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On the Laplacian in the halfspace with
a periodic boundary condition

Rupert L. Frank

Abstract. We study spectral and scattering properties of the Laplacian H(σ)=−∆ in

L2(Rd+1
+ ) corresponding to the boundary condition ∂u

∂ν
+σu=0 with a periodic function σ. For

non-negative σ we prove that H(σ) is unitarily equivalent to the Neumann Laplacian H(0). In

general, there appear additional channels of scattering due to surface states. We prove absolute

continuity of the spectrum of H(σ) under mild assumptions on σ.

Introduction

0.1. The present paper continues our study of the Laplacian in a halfspace with
a periodic perturbation on the boundary. We consider the operator

H(σ)u =−∆u in Rd+1
+ := {(x, y)∈Rd×R : y > 0}(0.1)

together with a boundary condition of the third type

∂u

∂ν
+σu = 0 on Rd×{0}.(0.2)

Here ν denotes the exterior unit normal and σ :Rd!R is a (2πZ)d-periodic function.
Under the condition

σ∈Lq,loc(R) for some q>1, if d=1,

σ∈L0
d,∞,loc(R

d), if d≥2,
(0.3)

(see Subsection 1.2 for weak Lp-spaces) H(σ) can be defined as a self-adjoint operator
in L2(Rd+1

+ ) by means of the quadratic form
∫
Rd+1

+

|∇u(x, y)|2 dx dy+
∫
Rd

σ(x)|u(x, 0)|2 dx, u∈H1(Rd+1
+ ).
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Note that H(σ) can be viewed as a Schrödinger-type operator with the singular
potential σ(x)δ(y) supported on Rd×{0}. In the physical interpretation this oper-
ator describes a quantum-mechanical particle interacting with the surface of a crys-
tal.

Our goal is to study spectral and scattering properties of H(σ), viewing it as
a (rather singular) perturbation of H(0), the Neumann Laplacian on Rd+1

+ . Let us
describe our results. First we prove that the wave operators

W
(σ)
± := W±(H(σ), H(0))= s− lim

t!±∞ exp(itH(σ)) exp(−itH(0))

exist and satisfy R(W (σ)
+ )=R(W (σ)

− ). However, in general the wave operators may
not be complete due to the existence of surface states, i.e., states that are local-
ized near the boundary for all time. We give sufficient conditions both for the
completeness and for the non-completeness of the wave operators. If

σ(x)≥ 0 for a.e. x∈Rd,(0.4)

we prove that there exist no surface states. Then the wave operators are unitary
and provide a unitary equivalence between H(σ) and H(0).

On the other hand, if ∫
(−π,π)d

σ(x) dx≤ 0, σ �≡ 0,

we prove that there exist surface states and that they produce additional bands in
the negative spectrum of H(σ). It is natural to ask whether the spectrum of H(σ)

is still absolutely continuous in the presence of surface states. We prove that this
is indeed the case under the assumption (0.3) if d≤4 and under the mild additional
assumption

σ∈L0
2(d−2),∞,loc(R

d) if d≥ 5.

Hence surface states correspond to additional channels of scattering.

0.2. Let us explain some of the mathematical ideas involved. By means of Floquet
theory we represent H(σ) as a direct integral∫

[− 1
2 , 1

2 ]d
⊕H(σ)(k) dk

with operators H(σ)(k) acting in L2(Π), where Π:=(−π, π)d×R+ is a halfcylinder.
The investigation of the operator H(σ) reduces to the study of the fibers H(σ)(k).
Note that the fundamental domain Π is unbounded, so the operators H(σ)(k) have
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continuous spectrum. This part can be studied by scattering theory. To prove the
absolute continuity of the spectrum of H(σ) we cannot (directly) apply the Thomas
approach (see [T] and [BS]), since eigenvalues of H(σ)(k) may be embedded in
the continuous spectrum. We “separate” them from the remaining spectrum by
characterizing them, in the spirit of the Birman–Schwinger principle, as parameters
λ for which a pseudodifferential operator B(σ)(λ, k) on the boundary (−π, π)d×{0}
has eigenvalue 0. The latter operator has discrete spectrum and can be handled by
Thomas’ method.

0.3. The case d=1 has been treated in [F] and [FS]. However, we have tried to
make the presentation self-contained and we refer to those papers only for a few
technical details.

