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On the tangential touch between the free and
the fixed boundaries for the two-phase

obstacle-like problem

John Andersson, Norayr Matevosyan and Hayk Mikayelyan

Abstract. In this paper we consider the following two-phase obstacle-problem-like equation

in the unit half-ball

∆u= λ+χ{u>0}−λ−χ{u<0}, λ± > 0.

We prove that the free boundary touches the fixed boundary (uniformly) tangentially if the bound-

ary data f and its first and second derivatives vanish at the touch-point.

1. Introduction

1.1. The problem

G. S. Weiss ([W2]) suggested the study of the following free boundary problem:
find a weak solution u∈W 1,2(D) of

(1) ∆u = λ+χ{u>0}−λ−χ{u<0},

in the domain D, such that u−f∈W 1,2
0 (D) for a given f∈W 1,2(D). This is the

two-phase analogue of the classical obstacle problem. It has been considered by
N. N. Uraltseva in [U] and H. Shahgholian, N. N. Uraltseva and G. S. Weiss in
[SUW].

In our paper we always assume λ±>0, and we consider the cases where D is
a ball or a half-ball, as well as the case of the so-called global solution when D=Rn

+.
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third authors thank Göran Gustafsson Foundation for visiting appointments to Kungliga Tekniska
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Equation (1) is the Euler–Lagrange equation of the energy functional

J(u)=
∫

D

(|∇u|2+2λ+ max(u, 0)+2λ− max(−u, 0))dx.

Note that if the boundary data f is non-negative (non-positive) then the solution u

is so too, and we arrive at the classical obstacle problem (see [C]). In the two-phase
case we do not have the property that the gradient vanishes on the free boundary,
as it was in the classical case; this causes difficulties.

We consider the following problem: let u be a weak solution of (1) in the unit
half-ball B+

1 , the free boundary

Γu := (∂{x : u(x)> 0}∪∂{x : u(x)< 0})∩B+
1

touches the fixed boundary at 0 and the boundary values of u on the flat part
of the boundary �B+

1 ∩{x:x1=0}, denoted by f , satisfy the following conditions:
f∈C2,Dini(B1∩{x:x1=0}) and

(2) f(0)= |∇f(0)|= |D2f(0)|= 0.

We prove that the free boundary of u approaches the fixed boundary at 0 tan-
gentially. Under some growth assumption, we prove that this approach is uniform
(Theorem B). This growth assumption imposed in Theorem B is necessary, as is
shown by an example. From (2) it obviously follows that |f(x′)|/|x′|2≤ω(|x′|) for
some Dini modulus of continuity ω, i.e., the blow-up of f is zero:

fr(x′) :=
f(rx′)

r2
! 0 as r! 0.

Let us recall the definition of C2,Dini(B1∩Π); these are functions from
C2(B1∩Π) such that

|D2f(x)−D2f(y)| ≤ω(|x−y|),

where D2f is the Hessian of f and ω is a Dini modulus of continuity, i.e.,

∫ 1

0

ω(s)
s

ds <∞.
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1.2. Notation

In the sequel we use the following notation:

Rn
± {x∈Rn :±x1>0},

B(z, r) {x∈Rn :|x−z|<r},
Br B(0, r),
B+

r Rn
+∩Br,

Π {x∈Rn :x1=0},
x′ (x2, ..., xn),
Kε {x∈Rn

+ :x1>ε|x′|},
‖ · ‖∞ L∞-norm,
e1, ..., en standard basis in Rn,
ν, e arbitrary unit vectors,
Dν , Dνe first and second directional derivatives,
v+, v− max(v, 0), max(−v, 0),
χD characteristic function of the set D,
∂D boundary of the set D,
Ω±

u {x∈D :±u (x)>0},
Λu {x∈B+

1 :u (x)=|∇u (x)|=0},
Γu (∂Ω+

u∪∂Ω−
u )∩D, the free boundary,

P(...) see Definition 2.

1.3. “Typical” examples

We show here, with some examples, how the situation near a touch point
between the free and fixed boundaries can look like.

