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Polynomials in the de Branges spaces
of entire functions

Anton D. Baranov

Abstract. We study the problem of density of polynomials in the de Branges spaces H(E)

of entire functions and obtain conditions (in terms of the distribution of the zeros of the generating

function E) ensuring that the polynomials belong to the space H(E) or are dense in this space.

We discuss the relation of these results with the recent paper of V. P. Havin and J. Mashreghi on

majorants for the shift-coinvariant subspaces. Also, it is shown that the density of polynomials

implies the hypercyclicity of translation operators in H(E).

Introduction

Let E be an entire function satisfying the inequality

(1) |E(z)|> |E(z̄)|, z ∈C+,

where C+={z :Im z>0} is the upper half-plane. We denote the class of such func-
tions (known as the Hermite–Biehler class) by HB. With each function E∈HB we
associate a Hilbert space H(E) which consists of all entire functions F such that
F/E and F ∗/E belong to the Hardy class H2(C+) (here and later on F ∗(z)=F (z̄)).
The inner product, which makes H(E) a Hilbert space, is defined by the formula

〈F, G〉E =
∫
R

F (t)G(t)
|E(t)|2 dt.

The theory of the spaces H(E) introduced by L. de Branges [11] has important
applications in mathematical physics. At the same time, de Branges spaces are of
interest from the point of view of theory of entire functions. As a special case of
de Branges spaces the Paley–Wiener space PWa of entire functions of exponential
type at most a, which are square summable on the real axis, may be considered
(this space corresponds to the function E(z)=exp(−iaz), a>0).
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De Branges spaces are also closely connected with the shift-coinvariant sub-
spaces KΘ of the Hardy class H2(C+) known also as model subspaces (these sub-
spaces are discussed in details in the monographs [21], [22]). Let Θ be an inner
function in the upper half-plane. Put KΘ=H2(C+)�ΘH2(C+). If E is an en-
tire function satisfying (1), then ΘE=E∗/E is inner and the mapping F �!F/E is
a unitary operator from H(E) onto KΘE . Conversely, each inner function Θ, mero-
morphic in the whole complex plane, is of the form E∗/E for some function E of
the Hermite–Biehler class.

In the present note we are concerned with the following three related problems.
By P we denote the set of all polynomials.

1. For which entire functions E∈HB does the function f≡1 belong to the space
H(E)?

2. For which E∈HB does the inclusion P⊂H(E) hold?
3. For which E∈HB are the polynomials dense in H(E)?
Density of polynomials is a classical problem for weighted functional spaces.

At the same time, there are rather deep motivations for considering these problems
for the de Branges spaces in particular. The first question is inspired by the recent
papers by V. P. Havin and J. Mashreghi [15], [16] where the admissible majorants
for the model subspaces were studied in the spirit of the Beurling–Malliavin theorem
(the first problem was also investigated in [23] from a different point of view). By
an admissible majorant for the space KΘ we mean a nonnegative function w on the
real line such that w≥|f | for some nonzero function f∈KΘ. It turns out that the
condition 1∈H(E) is crucial for the existence of a majorant with the fastest rate of
decrease.

An admissible majorant w is said to be minimal if for any other admissible
majorant w̃ such that w̃≤Cw we have w̃
w, that is, cw≤w̃≤Cw for some positive
constant c.

Theorem. (Havin, Mashreghi [15]) Let E be a Hermite–Biehler class entire
function of zero exponential type with zeros αn such that

(2)
∞∑

n=1

log |αn|
|αn| <∞.

Then, either
(a) 1/E∈L2(R) and 1/|E| is the minimal majorant for KΘE ;
or
(b) 1/E /∈L2(R) and there is no positive and continuous minimal majorant

for KΘE .

Thus, our results concerning the inclusion 1∈H(E) produce new classes of
model subspaces with minimal majorants. In Section 5 of the present note we
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obtain a certain refinement of the theorem of Havin and Mashreghi: we show
that the statement remains true under the milder (and more natural) assumption∑∞

n=1 |αn|−1<∞.
The third problem (density of polynomials) is closely connected with the Ham-

burger moment problem on the line. It was shown in [9] that the answer to this
question will lead to a description of all canonical solutions of the indeterminate
Hamburger problem. Moreover, in [10] a criterion for the density of polynomials
was obtained, which is, however, somewhat implicit and not so easy to apply.

At the same time, there exist very simple geometrical conditions on the zeros
of E sufficient for the density of polynomials. It was mentioned by N. I. Akhiezer [1]
(see also [2], Addenda and Problems to Chapter 2) that if E∈HB is a canonical
product of zero genus with zeros lying in a half-strip {z :|Re z|≤h and Im z<0},
then P⊂H(E) and ClosEP=H(E).

A function E∈HB will be referred to as a symmetric function if it satisfies the
identity E∗(z)=E(−z). In this case the zeros of E are symmetric with respect to
the imaginary axis. It was shown by V. P. Gurarii [14] that if E is a symmetric
function with zeros in the angle {z :−3π/4≤argz≤−π/4}, then the polynomials
are also dense in H(E) (again we assume that E is a canonical product of zero
genus). Clearly, all the zeros zn of a Hermite–Biehler class function are in the lower
half-plane C− and satisfy the Blaschke condition

∑∞
n=1 |Im zn|(1+|zn|2)−1<∞.

