �D. Since γ is nowhere analytic, f and its
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inverse f−1 do not have analytic continuation across any part of the boundary of
their domain of definition. However by the Schwarz reflection principle f admits
pseudocontinuation across the set E=∂D\⋃

l Il and hence extends to a function
in A(�Di∪�De) for suitable domains Di and De of the kind described before the
statement of Theorem 1. Note that the extended function is also univalent. By
Corollary 1 the pluripolar hull of Γf (Di) (and hence of Γf (G)) contains Γf (De).
The graph of f over the subset G in the z-plane,

Γf (G)= {(z, w)∈C2 : z ∈G and w = f(z)},

can be considered as the graph of its inverse function over the set D in the w-plane,
{(z, w)∈C2 :w∈D and z=f−1(w)}. The corollary follows. �

3. Points which are not in the pluripolar hull

In this section we will prove Theorem 3. For the proof it will be convenient to
use the following known results.

Let Ω be a pseudoconvex domain in CN . In [LP] the negative pluripolar hull
is defined as

E−
Ω

def=
⋂

{z ∈Ω : u(z)=−∞},

where the intersection is taken over all negative plurisubharmonic functions in Ω
that are −∞ on E. The following relation between the negative pluripolar hull and
the pluripolar hull holds (see [LP]).

Theorem 7. Let Ω be a pseudoconvex domain in CN . Let {Ωj}∞j=1 be an
increasing sequence of relatively compact subdomains of Ω with

⋃∞
j=1 Ωj =Ω. Let

E⊂Ω be pluripolar. Then

E∗
Ω =

∞⋃

j=1

(E∩Ωj)−Ωj
.

For a subset E⊂Ω, the pluriharmonic measure at a point z∈Ω of E relative to
Ω, is defined as

W (z, E, Ω)=− sup{u(z) : u is plurisubharmonic in Ω and u≤−χE},(3.1)

where χE is the characteristic function of the set E. The relation between the
negative pluripolar hull and pluriharmonic measure is given in the following theo-
rem [LP].
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Theorem 8. Let Ω be a domain in CN and let E⊂Ω be pluripolar. Then

E−
Ω = {z∈Ω : W (z, E, Ω)> 0}.

Theorem 7 and 8 immediately imply the following fact.

Proposition 4. For a compact set K⊂CN the pluripolar hull K∗
CN is of

class Fσ.

For convenience of the reader we give a short proof.

Proof. By Theorem 7 it is enough to show that for each large open ball B

centered at the origin and containing K, the negative hull K−
B is of class Fσ. Since

B is hyperconvex (i.e. B has a bounded plurisubharmonic exhaustion function)
the pluriharmonic measure z �!W (z, K, B) is upper semicontinuous (see e.g. [K],
Corollary 4.5.11). Hence, for each n the set {z∈B :W (z, K, B)<1/n} is open. It
follows that

K−
B =

∞⋃

n=1

{z ∈ (1−1/n)�B : W (z, K, B)≥ 1/n}

is the countable union of closed sets. Here (1−1/n)�B is obtained from �B by con-
tracting �B by the factor 1−1/n. �

In the proof of Theorem 3 we will use that Γf (D)∗C2 =Γf(K)∗C2 for a closed
disk K⊂D and hence Γf (D)∗C2 is of class Fσ. Writing the hull as a countable union
of compact sets we see that π1(Γf (D)∗C2) is of class Fσ.

Proof of Theorem 3. Put E=Γf (D)∗C2 . We have to show that for each point
p∈π1(E) the set π1(E) contains a fine neighborhood of p, equivalently for p∈π1(E)
the set A

def= C\π1(E) is thin at p. Suppose on the contrary that A is not thin
at some point p∈C (in particular p /∈D) and prove that p /∈π1(E), i.e. the fiber
π−1

1 (p)={p}×C avoids E=Γf (D)∗C2 . We may assume that p∈π1(E). We will apply
Wiener’s criterion to the Borel set A (see e.g. [R] concerning Wiener’s criterion for
not necessarily closed sets). Put An={z∈A:2−n<|z−p|≤2−n+1} for each natural
number n. According to Wiener’s criterion A is not thin at p if and only if the
relation