Let us fix the ball BR and consider the function λ|x|2/2n, λ>0. Then we
take the radial fundamental solution U of the Laplace equation multiplied with
a constant CR, such that CR∂rU(R)=λR/n. Then for an appropriate constant C

the function

V (x)=
λ

2n
|x|2−CRU(|x|)+C

is non-negative in Rn, ∆V =λ−CRδ0 and V =|∇V |=0 on ∂BR (see Figure 1).
Thus we can construct solutions of (1) in BR\{0} and in Rn\BR. For instance

in R2 we can illustrate some solutions considered in rectangles (see Figure 2). The
dashed curves denote free boundaries Γu, ± denote regions Ω±

u and 0 the region Λu.
Figure 2 (a) shows a solution with sub-quadratic growth at the touch point. In
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Figure 1. “Ball solutions”.

this case the blow-up of the solution is zero. Figure 2 (b) shows that even if we
have a non-negative boundary data near the touch point, the blow-up still can be
negative. Figure 2 (c) shows that condition (2) is essential for having a tangential
touch.

Let us take the boundary data f on ∂B+
1 to be odd-symmetric with respect

to x2. Then the solution u will be odd-symmetric too. One might expect that the
free boundary of a symmetric solution has orthogonal touch. Figure 2 (a) indicates
another possibility, when the zero set Λu is large near the contact point. This is
indeed the case, as we show in Section 2. A similar argument works also in higher
dimensions for every plane-symmetric domain.

(a) (b)

(c)

Figure 2. “Typical” examples.
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2. Main results

In this section we state two theorems. The first one says that if the boundary
data satisfies condition (2), then the free boundary can approach the fixed boundary
only tangentially. In the second theorem we assert that this approach is uniform
for a certain class of solutions.

Theorem A. Let u be a solution of (1) in B+
1 with boundary data f on Π,

such that condition (2) is satisfied and 0∈Γu. Then the free boundary approaches
Π at the point 0 tangentially.

Corollary 1. Let u be as in Theorem A, then one of the following limits holds

|Ω+
u∩B+

r |
|B+

r |
! 1,

|Ω−
u∩B+

r |
|B+

r |
! 1,

|Λu∩B+
r |

|B+
r |

! 1, as r! 0.

Moreover, one of the first two cases is possible only if condition (4), see below, is
satisfied for some c0 and r0.

Definition 2. Let ω be a Dini modulus of continuity and M , c0 and r0 be
positive constants. We define P(M, R, c0, r0) to be the class of solutions u of (1)
in B+

1 , ‖u‖L∞(B+
1 )≤M , 0∈�Γu such that the boundary data f =u|Π∈C2,Dini(B1∩Π)

satisfies condition (2),

(3) ‖f‖C2(�B1∩Π) ≤R and
∫ 1

0

ω(s)
s

ds≤R.

Further, we assume

(4) sup
B+

r

|u| ≥ c0r
2 for 0 < r < r0,

for all u∈P(M, R, c0, r0).

Remark 3. If u solves (1) in B+
1 , 0∈�Γu and u|Π≡0, then condition (4) is fulfilled

with the constant c0=max(λ±)C, for 0<r<1, where C is a dimension dependent
constant (see Lemma 6 and Corollary 7).

Theorem B. There exists a modulus of continuity σ(r) and r̃>0 such that if
u∈P(M, R, c0, r0), then

Γu∩Br̃ ⊂{x : x1 < |x′|σ(|x′|)}.
In other words the free boundaries of the functions from P approach Π at the point 0
uniformly tangentially.

Here σ and r̃ depend on the dimension, λ±, c0, r0, M and R.
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(a) (b)

(c)

Figure 3. Non-uniform approach.

Remark 4. Since the main tool we use proving the Theorems A and B is the
blow-up argument, these results can be generalised for domains with smooth enough
boundaries.