It should be noted that Problems 2 and 3 lead to different classes of functions.
It is easy to construct an example of the space H(E) such that P⊂H(E), but P is
not dense in H(E). It is known that if the function F =αE+βE∗, α, β∈C, belongs
to H(E), then it is orthogonal to the domain of the operator of multiplication by
z (see [11], Theorem 29). Thus, F is orthogonal to all the polynomials whenever
P⊂H(E). It should be mentioned that for a function E∈HB of zero type one has
F∈H(E) for some nonzero α and β if and only if the zeros zn of E satisfy the
condition

∑∞
n=1 |Im zn|<∞ [3].

P. Koosis [18] has constructed much more subtle examples where the polyno-
mials belong to a de Branges space but are not dense in this space.

Finally, it should be mentioned that the problem of density of polynomials was
recently considered by M. Kaltenbäck and H. Woracek [17] in connection with the
problem of the structure of de Branges subspaces of a given de Branges space. In
the next section we compare the results of [17] with our results.
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1. Main results

In what follows we assume that E is an infinite product of the form

(3) E(z)=
∞∏

n=1

(
1− z

z̄n

)
,

where zn=xn+iyn∈C+ and
∑∞

n=1 |zn|−1<∞ (for the sake of convenience we denote
the zeros of E by z̄n so that zn∈C+). In particular, E belongs to the so-called class A

discussed in detail in B. Ya. Levin’s monograph [19]. The case when zeros zn lie in
a Stolz angle Γγ ={z=x+iy : y≥γ|x|}, γ>0, is of special interest.

In the present note we give some geometric conditions generalizing the results
of Akhiezer and Gurarii. In particular, we solve the following problem: to describe
the subsets Ω of C− such that for any function E of the form (3) with zeros in the
set Ω we have the inclusion P⊂H(E). In this case the inclusion P⊂H(E) holds
independently of the distribution of zeros of E in Ω, and we say that the set Ω is
a distribution independent set (a DI-set).

An analogous problem may be considered for the class of symmetric Hermite–
Biehler functions: we say that a set Ω⊂C−symmetric with respect to the imaginary
axis is a distribution independent set for symmetric functions from the class HB
(a DIs-set) if P⊂H(E) for any symmetric entire function of the form (3) with zeros
in Ω.

The results of Akhiezer and Gurarii state that the sets {z∈C− :|x|≤h}, h>0,
and {z∈C− :|x|≤|y|} are a DI-set and a DIs-set, respectively. By x and y we denote
the real and imaginary parts of the complex variable z.

In Section 3 we obtain an explicit description of the distribution independent
sets, which generalizes the theorems of Akhiezer and Gurarii.

Theorem 1. (1) A set Ω⊂C− is a DI-set if and only if

lim sup
z∈Ω
|x|!∞

x2

|y|(1+log |x|) <∞.(4)
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(2) A set Ω⊂C− is a DIs-set if and only if

(5) lim sup
z∈Ω
|x|!∞

|x|−|y|
(|x| log |x|)1/2

<∞.

Furthermore, if E is a function of the form (3) with zeros in a DI-set or
a symmetric function with zeros in a DIs-set, then ClosEP=H(E).

In particular, the set of points lying below any parabola, that is, {z :y≤−q|x|2},
q>0, is a DI-set, whereas {z :y≤−|x|α} is not a DI-set for any α<2. Note also that
the angle {z∈C− :|x|≤|y|} is the widest DIs-angle.

The following theorem provides another condition sufficient for the density of
polynomials. To state it we introduce two quantities which measure the approach of
the zeros to the real axis for a general function E∈HB and for a symmetric function
respectively. For R>0 put

S(R)=
∑

|xn|>R

∣∣∣∣Re
1
zn

∣∣∣∣=
∑

|xn|>R

|xn|
|zn|2

and

Ss(R)=
∑

x2
n>y2

n+R2

|xn|−yn

|zn|3 .

Theorem 2. Let E be a function of the form (3) and infn yn>0.
(1) If there is a constant A>0 such that S(R)≤AR−1, then ClosEP=H(E).
(2) If E is a symmetric function and Ss(R)≤AR−2, then ClosEP=H(E).

Now, we compare Theorem 2 with the results of M. Kaltenbäck and H. Wora-
cek [17]. In particular, one of the main theorems of [17] states that polynomials are
dense in H(E) for a function of the form (3) if

∞∑
n=1

(
arg zn− π

2

)2
<∞,

where arg z stands for the main branch of the argument with the values in (−π, π].
Clearly, the latter condition is equivalent to the convergence of the series

∞∑
n=1

∣∣∣xn

zn

∣∣∣2 <∞,

which, in turn, implies that S(R)≤AR−1 (and, moreover, S(R)=o(R−1), as
R!∞). Thus, Theorem 2 (1) extends the result of M. Kaltenbäck and H. Woracek.
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Analogously, the result of [17] concerning the symmetric functions follows from The-
orem 2 (2).

Let the zeros zn lie outside some Stolz angle Γγ . Then |xn|
|zn| and the
condition S(R)≤AR−1 is equivalent to

∑
|zn|>R |zn|−1≤CR−1. Thus, the sequence

zn tends to infinity very fast (say, as a progression ρn, ρ>1). In Section 4 we obtain
certain sharper estimates in the case when all the zeros lie in a Stolz angle. By n(t)
we denote the number of the zeros in the disk {z :|z|≤t}.

Theorem 3. Let the zeros zn lie in a Stolz angle Γγ . If

(6)
∑

|zn|>R

|xn|
|zn|2 = o

(
1
R

∫ R

0

n(t)
t

dt+R

∫ ∞

R

n(t)
t3

dt

)
, as R!∞,

then P⊂H(E).

Condition (6) is fulfilled for the sequences zn growing “faster than any power”
(say, |zn|
exp(logα n), α>1), but it fails for |zn|
nα, α>1.