When d≥2 additional difficulties arise. In particular, for the proof of absolute
continuity we have to use the refined estimates of Lemma 3.4 and, if d≥5, we have
to impose an additional condition on σ. Moreover, we have succeeded here to fit
our problem into the framework of “smooth” scattering theory. This gives a rather
short proof of both the existence and completeness of the wave operators and of
the absence of singular continuous spectrum on the halfcylinder, and has probably
applications to other problems with perturbations on surfaces.

0.4. Several models of periodic surface interactions have been studied before. The
papers [DS] and [S] deal with questions from scattering theory, [GHM] and [Ka]
with point interactions and [BBP] with the discrete case. For non-periodic and
random interactions we refer to the survey [J] and the references therein.

The characteristic feature of all these partially periodic systems is the appear-
ance of surface states. A substantial problem is to prove that these states are not
bound but correspond to additional channels of scattering, i.e., that the spectrum
of the corresponding operator is purely absolutely continuous. We answer this ques-
tion affirmatively for the model under consideration. Apart from the present paper
we are only aware of [FK1], [FK2] and [FS] dealing with this problem in related
settings.

0.5. Let us briefly describe the structure of this paper. We state our main result
about the operators H(σ) in Subsection 1.3 and reduce them in Subsection 1.5 to
statements about the fiber operators H(σ)(k). Section 2 deals with their continuous
spectrum, Section 3 with their point spectrum. Finally, in Section 4 we discuss the
phenomenon of additional channels of scattering in more detail.

Acknowledgements. The author is deeply grateful to Prof. M. Sh. Birman for
the setting of the problem, useful discussions and constant attention to the work.
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1. Setting of the problem. The main results

1.1. Notation

In the halfspace Rd+1
+ ={(x, y)∈Rd×R:y>0} we consider the lattice (2πZ)d

×{0}. A fundamental domain is the halfcylinder

Π := {(x, y)∈Rd+1
+ : x∈ (−π, π)d}.

We think of the torus Td :=(R/2πZ)d as [−π, π]d with opposite edges identified,
and write Qd :=

[− 1
2 , 1

2

]d.
We use the notation D=(Dx, Dy)=(−i∇x,−i∂/∂y) in Rd+1.
For an open set Ω⊂Rn the index in the notation of the norm ‖ · ‖L2(Ω) is

usually dropped. The space L2(Td) may be formally identified with L2((−π, π)d).
We define the Fourier transformation F :L2(Td)!l2(Zd) by

(Ff )n = f̂n :=
1

(2π)d/2

∫
Td

f(x)e−i〈n,x〉 dx, n∈Zd.

Next, Hs(Ω) is the Sobolev space of order s∈R (with integrability index 2). By
Hs(Td) we denote the space of functions f∈L2(Td) for which the norm

‖f‖2
Hs(Td) :=

∑
n∈Zd

(1+|n|2)s|f̂n|2,

is finite. By H̃s(Π) we denote the subspace of functions u∈Hs(Π) which can be
extended periodically with respect to the variable x to functions in Hs

loc(R
d+1
+ ).

(For standard facts about Sobolev spaces that will be used we refer, e.g., to [LM]
and [W].)

We denote by D[a] the domain of a quadratic form a and by D(A), N (A) and
R(A) the domain, kernel and range, respectively, of a linear operator A.

Statements and formulae which contain the double index “±” are understood
as two independent assertions.
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1.2. Weak Lp-spaces. Multiplication on the boundary

We recall the definition of weak Lp-spaces on a measure space (X, µ). For
a measurable function f on X put ρf (t):=µ({x∈X :|f(x)|>t}), t>0, and

|f |p,∞ := sup
t>0

t(ρf (t))1/p, 1≤ p <∞.

Then the weak Lp-spaces are defined by

Lp,∞(X, µ) := {f : X!C : f is measurable and |f |p,∞ <∞}.

We need also their subspaces

L0
p,∞(X, µ) :=

{
f ∈Lp,∞(X, µ) : lim

t!0
t(ρf (t))1/p = 0 = lim

t!∞ t(ρf (t))1/p
}
.

(Note that the first condition is automatically fulfilled if µ(X)<∞.)
We are interested in the following cases. When X=Td and µ is the induced

Lebesgue measure we write only Lp,∞(Td) and L0
p,∞(Td), and when X=Zd and µ

is the counting measure we write lp,∞(Zd) and l0p,∞(Zd).
The following quantitative embedding result was established in [BKS].