Let us, with an example, indicate the necessity of condition (4). In this example
(Figure 3) the boundary data is positive, so we here treat the classical obstacle
problem in R2. Consider a solution with small boundary data fε supported to the
right of the origin as is shown on the Figure 3 (a). This can be done using the
“ball solutions” discussed above. Next consider the function u(x)= 1

2λ+(x1−ε)2+.
We will get it as a solution of our problem if we take its boundary data on ∂B+

1

(Figure 3 (b)). Consider now the solution u to the problem with boundary data
which is the sum of the boundary data of the previous two examples 3 (a) and
3 (b). Ω+

u will look like on Figure 3 (c). So we see that when ε tends to zero we are
getting free boundary points on the x1-axis arbitrarily near to the origin, while the
boundary data remain bounded and satisfy conditions (2) and (3) with appropriate
uniform constants M and R.

Remark 5. In order to get uniform tangential touch for a class of solutions we
impose condition (4). This condition, however, can be replaced by the following
one, which is considered in [KKS] for a different problem;

|Ω+
u∩B+

r |
|B+

r |
≥ c0 > 0 for r < r0.

From Lemma 8 and Corollary 1 it follows that both conditions are equivalent in our
case.
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3. Technicalities

3.1. Non-degeneracy

In this section we introduce some (modified) results from [W2], [U] and [SUW]
as well as prove growth estimates at the boundary (Lemmas 8 and 9).

Lemma 6. Let u solve (1) in B1. There exists a dimension dependent constant
C such that ‖f±‖∞<λ±C implies that 0 /∈Ω±

u .

Proof. Consider the “+”-case. Due to the comparison principle a similar argu-
ment is true (and well-known) for the obstacle problem, i.e. it is known in our
case if the boundary data f is non-negative or non-positive. Let us now consider
the related (one-phase) obstacle problem in B1 with boundary data f+, denote its
solution by v. It is enough to show that Ω+

u⊂Ω+
v . Consider the function w=u−v

in Ω+
u . We have w|∂Ω+

u
≤0 and ∆w≥0 in Ω+

u , hence u−v≤0 and we are done. �

Corollary 7. Let u be the solution of (1), x0∈Ω± and Br0(x0)⊂D. Then

(5) sup
∂Br(x0)

u± ≥λ±Cr2 for r < r0.

Here the constant C is the same as in the previous lemma.
In other words if x0 /∈int Λu and Br0(x0)⊂D, then

(6) sup
∂Br(x0)

|u| ≥min(λ±)Cr2 for r < r0.

Proof. Let us restrict the function u to Br(x0) and scale it

ur(x)=
u(rx+x0)

r2
.

Then ur is a solution of (1) in B1 with boundary data ur|∂B1 . Since 0∈Ω+ we must
have

sup
∂B1

ur ≥λ+C,

which in turn implies (5). �
Lemma 8. Let u be the solution of (1) in B+

1 and suppose that for given
constants c0 and r0, we have

|Ω+
u∩B+

r |
|B+

r |
≥ c0 > 0 for r < r0.

Then there exists a constant c depending on c0, λ± and the dimension such that

(7) sup
B+

r

|u| ≥ cr2 for r < r0.
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The same is also true for Ω−.

Proof. Let B̃+
r =B+

r ∩{x:x1>εr}. We can fix an ε>0 such that

|Ω+
u∩B̃+

r |
|B̃+

r |
≥ c0

2
for r < r0.

Hence for each r>0 there exists xr∈Ω+
u∩B̃+

r/2. Applying the previous corollary to
the ball Bdr(xr), where dr is the e1 component of xr , we get:

sup
B+

r

|u| ≥ sup
Bdr (xr)

|u| ≥λ+Cd2
r ≥ ε2λ+

C

4
r2.

Thus the lemma is proved with c=ε2λ+C/4. �

In the proof of the next lemma we use the technique from [A] (Lemma 5), see
also [CKS]. A similar estimate in the interior was proved by Uraltseva in [U].

Lemma 9. Let u solve (1) in B+
1 , ‖u‖∞≤M and assume that its boundary

data f =u|Π and the Dini modulus of continuity ω satisfy conditions (2) and (3).
Then there exists a constant C=C(M, R) such that

sup
B+

r

|u−De1u(0)x1| ≤Cr2, 0 < r < 1
2 .