Theorem 4. Let {zn}∞n=1⊂{z :γ1x≤y≤γ2x}, γ1, γ2>0, and

C1n
α ≤ |zn| ≤C2n

α.

Then there exist exponents α1 and α2 (depending on γ1, γ2, C1, and C2) such that
|E(x)|!∞, as |x|!∞, and P⊂H(E) if α>α1, whereas |E(x)|!0, as |x|!∞, if
α<α2.

We construct an example showing that in this case the behavior of E depends
essentially on the zeros’ distribution. Namely, for any α>1 there exist zn with
arg zn=π/4, |zn|
nα, and 1 /∈H(E).

If the zeros are distributed regularly along a single ray one may obtain an
explicit formula for the limit exponent. Let all the zeros zn lie on the ray {z :y=γx},
γ>0, and assume that there exists the density ∆=limt!∞ t−1/αn(t), 0<∆<∞. It
is the case, in particular, if zn=nα(1+γi). Put

αγ = 2− 2arctanγ

π
.

Then |E(x)|!∞, |x|!∞, and, moreover, P⊂H(E), if α>αγ , whereas |E(x)|!0,
as x!∞, if α<αγ .

In Section 6 we discuss the relationship between the density of polynomials and
the hypercyclicity phenomenon. Recall that a vector f is said to be hypercyclic for
a continuous linear operator T in a Fréchet space F if its orbit {T nf}∞n=0 is dense
in F . In this case the operator T is also said to be hypercyclic.
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The first example of a hypercyclic operator was obtained by G. D. Birkhoff [8]
who showed that the translation operators Tw :f �!f( ·+w), w∈C, w �=0, are hyper-
cyclic in the space of all entire functions with the topology of uniform convergence
on compact subsets of the plane. It was shown in [20] that the differentiation op-
erator is also hypercyclic in this space, whereas in [13] this result was extended to
all operators commuting with differentiation except the scalar multiples of identity.
Thus, spaces of entire functions proved to be an important source of hypercyclic
operators.

K. C. Chan and J. H. Shapiro [12] studied the hypercyclicity of translations in
the setting of Hilbert spaces of entire functions of “slow growth”. In [12] the question
was posed whether translations in a “reasonable” space of entire functions are always
hypercyclic, and it was shown that this is not true. For example, differentiation
and translations in the Paley–Wiener space are bounded but not hypercyclic (in
particular, Tw is an isometry of PWa if w∈R). We show, making use of the results
of [12], that translation operators may be hypercyclic on the de Branges spaces.
Moreover, translations are hypercyclic as soon as the polynomials are dense in H(E).

Theorem 5. Let H(E) be a de Branges space such that ClosEP=H(E) and
the differentiation operator is bounded in H(E). Then the translation operators Tw,
w �=0, are hypercyclic in H(E).

Note that the translations are bounded in H(E) whenever the differentiation
operator D is bounded, since Tw=exp(wD). The de Branges spaces H(E) such
that the differentiation is bounded on H(E) were described by the author in [4].
A sufficient (but not necessary) condition is that E′/E∈L∞(R). This is the case,
in particular, if E is an entire function of the form (3) with zeros in a Stolz angle.

2. Preliminaries

In this section we consider certain general conditions sufficient for the density of
polynomials. Let P be a polynomial with zeros in C−. Then P∈HB and, clearly, for
any E∈HB the function Ẽ=PE is also in HB. Moreover, ‖F‖Ẽ≤C‖F‖E whenever
F∈H(E) and, consequently, H(E)⊂H(Ẽ).

Lemma 6. H(E) is dense in H(Ẽ) if and only if the domain of the operator
of multiplication by z is dense in H(E).

Proof. We consider the case when P is of degree one; the general case follows
by induction. Let P (z)=z−a, a∈C−. Then H(E) coincides with the domain of
multiplication by the independent variable z in H(Ẽ) (indeed, F∈H(E) if and only
if both (z−a)F and (z−ā)F belong to H(Ẽ)).
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By [11], Theorem 29, the domain of multiplication by z is not dense in H(Ẽ)
if and only if there exists a nonzero function of the form αẼ+βẼ∗, α, β∈C, which
belongs to H(Ẽ). Finally, note that

αẼ+βẼ∗ = (z−a)(αE+βE∗)+2iβ Im aE∗,

and E∗∈H(Ẽ). Hence, the inclusions αẼ+βẼ∗∈H(Ẽ) and αE+βE∗∈H(E) are
equivalent. �

Lemma 7. The polynomials are dense in H(E) if and only if they are dense
in H(Ẽ).

Proof. Again it suffices to consider the case when P (z)=z−a, a∈C−. Assume
that the polynomials are dense in H(Ẽ). Let F∈H(E). Then (z−a)F∈H(Ẽ) and
there exists a sequence of polynomials Pn such that Pn!(z−a)F in H(Ẽ). Since
the point evaluation functionals are continuous in the de Branges spaces, Pn(a)!0,
as n!∞. Consider the polynomials Qn(z)=(Pn(z)−Pn(a))/(z−a). Then

‖Qn−F‖E = ‖Pn−Pn(a)−(z−a)F‖Ẽ ≤‖Pn−(z−a)F‖Ẽ+|Pn(a)| ‖1‖Ẽ,

and, consequently, ‖Qn−F‖E!0, as n!∞.
The converse statement follows immediately from Lemma 6. Indeed, if the

polynomials are dense in H(E), then the domain of the operator of multiplication
by z is dense in H(E). Hence, by Lemma 6, H(E) is dense in H(Ẽ) and, therefore,
P is dense in H(Ẽ). �

Recall that the reproducing kernel of the space H(E) corresponding to the
point w∈C is of the form

K(z, w)=
i

2π

E(w)E(z)−E∗(w)E∗(z)
z−�w .