∑

n≥1

n

log(2/ capAn)
=∞

holds. Here capAn denotes the logarithmic capacity of the set An⊂C. (If capAn=0
for some n the respective term n/log(2/ capAn) is considered to be equal to zero.)
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By regularity properties of the capacity (see e.g. [R] or [B]) there exist compact
subsets �n⊂An such that cap�n≥ 1

2 capAn. The �n are pairwise disjoint.
We want to replace �n by simply connected sets �̃n. By Theorem 4, E is

connected, and hence π1(E) is connected. Since p∈π1(E), the set π1(E)∪{p}
is connected and it intersects each annulus {z∈C:2−n<|z−p|<2−n+1} for n≥n0.
The complement C\⋃N

n=n0+1 �n is open and contains π1(E)∪{p}. Let C be the
connected component of C\⋃N

n=n0+1 �n which contains π1(E)∪{p}. The set C

contains an annulus of the form {z∈C:2−n<|z−p|<2−n(1+εn)} for some positive
εn for n=n0+1, ..., N−1. Moreover, it contains the disc {z :|z|<2−N} and the set
{z :|z|>2−n0}. Hence the complement of C is the union of disjoint compact subsets
�̃n⊂{z :2−n<|z−p|≤2−n+1}, n=n0+1, ..., N , each �̃n being simply connected (not
necessarily connected.) Note that �̃n⊃�n, �̃n⊂An, and cap �̃n≥cap�n≥ 1

2 capAn.
In particular �̃n does not meet D. Applying Wiener’s criterion once more, we obtain
that

⋃∞
n=n0+1 �̃n is not thin at p.

For n≥n0+1 we denote the compact set
⋃n

j=n0+1 �̃j by Kn. Then the sequence
Kn, n≥n0+1, is increasing and for each n≥n0+1 the set Dn=Ĉ\(K∪Kn) is a do-
main. (Here Ĉ denotes the Riemann sphere.) Let ω( · , ∂K, Dn) be the generalized
solution of the Dirichlet problem for the domain Dn=Ĉ\(K∪Kn) with boundary
value 1 on ∂K and 0 on ∂Kn. We claim that

lim
n!∞ω(p, ∂K, Dn)= 0.(3.2)

Indeed, denote by En the set of irregular boundary points of ∂(K∪Kn) for the
Dirichlet problem. Note that En⊂∂Kn (since ∂K is smooth), En is a polar set and

lim
ξ∈Dn,ξ!z

ω(ξ, ∂K, Dn)= ω(z, ∂K, Dn)

for all points z∈∂Dn\En. Extend for each n the function ω(z, ∂K, Dn) to the set
Kn by putting it equal to zero there. Denote the extended function by hn. Let
∆ be a large open disc which contains K∪{p}∪⋃

n≥n0+1 �̃n. Associate to each set
En, n≥n0+1, and any positive number σ, a subharmonic function βn,σ on ∆ which
equals −∞ on En such that βn,σ(p)>−σ/2n. We may assume also that βn,σ is
negative on ∆. Such a function exists since En is polar (see e.g. [B]).

The function hn+βn,σ is upper semicontinuous on ∆\K (hn is continuous at all
points of ∆\(K∪En) and uniformly bounded, βn,σ equals −∞ on En and is upper
semicontinuous). Moreover hn+βn,σ is subharmonic on ∆\K. (The inequality
hn(z)≤(1/2π)

∫ 2π

0
hn(z+reiφ) dφ, 0<r<r(z), holds for all points in ∆\(K∪Kn)

since hn is harmonic there. It holds for points in Kn\En since hn=0 there and
hn≥0 on ∆\K. The inequality for hn replaced by hn+βn,σ holds for z∈En since
the sum equals −∞ at such points.)
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The functions Hn=hn+
∑n

j=n0+1 βj,σ, n≥n0+1, are subharmonic on ∆\K

and Hn+1≤Hn (since βj,σ are negative and hn+1≤hn). Moreover Hn(p)≥∑n
j=n0+1 βj,σ(p)>−σ by the choice of βj,σ since hn≥0. Hence