Proposition 1.1. Let p>2, f∈Lp,∞(Td) and a∈lp,∞(Zd). Then the operator
fF∗a : l2(Z)!L2(Td) is bounded with

‖fF∗a‖≤ cp,d|f |p,∞|a|p,∞.

Moreover, if either f∈L0
p,∞(Td) or a∈l0p,∞(Zd), then fF∗a is compact.

Now let σ be a periodic function satisfying

σ∈Lq(T) for some q>1, if d=1,

σ∈L0
d,∞(Td), if d≥2.

(1.1)

Applying Proposition 1.1 with f :=
√|σ| and an :=(1+|n|2)−1/4, n∈Zd, we find

that the form
∫
Td |σ(x)||f(x)|2 dx, f∈H1/2(Td), is compact in H1/2(Td) and, con-

sequently, that for every ε>0 there exists C1(ε, d, σ)>0 such that
∫
Td

|σ(x)||f(x)|2 dx≤ ε‖f‖2
H1/2(Td)+C1(ε, d, σ)‖f‖2, f ∈H1/2(Td).(1.2)

From this we obtain the following consequence.
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Corollary 1.2. Assume σ satisfies (1.1) and let ε>0. Then there exists
C2(ε, d, σ)>0 such that

∫
(−π,π)d

|σ(x)||u(x, 0)|2 dx≤ ε‖u‖2
H1(Π)+C2(ε, d, σ)‖u‖2, u∈H1(Π),(1.3)

∫
Rd

|σ(x)||u(x, 0)|2 dx≤ ε‖u‖2
H1(Rd+1

+ )
+C2(ε, d, σ)‖u‖2, u∈H1(Rd+1

+ ).(1.4)

Proof. By the boundedness of the trace operator H̃1(Π)!H1/2(Td) and (1.2)
one obtains the inequality (1.3) for u∈H̃1(Π). To prove it for not necessarily peri-
odic u we proceed as follows. We fix a>π and put Π′ :=(−a, a)d×R+. By the
previous argument and a change of variables we obtain the inequality

∫
(−a,a)d

|σ(x)||u(x, 0)|2 dx≤ ε‖u‖2
H1(Π′)+C′

2(ε, d, σ)‖u‖2
L2(Π′), u∈ H̃1(Π′),

where H̃1(Π′) is defined in an obvious way. Since there is a bounded extension
operator H1(Π)!H̃1(Π′), the inequality (1.3) holds for all u∈H1(Π).

Finally, the inequality (1.4) follows from (1.3) by summing over all translates
Π+n, n∈Zd. �

1.3. The operators H(σ) on the halfplane. Main results

Let σ be a real-valued periodic function satisfying (1.1). According to (1.4)
the quadratic form

D[h(σ)] := H1(Rd+1
+ ),

h(σ)[u] :=
∫
Rd+1

+

|Du(x, y)|2 dx dy+
∫
Rd

σ(x)|u(x, 0)|2 dx.
(1.5)

is lower semibounded and closed in the Hilbert space L2(Rd+1
+ ), so it generates a self-

adjoint operator H(σ). The case σ≡0 corresponds to the Neumann Laplacian on
the halfplane, whereas the case σ �≡0 implements a (generalized) boundary condition
of the third type.

The spectrum of the “unperturbed” operator H(0) coincides with [0, +∞) and
is purely absolutely continuous of infinite multiplicity.

We begin our study of H(σ) with the investigation of the wave operators

W
(σ)
± := W±(H(σ), H(0))= s− lim

t!±∞ exp(itH(σ)) exp(−itH(0)).(1.6)

(For the abstract mathematical scattering theory see, e.g., [Y].)
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Theorem 1.3. Assume that σ satisfies (1.1). Then the wave operators W
(σ)
±

exist and satisfy R(W (σ)
+ )=R(W (σ)

− ).

However, in general the wave operators will not be complete. There may appear
additional bands in the spectrum of H(σ), which correspond to surface states. See
Section 4 for a detailed discussion of this phenomenon. Under the mild additional
(if d≥5) assumption

σ∈Lq(T) for some q>1, if d=1,

σ∈L0
d,∞(Td), if 2≤d≤4,

σ∈L0
2(d−2),∞(Td), if d≥5,

(1.7)

we are able to prove that the spectrum of the operator H(σ) is absolutely continuous.