Theorem 8. Let E be an entire function of the Hermite–Biehler class such
that the domain of the operator of multiplication by z is dense in H(E). Assume that
there is a sequence Pn of polynomials, which converges to the function E uniformly
on any compact set and such that

(7) |Pn(x)| ≤C(1+|x|)N |E(x)|, x∈R, n∈N,

for some nonnegative integer N and for some C>0. Then P⊂H(E) and ClosEP=
H(E).



24 Anton D. Baranov

Proof. The inclusion P⊂H(E) follows immediately from (7). Put Ẽ(z)=
(z+i)NE(z). By Lemma 6, H(E) is dense in H(Ẽ). By Lemma 7, the poly-
nomials are dense or not dense in H(E) and in H(Ẽ) simultaneously. Thus, it is
sufficient to show that the closure of the polynomials in H(Ẽ) contains H(E), which
implies that ClosẼP=H(Ẽ). Moreover, since the linear span of reproducing kernels
K( · , s), s∈R, is dense in H(E), we have to verify the inclusion K( · , s)∈ClosẼP .

Fix s∈R and put

Kn(z, s)=
i

2π

Pn(s)Pn(z)−Pn(s)P ∗
n (z)

z−s
.

Clearly, Kn( · , s) is a polynomial, and the sequence Kn( · , s) converges to K( · , s)
uniformly on any compact set. Let us show that Kn( · , s) converge to K( · , s) in
the norm of the space H(Ẽ). Take A>0 and split the norm ‖Kn( · , s)−K( · , s)‖2

Ẽ
into two parts:

∫
|t−s|≤A

∣∣∣∣Kn(t, s)−K(t, s)

2πẼ(t)

∣∣∣∣
2

dt+
∫
|t−s|>A

∣∣∣∣Kn(t, s)−K(t, s)

2πẼ(t)

∣∣∣∣
2

dt = I1+I2.

Let us estimate the integral I2. By inequality (7), we have
∣∣∣∣Kn(t, s)−K(t, s)

Ẽ(t)

∣∣∣∣≤ 2|Pn(s)Pn(t)|
|(t−s)(t+i)NE(t)|+

2|E(s)|
|(t−s)(t+i)N | ≤

C(s)
|t−s| .

Hence, I2!0, A!∞, and, choosing a sufficiently large A, we can make the integral
I2 as small as we wish uniformly with respect to n. Now, when A is fixed, the
integral I1 tends to zero when n tends to infinity. �

Remark. H. Woracek has noted that the density of the domain of multiplication
by z is essential in Theorem 8 (personal communications). However, this condition
may be omitted if we replace (7) by the estimate |Pn(x)|≤C(1+|x|)α|E(x)|, x∈R,
for some α<1/2. In this case the above arguments work for E instead of Ẽ.

Let us introduce some notation. Note that

|E(x)|2 =
∞∏

n=1

(x−xn)2+y2
n

|zn|2 =
∞∏

n=1

(
1− 2xxn−x2

|zn|2
)

.

We split this product into two parts Π+(x) and Π−(x), where

Π−(x)=
∏

xxn>0
|xn|>|x|/2

(
1− 2xxn−x2

|zn|2
)

.
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Thus, each factor in the product Π− is smaller than 1, whereas all the factors in
the product Π+ are greater or equal to 1.

If E is a symmetric entire function, then we have the pairs of symmetric zeros
zn=xn+iyn and z̃n=−xn+iyn. Hence,

|E(x)|2 =
∞∏

n=1

(
1+

x4+2x2(|zn|2−2x2
n)

|zn|4
)

,

and again we split it into a “large” part Πs
+ and a “small” part Πs

−. Put

Πs
−(x)=

∏
x2

n>y2
n+x2/2

(
1+

x2(x2+2y2
n−2x2

n)
|zn|4

)
.

Thus, the product Πs
−(x) includes exactly those factors which are smaller than 1.

Corollary 9. Assume that the domain of multiplication by z is dense in H(E).
If there is N≥0 and C>0 such that Π−(x)≥C(1+|x|)−N , x∈R, or if E is sym-
metric and Πs

−(x)≥C(1+|x|)−N , then ClosEP=H(E).

Proof. Put

Pn(z)=
∏

|k|≤n

(
1− z

z̄k

)
.

Then, clearly, Pn!E uniformly on compact sets. Note also that |E(x)/Pn(x)|2
≥Π−(x) for each n∈N. Now we may apply Theorem 8. �

As we have mentioned in the introduction, for a function E of the form (3) the
domain of multiplication by z is not dense in H(E) if and only if

∑∞
n=1 yn<∞, that

is, the zeros zn approach the real axis (see [3]). In the conditions of Theorems 1
and 2 the zeros are separated from the real axis or even lie in a Stolz angle. Thus,
in what follows we will consider only the de Branges spaces where the domain of
multiplication by z is dense.

3. Proofs of Theorems 1 and 2

Proof of Theorem 1. (1) Sufficiency of (4). Let Ω satisfy the condition (4) and
E be an entire function of the form (3) such that z̄n∈Ω. Then there is M >0 such
that x2

n≤Myn log |xn| when |xn|>2.
Let us estimate the “small” factor Π−(x) for sufficiently large positive x. Note

that (4) implies that all the zeros, except maybe a finite set, lie in any Stolz angle Γγ .
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By Lemma 7, we may eliminate any finite set of zeros. Thus, without loss of
generality, let 2xxn−x2≤|zn|2/2. Applying the elementary estimate log(1−t)≥−2t,
t∈[

0,12
]
, we get

log Π−(x)=
∑

xn>x/2

log
(

1− 2xxn−x2

|zn|2
)
≥−2

∑
xn>x/2

2xxn−x2

|zn|2 .