Proof. Let us denote by

Sj(u) := sup
B+

2−j

|u−De1u(0)x1|

and M(u):={j :Sj(u)≤4Sj+1(u)}. We want to show that Sj(u)≤C2−2j. First let
us show this for all j∈M(u). The proof is done by contradiction: assume there
exists a sequence {uj}∞j=1 of solutions of (1) in B+

1 such that

Skj (uj)≥ j2−2kj

for some kj∈M(uj). Letting wj(x):=uj(x)−De1uj(0)x1 and

w̃j(x) :=
wj(2−kj x)
Skj+1(uj)

,

we get

‖∆w̃j‖∞ ≤max(λ±)
2−2kj

Skj+1(uj)
≤max(λ±)

2−2kj

1
4Skj (uj)

≤max(λ±)
4
j
! 0.
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We also have

(8) sup
B+

1/2

|w̃j |= 1.

The condition (Def(x′))±≤|x′|ω(|x′|), for any unit vector e∈Π, implies that

(9) sup
B+

r

|Dewj | ≤Cr,

where C depends on M and R. To check this one should consider harmonic functions
v±

j in B+

1/2 with the same boundary data as (Dewj)±. Inequality (9) then follows
from the subharmonicity of (Dewj)± (see [U]) and standard estimates on Green’s
function for the half-ball (see [Wi]). From (9) we have

(10) sup
B+

r

|Dew̃j | ≤ 4Cr

j
.

A subsequence of w̃j converges in C1(B+

1/2) to a harmonic function u0. Due to (10)
we get Deu0=0 for all e∈Π, thus u0=ax1. On the other hand De1w̃j(0)=0 and by
C1-convergence (up to Π) the same holds for u0. Hence u0≡0, which contradicts (8).

Next let us show that Sj(u)≤4C2−2j for all j. Suppose j is the first integer
for which the inequality fails to hold, then

Sj−1(u)≤ 4C2−2(j−1) ≤ 4Sj(u),

i.e. j−1∈M(u) and

Sj(u)≤Sj−1(u)≤C2−2(j−1) = 4C2−2j,

a contradiction. �

3.2. Monotonicity formulae

Here we introduce two monotonicity formulae, which play crucial roles in our
proofs. The first one was presented by H. W. Alt, L. A. Caffarelli and A. Friedman
in [ACF] and was developed in [CKS]. The second one is due to G. S. Weiss [W1],
[SUW]. Andersson ([A]) adapted it to the half-space case, our representation is
analogous. See also [M] for the formula in the parabolic case.
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Lemma 10. (The Alt–Caffarelli–Friedman monotonicity formula) Let h1 and
h2 be two non-negative continuous subsolutions of ∆u=0 in BR. Assume further
that h1h2=0 and h1(0)=h2(0)=0. Then the following function is non-decreasing in
r∈(0, R),

(11) ϕ(r)=
1
r4

( ∫
Br

|∇h1|2dx

|x|n−2

)( ∫
Br

|∇h2|2dx

|x|n−2

)
.

More exactly, if any of the sets spt(hj)∩∂Br digresses from a spherical cap by
a positive area, then either ϕ′(r)>0 or ϕ(r)=0.

Lemma 11. (Weiss’ monotonicity formula) Assume that u solves (1) in B+
R

and u|Π∩BR =0. Then the function

Φ(r) = r−n−2

∫
Br∩Rn

+

(|∇u|2+2λ+u++2λ−u−)−r−n−3

∫
∂Br∩Rn

+

2u2dHn−1(12)

is non-decreasing for r∈(0, R). Moreover, if Φ(ρ)=Φ(σ) for any 0<ρ<σ<R, then
Φ is homogeneous of degree two in (Bσ\Bρ)∩Rn

+.

The proof is analogous to the proof of Lemma 1 in [A].

4. Global solutions

In this section we will classify all solutions of (1) in Rn
+ with zero boundary

data and quadratic growth. We will see that the only possible solutions are

(13) u(x)=±λ±

2
(x1−a)2+, a≥ 0, or u(x)=±λ±

2
x2

1±αx1, α≥ 0.