H = lim
n!∞Hn = lim

n!∞hn+ lim
n!∞

n∑

j=n0+1

βj,σ

is subharmonic on ∆\K (being the decreasing limit of subharmonic functions).
Moreover H<0 on

⋃
n≥n0+1 �̃n. Since the latter set is not thin at p,

H(p)= lim sup
ξ!p

ξ∈⋃
n≥n0+1 �̃n

H(ξ)≤ 0,

hence limn!∞ hn(p)≤− limn!∞
∑n

j=n0+1 βj,σ(p)<σ. Since σ is an arbitrary posi-
tive number (3.2) is proved.

We want to apply Theorem 8. For each natural j denote by Bj the open ball
of radius j and center 0 in C2. The graph Γf (K) is contained in Bj0 for some j0.
Let j≥j0. Fix any number ε>0. We will construct a plurisubharmonic function
g on Bj which equals −1 on Γf (K) such that g(p, w)≥−ε for all w∈C for which
(p, w)∈Bj . Choose n so that ω(p, ∂K, Dn)<ε. The compact set (Kn×C)∩�Bj does
not meet E=Γf (D)∗C2 . Using the definition of the pluripolar hull and the smoothing
of plurisubharmonic functions together with a compactness argument one can find
a continuous negative plurisubharmonic function u on Bj+1 with the properties

u <−1 on Γf (K) and u >−ε on (Kn×C)∩�Bj.

(See also [Z] where such functions are constructed.) The second inequality is satis-
fied also on a neighborhood of the mentioned compact set (Kn×C)∩�Bj . Hence we
may choose a smoothly bounded simply connected compact set K̃n, Kn⊂K̃n, K̃n∩
(K∪{p})=∅ such that u>−ε on (K̃n×C)∩�Bj. Put D̃n=Ĉ\(K∪K̃n), n≥n0+1.
The domain D̃n⊂Dn has regular boundary for the Dirichlet problem and

ω(p, ∂K, D̃n)≤ω(p, ∂K, Dn)< ε.(3.3)

The function

v(z, w)=

{
−ω(z, ∂K, D̃n), z∈D̃n, (z, w)∈Bj ,

−1, z∈K, (z, w)∈Bj,
(3.4)

is plurisubharmonic on a part of the ball Bj , precisely on {(z, w)∈Bj :z /∈K̃n}. We
want to obtain a plurisubharmonic function in the whole Bj using a standard gluing
procedure near (∂K̃n×C)∩Bj .
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For (z, w)∈Bj define

g(z, w)=

{
u(z, w), z∈K̃n, (z, w)∈Bj ,

max{v(z, w)−ε, u(z, w)}, z /∈K̃n, (z, w)∈Bj .
(3.5)

The function v is defined on {(z, w)∈Bj :z /∈K̃n}, hence g is well defined. On
(∂K̃n×C)∩Bj we have the inequality v−ε=−ε<u. By continuity properties of
u and v the inequality v−ε<u holds also on a neighborhood of (∂K̃n×C)∩Bj in
(D̃n×C)∩Bj . Thus g=u on a neighborhood of (∂K̃n×C)∩Bj in (D̃n×C)∩Bj .
Since u and v are plurisubharmonic where they are defined, the function g is
plurisubharmonic on Bj. Since for (z, w)∈Γf (K)∩Bj the relations u(z, w)≤−1
and v(z, w)=−1 hold, we obtain for these points g(z, w)≤−1. On the other hand,
since p /∈K̃n, for points of the form (p, w)∈Bj we have by (3.3),

g(p, w)≥ v(p, w)−ε >−2ε.

Here ε>0 was chosen arbitrary, hence W (p′, Γf (K),Bj)=0 for any p′∈π−1
1 (p)∩Bj .

Applying Theorems 7 and 8 finish the proof of Theorem 3. �
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