Hence,

log Π−(x)≥−4x
∑

xn>x/2

xn

y2
n

≥−4Mx
∑

xn>x/2

log |xn|
xnyn

≥−4M log x
∑

xn>x/2

1
yn

,

since the function x−1 log x decreases for large x. Analogously, for x<0,

log Π−(x)≥−4M log |x|
∑

xn<x/2

1
yn

,

when |x| is sufficiently large. Hence, log Π−(x)=o(log |x|), as |x|!∞, and E satisfies
the conditions of Corollary 9.

(1) Necessity of (4). Assume that

(8) lim sup
z∈Ω
x!∞

x2

y(1+logx)
=∞.

In this case we will choose sequences of zeros z̄n=xn−iyn∈Ω and multiplicities kn

such that for the function

E(z)=
∞∏

n=1

(
1− z

z̄n

)kn

we get limn!∞ |E(xn)|=0.
Assume that z1, k1, ..., zn−1, kn−1 are already chosen (without loss of general-

ity we assume that xj >2). Then, by (8), we can choose z̄n∈Ω such that xn>

max(|zn−1|, 2n), and

(9)
x2

n

|zn| ≥ 2n+3 log xn

n−1∑
j=1

kj .

Put kn=[|zn|/2n]+1 (by [s] we denote the integer part of the number s). Then∑∞
n=1 kn|zn|−1<∞ and the product for E converges.
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Let t∈[xn−1, xn]. We split the product for E(t) into three parts:

|E(t)|2 =
∣∣∣∣ t−zn

zn

∣∣∣∣
2kn n−1∏

j=1

∣∣∣∣ t−zj

zj

∣∣∣∣
2kj ∞∏

j=n+1

∣∣∣∣ t−zj

zj

∣∣∣∣
2kj

.

Clearly, the last product does not exceed 1. Since xj >2 and |xn|>|zj|, j<n, we
have

n−1∏
j=1

( |t−zj|2
|zj |2

)kj

<

n−1∏
j=1

( |xn−zj|2
|zj |2

)kj

<

n−1∏
j=1

(2x2
n)kj <

n−1∏
j=1

(x3
n)kj .

At the same time,

log
∣∣∣∣ t−zn

zn

∣∣∣∣
2kn

≤ kn log
(

1−x2
n−1
|zn|2

)
≤− knx2

n

2|zn|2 .

Hence,

log |E(t)|2 ≤ 3 logxn

n−1∑
j=1

kj− knx2
n

2|zn|2 ≤− logxn

n−1∑
j=1

kj ,

where the latter inequality follows from (9) and the definition of kn. Thus,
supt∈[xn−1,xn] |E(t)|!0, as n!∞, and, consequently, 1/E /∈L2(R).

(2) Sufficiency of (5). Without loss of generality let all zeros lie in the angle
Γ4/5. Then

sup
x2

n>y2
n+x2/2

x2(2x2
n−x2−2y2

n)
|zn|4 < 1.

Therefore, there is a constant C1>0 such that

log Πs
−(x)=

∑
x2

n>y2
n+x2/2

log
(

1+
x2(x2+2y2

n−2x2
n)

|zn|4
)

≥−C1

∑
x2

n>y2
n+x2/2

x2(2x2
n−2y2

n−x2)
|zn|4 .

If (5) is satisfied we may assume that xn−yn≤Mx
1/2
n (log xn)1/2 whenever x2

n>

y2
n+x2/2 and |x|>2. Hence,

log Πs
−(x)≥−C1

∑
x2

n>y2
n+x2/2

x2(4Mx
3/2
n (log xn)1/2−x2)
|zn|x3

n

.
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Consider the function

F (t, x)=
x2(4Mt3/2(log t)1/2−x2)

t3
.

It is easy to see that there is a constant C2=C2(M)>0 such that |F (t, x)|≤C2 log |x|
whenever t>|x|>2. Thus,

log Πs
−(x)≥−C3 log |x|

∑
x2

n>y2
n+x2/2

1
|zn| ,

and we may apply Corollary 9.

(2) Necessity of (5). The proof is analogous to the proof of the necessity
of (4). We choose pairs of symmetric zeros zn=xn+iyn and z̃n=−xn+iyn and
multiplicities kn such that 1/E /∈L2(R), where

E(z)=
∞∏

n=1

(
1− z

z̄n

)kn
(
1− z

¯̃zn

)kn

.

Assume that zj, kj , 1≤j≤n−1, are already chosen (we assume that xj >2). If Ω
does not satisfy (5) we can choose z̄n∈Ω such that xn>yn and

(xn−yn)2

xn log xn
≥ 22nxn−1

n−1∑
j=1

kj .

Put kn=[xn/2nxn−1]+1. Then
∑∞

n=1 kn|zn|−1<∞ and E is well defined.
Let t2n=x2

n−y2
n. We split the product for |E(tn)|2 into three parts Π1, Π2, and

Π3, corresponding to the zeros {zj}j<n, {zj}j>n, and to the zero zn, respectively.
It is easily shown that there exist absolute positive constants C1 and C2, such that

log Π1(tn)≤C1 log xn

n−1∑
j=1

kj ,

and log Π2(tn)≤C2. On the other hand, by the choice of xn and kn,

log Π3(tn)= 2kn log
(

1−
(
x2

n−y2
n

)2
|zn|4

)
≤−C3kn

(xn−yn)2

xn
≤−C32n log xn

n−1∑
j=1

kj .