The proofs of the next two lemmas adapt the proofs of analogous results in [SU] to
our case.

First let us prove that u is two-dimensional.

Lemma 12. Let u solve (1) in Rn
+ with boundary data u|Π=0. Then the

function u is two-dimensional, i.e., in some system of coordinates

u(x)= u(x1, x2),

where the e1 direction is orthogonal to Π.
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Proof. Let us take any direction e orthogonal to e1 and consider functions
(Deu)±. In [U] Uraltseva proved that these functions are subharmonic. Note that
they will remain so if we extend them by zero to Rn

−. Now we can apply the
Alt–Caffarelli–Friedman monotonicity formula to (Deu)±. For r<s we have

ϕ(r, Deu)≤ϕ(s, Deu)≤ lim
s!∞ϕ(s, Deu)=: Ce.

In [U] it is shown that the second derivatives of u are bounded, thus we can
find a sequence urj =u(rjx)/r2

j!u∞, uniformly on compact subsets and in
(W 2,p

loc ∩C1,α
loc )(Rn

+∪Π), for any 1<p<∞ and 0<α<1. Then we have

Ce = lim
rj!∞ϕ(srj , Deu)= lim

rj!∞ϕ(s, Deurj )= ϕ(s, Deu∞) for all s > 0.

From {x:x1<0}⊂{x:Deu(x)=0} and Lemma 10 it follows that ϕ(r, Deu∞)≡0 or
ϕ′(r, Deu∞)>0 for all r>0. Thus Ce=0 and we get Deu≥0 or Deu≤0.

For e2∈Π assume that De2u≥0 and let e3∈Π be orthogonal to e2. Consider
the unit vector e(φ)=cosφ e2+sinφ e3∈Π, φ∈[0, π]. From the C1-continuity we
have that the sets {φ:Ω±

De(φ)u
�=∅} are relatively open in [0, π]. On the other hand,

they are both non-empty and have empty intersection; this means that there exists
φ0∈(0, π) such that De(φ0)u≡0. Rotating the coordinate system we get De2u≥0
and De3u≡0. Repeating the above argument for ek, k=4, ..., n, we get that u is
two-dimensional. �

We prove now the main result of this section under the assumption of homo-
geneity.

Proposition 13. Let u be homogeneous of degree two solving (1) in Rn
+ with

boundary data u|Π=0. Then either u(x)= 1
2λ+x2

1 or u(x)=− 1
2λ−x2

1.

Proof. We can consider only two-dimensional functions u. So let us rewrite u

in radial coordinates as

u(x)= u(r, θ)= r2φ(θ), r∈ [0,∞), θ ∈ [0, π].

Then we get the following ordinary differential equation

φ′′+4φ= λ+χ{φ>0}−λ−χ{φ<0}

in the interval [0, π] with boundary data φ(0)=φ(π)=0. It can be checked that the
only solutions of this ordinary differential equation are φ(θ)=± 1

2λ± sin2 θ. �

Lemma 14. Let u solve (1) in Rn
+ with boundary data u|Π=0 and be quad-

ratically bounded at infinity. Then u has one of the representations in (13).
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Proof. If the function u is non-negative or non-positive, then the result we
want to prove follows from Theorem B in [SU]. So let us show that u does not
change sign. We do this by contradiction; assume that u± are both non-trivial.

Next we consider the shrink down of u; ũ:=limj!∞ uj, where uj(x)=u(rjx)/r2
j ,

rj!∞. It is homogeneous of degree two. To verify this we need to use Weiss’
monotonicity formula

Φ(s, ũ)= lim
j!∞

Φ(s, uj)= lim
j!∞

Φ(srj , u)= Φ(∞, u).

Thus ũ equals to one of ± 1
2λ±x2

1 by Proposition 13 above. Assume for definiteness
that we have the “+”-sign.

This means that for any δ>0 there exists Rδ such that

(14) Ω−
u \B+

Rδ
⊂{x : x1 < δ|x2|}.

Let us now take the barrier function

U(x1, x2)= x4
1+x4

2−6x2
1x

2
2+C.