Therefore, |E(tn)|!0, as n!∞, and, moreover, |E(t)|=o(1), t∈(tn−1, tn). Thus,
1 /∈H(E). �
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Proof of Theorem 2. (1) We show that there exist l∈N and C>0 such that

(10) Π−(x)≥C(δ/x)2l

for sufficiently large |x|; here δ=infn yn. Once the inequality (10) is proved the
result follows from Corollary 9.

Without loss of generality let x>0. Denote by N (x) the set of n such that
2xxn−x2≥|zn|2/2 and let |N (x)| be the number of elements in N (x). Then

1
2
|N (x)| ≤

∑
xn>x/2

2xxn−x2

|zn|2 ≤ 2x
∑

|xn|>x/2

|xn|
|zn|2 = 2xS(x/2)≤ 4A,

which implies that there is l∈N such that |N (x)|≤l for any x>0. Note also that
|zn|≤4x whenever n∈N (x). Hence,

∏
n∈N (x)

(x−xn)2+y2
n

|zn|2 ≥
(

δ

4x

)2l

.

Finally,

log
∏

n/∈N (x)
xn>x/2

(
1− 2xxn−x2

|zn|2
)
≥−2

∑
n/∈N (x)
xn>x/2

2xxn−x2

|zn|2

≥−2
∑

xn>x/2

2xxn

|zn|2 ≥−4xS(x/2)≥−8A.

Combining the last two inequalities we obtain the estimate (10).
The proof of (2) is analogous. �

Remark. It follows from Corollary 9 and the proof of Theorem 2 that in the
case when the zeros lie in a Stolz angle a milder condition S(R)≤AR−1 log R also
implies the density of the polynomials in H(E).

4. Functions with zeros in an angle

In this section we find in a sense sharp asymptotic of the growth on the real
axis for an entire function E∈HB with zeros in a Stolz angle.

Proposition 10. Let zn∈Γγ. Then there exist functions Aj(x), j=1, ..., 4,
such that

0 < mj ≤Aj(x)≤Mj , x∈R,
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and for x∈R we have

log |E(3x)|2 = A1

∫ |x|

0

n(t)
t

dt+A2x
2

∫ ∞

|x|

n(t)
t3

dt

+A3|x|
∑

|zn|≥|x|
xnx<0

|xn|
|zn|2 −A4|x|

∑
|zn|≥|x|
xnx>0

|xn|
|zn|2 .(11)

Here the constants mj and Mj may depend on γ.

Proof. We use the following elementary estimates: −t/δ≤log(1−t)≤−t, t∈
[0, 1−δ], and t/(K+1)≤log(1+t)≤t, t∈[0, K].

Without loss of generality let x>0. Then

|E(x)|2 =
∏

|zn|<x/3

|x−zn|2
|zn|2

∏
|zn|≥x/3
xn<x/2

|x−zn|2
|zn|2

∏
xn≥x/2

|x−zn|2
|zn|2 .

Denote the products in the latter formula by Πj , j=1, 2, 3, respectively. Note that
since zn∈Γγ we have

2xxn−x2

|zn|2 ≤ 1
1+γ2

whenever xn≥x/2. Hence,

(12) −γ2+1
γ2

∑
xn≥x/2

2xxn−x2

|z2
n|

≤ log Π3(x)≤−
∑

xn≥x/2

2xxn−x2

|z2
n|

.

Analogously,

C1

∑
|zn|≥x/3
xn<x/2

x2−2xxn

|z2
n|

≤ logΠ2(x)≤C2

∑
|zn|≥x/3
xn<x/2

x2−2xxn

|z2
n|

(13)

for some absolute positive constants C1 and C2.
Next, we find a rough asymptotic for the product Π1. Since |zn|<x/3 we get

2x/3≤|x−zn|≤2x and

22n(x/3) (x/3)2n(x/3)

|z1|2|z2|2...|zn(x/3)|2 ≤Π1(x)≤ 22n(x/3) (x/3)2n(x/3)

|z1|2|z2|2...|zn(x/3)|2 .

Hence,

log Π1(x)= 2 log
(x/3)n(x/3)

|z1z2...zn(x/3)|+A(x)n(x/3)=
∫ x/3

0

n(t)
t

dt+A(x)n(x/3),(14)
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where A(x)
1. Combining the estimates (12)–(14) and replacing x by 3x we get
the formula (11). We also used the fact that

n(R)+R2
∑

|zn|>R

1
|zn|2 = R2

∫ ∞

R

n(t)
t3

dt. �

Thus, only the last term in (11) is responsible for the possible smallness of the
function E on the real axis. If this term is asymptotically smaller than the positive
summands in (11), as stated in Theorem 3, then E tends to infinity along R faster
than any polynomial, and Theorem 3 follows immediately.

Proof of Theorem 4. Now let zn∈{z :γ1x≤y≤γ2x} and C1n
α≤|zn|≤C2n

α.
In this case n(t)
t1/α, as t!∞, and we have the following asymptotic for the
summands in the formula (11) (all the constants involved depend on γi and Ci, but
do not depend on R and α):

∫ R

0

n(t)
t

dt

∫ R

0

t−1+1/α dt
αR1/α,

R2

∫ ∞

R

n(t)
t3

dt
R2

∫ ∞

R

t−3+1/α dt
 α

2α−1
R1/α

and, finally,

R
∑

|zn|>R

xn

|zn|2 
R

∞∑
n=[R1/α]

1
n1/α


 R1/α

α−1
.

Note that α+α/(2α−1)=o(1/(α−1)), as α!1, and 1/(α−1)=o(α), as α!∞.
Hence, the coefficient at R1/α in the formula for log |E(3R)| is positive when α

is sufficiently large and negative when α is close to 1. �
In the case of regular distribution along a single ray we obtain an explicit

formula for the limit exponential.

Example 11. Let all the zeros zn lie on the ray {z :y=γx}, γ>0, and as-
sume that for some α>1 the density ∆=limt!∞ t−1/αn(t), 0<∆<∞ exists. Then
|E(x)|!∞, as |x|!∞, if α>2−2 arctan(γ)/π, and |E(x)|!0, as x!∞, if
α<2−2 arctan(γ)/π.

Proof. Here we may apply the Levin–Pfluger theory of entire functions of com-
pletely regular growth. By Theorem 25 of [19], Chapter 1,

lim
R!∞

log |E(R)|
R1/α

= Hα =
π∆

sin(π/α)
cos

π−arctanγ

α
.

Thus, Hα>0 (Hα<0) if and only if α>2−2 arctan(γ)/π (α<2−2arctan(γ)/π).
Note also that log |E(−R)|
R1/α, as R!∞, for any α>1. �
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Remark. Note that αγ =2−2arctan(γ)/π!2, as γ!0. Consider the limit
case γ=0, that is, the case when zn=nα+i, n∈N. Then it is easily shown that
|E(x)|!∞ (moreover, log |E(x)|
|x|1/α), as |x|!∞, when α>2, whereas for α≤2
one has limx!∞ |E(x)|=0.

We conclude this section with an example illustrating the subtlety of the growth
of a function with power growth of zeros.

Example 12. For any α>1 there exist zn such that arg zn=π/4, |zn|
nα and
1 /∈H(E).

Proof. Take an integer K>2 and let E be the entire function of the form (3)
with zeros at the points Kαle−iπ/4 and with multiplicities equal to K l−K l−1, l∈N.
Now, if z1, z2, ..., zn, ... are zeros of E repeated according to the multiplicities, then
|zn|
nα (actually, we have replaced the group of zeros nαe−iπ/4, K l−1<n≤K l, by
a single zero of the corresponding multiplicity).

Let N∈N and put tN =KαN−1/2. We show that one can choose a sufficiently
large K such that

(15) lim
N!∞

|E(3tN )|= 0.

Then 1/E /∈L2(R), since E′/E∈L∞(R), and (15) implies that log |E| is negative
on the intervals (3tN−δ, 3tN +δ) for some δ>0 and for all sufficiently large N .

By Proposition 10,

log |E(3tN )|2 = B1

∫ |tN |

0

n(t)
t

dt+B2n(tN )

+B3t
2
N

∑
|zn|>tN

1
|zn|2 −B4|tN |

∑
|zn|≥tN

|xn|
|zn|2 ,(16)

where B1(tN )+B2(tN )+B3(tN )≤C and B4(tN )≥c for some absolute positive con-
stants C and c. Now we estimate the summands in the formula (16). Note that
Kα(N−1)<tN <KαN and n(tN )=KN−K. Hence,

∫ |tN |

0

n(t)
t

dt = log
t
n(tN )
N

|z1z2...zn(tN )|

=
[
(KN−K)

(
αN− 1

2

)
−α

N−1∑
l=1

lK l(K−1)
]

log K < 2αKN log K.
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Finally, it is easy to see that the third positive summand in (16) does not exceed
2KN . Let us estimate the negative part of log |E(3tN)|2:

tN
∑

|zn|≥tN

|xn|
|zn|2 = KαN−1/2

∞∑
l=N

K l(K−1)√
2Kαl

≥ Kn+1/2

√
2

.

Thus,

log |E(3tN)|2 ≤C(3KN +2αKN log K)− c√
2
KN+1/2,

and, taking a sufficiently large K, we can make log |E(3tN )|!−∞, as N!∞. �

5. Existence of minimal majorants

In this section we generalize the theorem of Havin and Mashreghi by showing
that condition (2) may be replaced by a weaker one.

Theorem 13. Let E be an entire function of the form (3) and
∑∞

n=1 |zn|−1<

∞. Then, either
(a) 1/E∈L2(R) and 1/|E| is the minimal majorant for KΘE ;
(b) 1/E /∈L2(R) and there is no positive and continuous minimal majorant

for KΘE .

Statement (b) is proved in [15] without use of (2). We state it here only for
the sake of completeness. Also, it is shown in [15] (Theorem 3.8) that for a function
E of zero exponential type the function 1/|E| is the minimal majorant for KΘE as
soon as 1/E∈KΘE . Thus, it remains to prove the inclusion 1/E∈KΘE which is,
clearly, equivalent to 1/E∈H2.

To prove the latter inclusion we make use of the following condition, which is
sufficient for a function f to belong to the Hardy class ([11], Theorems 11 and 12).
Here log+ t=max(log t, 0).

Lemma 14. Let f be a function analytic in C+ and continuous in�C
+
. Assume

that

(17) lim sup
y!∞

log |f(iy)|
y

≤ 0

and

(18) lim inf
r!∞

1
r2

∫ π

0

log+ |f(reiϕ)| sin ϕdϕ= 0.

If, moreover, f∈L2(R), then f∈H2.
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Proof of Theorem 13. Let En(z)=1−z/z̄n and, thus, E=
∏∞

n=1 En. Note that
|En(iy)|>1, y>0. Hence, the function f =1/E satisfies (17).