For large enough C we have Ω−
u �Ω+

U . Since u is quadratically bounded, we get from
the comparison principle that u−(x)≤εU(x) for any ε>0, and thus Ω−

u =∅. �

5. Proofs

Proof of Theorem A. Here we consider only the case when (4) fails to hold. It
follows from Lemma 9 that Dx1u(0)=0 and

(15) sup
B+

r

|u| ≤ c0r
2 for r < r0.

Now assume that we do not have a tangential touch at 0, i.e., there is an ε>0 and
a sequence xj∈Kε∩Γu, xj!0. Repeating the proof of Lemma 8 we obtain

(16) sup
B+

2dj

|u| ≥Cd2
j for r < r1,

where dj =|xj|. Consider the blow up sequence

ũj(x)=
u(2djx)

4d2
j

,

which is bounded by (15). Therefore there is a subsequence converging in C1,α

to a global solution u0 with zero boundary data. This solution is non-trivial (due
to (16)). As in the proof of Lemma 14, using Weiss’ monotonicity formula we
get that u0 is homogeneous of degree 2. This implies that u0(x)=± 1

2λ±x2
1, which

contradicts the fact that xj∈Kε. �
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Proof of Theorem B. The proof is done by contradiction. Assume there exist
an ε>0, functions uj satisfying the conditions of the theorem and a sequence xj!0
such that xj∈Kε∩Γuj . Let us consider the blow-up sequence

ũj(x)=
uj(djx)

supB+
dj

|uj| ,

where dj :=|xj |. We have that

∆ũj =
d2

j

supB+
dj

|uj |∆uj .

Two cases are possible: either

(17)
d2

j

supB+
dj

|uj|! 0

for some subsequence or

(18)
d2

j

supB+
dj

|uj| �! 0

for all subsequences.
Let us consider the first case. From Lemma 9 it follows that

(19) −Cr2+|De1uj(0)|r≤ sup
B+

r

|uj| ≤Cr2+|De1uj(0)|r.

This together with (17) gives that |De1uj(0)|d−1
j !∞, thus we can assume that

(20) |De1uj(0)|> jdj.

From here and (19) we obtain

∣∣∣∣
supB+

dj

|uj|
dj |De1uj(0)| −1

∣∣∣∣≤ C

j
! 0.

We arrive at

(21) sup
B+

r

|ũj |=
supB+

rdj

|uj|
supB+

dj

|uj | ≤
Cr2d2

j +|De1uj(0)|rdj

supB+
dj

|uj| ! r.

There is a subsequence of ũj converging to a function u0 in C1,α, which is harmonic
in Rn

+ (due to (17)), linearly bounded (due to (21)) and has zero boundary data
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at Π. Extending u0 by odd reflection to Rn
− and using Liouville’s theorem we get

that u0(x)=De1u0(0)x1 which contradicts the existence of zeros in Kε.
In the case (18) without loss of generality we can assume

(22)
d2

j

supB+
dj

|uj|! d > 0.

Then we have that a subsequence of ũj converges to a function u0 in C1 and (22)
implies that u0 is a global solution with dλ± instead of λ± and zero boundary data.
Condition (4) and Lemma 14 give us that u0 is strictly positive or negative in Rn

+,
which contradicts the fact that xj∈Kε∩Γuj . More precisely, the functions ũj vanish
at x̃j :=d−1

j xj∈Kε∩Γuj ∩∂B1. Thus we can always choose the subsequence of ũj

in such a way that the corresponding subsequence x̃j!x0∈Kε∩Γuj ∩∂B1 and then
u0(x0)=0. �

Acknowledgement. The authors are grateful to Prof. H. Shahgholian for valu-
able discussions and his kind hospitality.
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Österreichische Akademie der Wissenschaften
Altenbergerstrasse 69
AT-4040 Linz
Austria
norayr.matevosyan@oeaw.ac.at

Hayk Mikayelyan
Mathematisches Institut
Universität Leipzig
Augustusplatz 10/11
DE-04109 Leipzig
Germany
hayk@math.uni-leipzig.de

Received June 7, 2004
published online August 3, 2006



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