Now we verify the property (18) for f =1/E. We need some technical remarks.
First of all,

(19) |En(reiϕ)| ≥
∣∣∣∣1− r

|zn|
∣∣∣∣ .

On the other hand, for ϕ∈[0, π] we have

(20) |En(reiϕ)|2 = 1+
2ryn sin ϕ−2rxn cosϕ+r2

|zn|2 ≥ 1−2
r| cosϕ|
|zn| +

r2

|zn|2 .

Put

Σ1(reiϕ)=
∑

r/2≤|zn|≤2r

log+ 1
|En(reiϕ)| ,

Σ2(reiϕ)=
∑

|zn|>2r

log+ 1
|En(reiϕ)| .

Clearly, |En(reiϕ)|>1 whenever r>2|zn|. Therefore,

log+ 1
|E(reiϕ)| ≤

∞∑
n=1

log+ 1
|En(reiϕ)| ≤Σ1+Σ2.

Note that log+ s≤|log t| whenever s≤t. Hence, applying the estimate (19) and
the elementary inequality log(1−u)≥−2u, u∈(

0, 1
2

)
, we get

Σ2(reiϕ)≤
∑

|zn|>2r

∣∣∣∣log
(

1− r

|zn|
)∣∣∣∣≤

∑
|zn|>2r

2r

|zn| ≤C1r.

Analogously, by (20),

Σ1(reiϕ)≤ 1
2

∑
r/2≤|zn|≤2r

∣∣∣∣log
(

1−2
r cosϕ

|zn| +
r2

|zn|2
)∣∣∣∣ .

It is easy to see that there is an absolute constant C2 such that for any δ∈[
1
2 , 2

]
we

have
∫ π

0

|log(1−2δ|cosϕ|+δ2)| sin ϕdϕ= 2
∫ 1

0

|log(1−2δt+δ2)| dt≤C2.
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Hence,

∫ π

0

Σ1(reiϕ) sin ϕdϕ≤C2n(2r)

(note that n(t)=o(t), as t!∞). The latter estimate together with the inequality
Σ2(reiϕ)≤C1r imply (18). The proof is completed. �

6. Hypercyclic operators in the de Branges spaces

To prove Theorem 5 we need an auxiliary class of spaces introduced in [12].
Let γ(z)=

∑∞
n=0 γnzn be an entire function such that γn>0 for each n≥0 and the

sequence nγn/γn−1 decreases when n tends to infinity (in this case we say that γ is
an admissible comparison function). Consider the space E2(γ) of all entire functions
f(z)=

∑∞
n=0 fnzn for which

‖f‖2
2, γ =

∞∑
n=0

γ−2
n |fn|2 <∞.

Clearly, E2(γ) endowed with the norm ‖ · ‖2, γ is a Hilbert space. Moreover, it
is easy to see that the condition supn nγn/γn−1<∞ implies that the differentiation
operator D is bounded on E2(γ). K. C. Chan and J. H. Shapiro have shown that
translations are hypercyclic in E2(γ); they also have obtained a much more general
result.

Theorem. (Chan, Shapiro [12]) Suppose that X is a Fréchet space of entire
functions with the following properties :

1. P⊂X and ClosXP=X ;
2. the topology of X is stronger than the topology of uniform convergence on

compact subsets of the plane;
3. the operator Tw is continuous on X ;
4. E2(γ)⊂X for some admissible comparison function γ.
Then Tw, w �=0, is hypercyclic on X.

To apply the Chan–Shapiro theorem to the de Branges spaces satisfying the
conditions of Theorem 5 (that is, ClosEP=H(E) and D is bounded in H(E)) we
need to verify only the last condition. Let rn=‖zn‖H(E) and take a sequence γn>0
such that the sequence nγn/γn−1 decreases and {rnγn}∞n=0∈l2(Z+). Then γ(z)=∑∞

n=0 γnzn is an admissible comparison function.
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We show that E2(γ)⊂H(E). Let f∈E2(γ), f(z)=
∑∞

n=0 fnzn. Then, for any
y>0, we have

∥∥∥∥ f

E
( · +iy)

∥∥∥∥
2

≤
∞∑

n=0

|fn|
∥∥∥∥ ( · +iy)n

E( · +iy)

∥∥∥∥
2

≤
∞∑

n=0

|fn|rn,

since the functions zn/E are in the Hardy class H2(C+). Hence,

sup
y>0

∥∥∥∥ f

E
( · +iy)

∥∥∥∥
2

≤‖f‖2, γ‖rnγn‖l2 ,

and f/E∈H2(C+). Analogously, f∗/E∈H2(C+). Thus, we get the inclusion E2(γ)
⊂H(E), and Theorem 5 is proved.

Remark. As shown in [12], an interesting feature of the spaces E2(γ) is that
they provide examples of hypercyclic operators which are compact or even Schatten–
von Neumann class perturbations of the identity operator I. Indeed, choosing the
sequence γn tending to zero rapidly one can ensure that the differentiation operator
in E2(γ) belongs to all Schatten–von Neumann classes and so does the operator
Tw−I.

The same is true also for “larger” de Branges spaces. In [5] a number of
examples are constructed showing that the operator D in H(E) may be compact or
belong to all Schatten–von Neumann classes. In particular, D is always compact if
the zeros of E lie in a Stolz angle.

Note added in proof. One more proof of Theorem 13 (a) is given in [6], where it
is also shown that minimal (but not necessarily positive and continuous) admissible
majorants exist for any model subspace KΘ. Minimal admissible majorants for the
de Branges spaces are discussed in detail in a recent preprint [7].
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