Theorem 1.4. Assume that σ satisfies assumption (1.7). Then the operator
H(σ) has purely absolutely continuous spectrum.

Therefore surface states correspond to additional channels of scattering.
In Section 4 we give a sufficient condition for the existence of surface states.

Conversely, if

σ(x)≥ 0 for a.e. x∈Rd,(1.8)

there exist no surface states and we obtain a rather complete result.

Theorem 1.5. Assume that σ satisfies (1.1) and (1.8). Then the wave oper-
ators W

(σ)
± are unitary and satisfy

H(σ) = W
(σ)
± H(0)(W (σ)

± )
∗
.(1.9)

We would like to mention the following simple extension.

Remark 1.6. Our results remain valid if σ is periodic with respect to an arbi-
trary d-dimensional lattice in Rd. After a change of variables this amounts to
replacing the differential operator −∆ above by D∗

xaDx+D2
y with a positive definite

(d×d)-matrix a. All our arguments extend to this case.

Remark 1.7. One might conjecture that Theorem 1.4 remains valid under the
assumption (1.1).
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1.4. The operators H(σ)(k) on the halfcylinder. Direct integral
decomposition

Let σ be a real-valued periodic function satisfying (1.1) and let k∈Qd. Accord-
ing to (1.3) the quadratic form

D[h(σ)(k)] := H̃1(Π),

h(σ)(k)[u] :=
∫

Π

(|(Dx+k)u(x, y)|2+|Dyu(x, y)|2) dx dy(1.10)

+
∫
Td

σ(x)|u(x, 0)|2 dx

is lower semibounded and closed in the Hilbert space L2(Π), so it generates a self-
adjoint operator H(σ)(k). In addition to the Neumann (if σ≡0) or third type (if
σ �≡0) boundary condition at (−π, π)d×{0}, the functions in D(H(σ)(k)) satisfy
periodic boundary conditions at ∂(−π, π)d×R+.

The operator H(σ) on the halfplane can be partially diagonalized by means of
the Gelfand transformation. This operator is initially defined for u∈S(Rd+1

+ ), the
Schwartz class on Rd+1

+ , by

(Uu)(k, x, y) :=
∑

n∈Zd

e−i〈k,x+2πn〉u(x+2πn, y), k∈Qd, (x, y)∈Π,

and extended by continuity to a unitary operator

U : L2(Rd+1
+ )−!

∫
Qd

⊕L2(Π) dk.(1.11)

As in the case d=1 (cf. [F]) one finds that

U H(σ) U∗ =
∫

Qd

⊕H(σ)(k) dk.(1.12)

This relation allows us to investigate the operator H(σ) by studying the fibers
H(σ)(k).

We will now state our main results about the operators H(σ)(k). In the next
subsection we will show how the proofs of the theorems from Section 1.3 can be
reduced to these results.

In Section 2 we study the continuous spectrum of H(σ)(k) and the wave oper-
ators

W
(σ)
± (k) :=W±(H(σ)(k), H(0)(k))=s− lim

t!±∞exp(itH(σ)(k)) exp(−itH(0)(k)).

We will prove the following result.
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Theorem 1.8. Assume that σ satisfies (1.1) and let k∈Qd. Then the wave
operators W

(σ)
± (k) exist and are complete. In particular, σac(H(σ)(k))=[|k|2, +∞).

Moreover, σsc(H(σ)(k))=∅.

In Section 3 we investigate the point spectrum of the operators H(σ)(k) and
prove the following result.

Theorem 1.9. Assume that σ satisfies (1.1) and let k∈Qd. Then σp(H(σ)(k))
(if not empty) consists of eigenvalues of finite multiplicities which may accumulate
at +∞ only. If in addition σ satisfies (1.8), then σp(H(σ)(k))=∅.

Note that the case of an infinite sequence of (embedded) eigenvalues actually
occurs (see Example 3.3).

To prove absolute continuity of the spectrum of H(σ) we have to control the k-
dependence of the eigenvalues of H(σ)(k). In Subsection 3.4 we prove the following
technical result.

Proposition 1.10. Assume that σ satisfies (1.7). Then there exists a count-
able number of domains Uj⊂R and Vj⊂Rd, and real-analytic functions hj :Uj×
Vj!R satisfying

(1) for all k∈Qd and λ∈σp(H(σ)(k)) there is a j such that (λ, k)∈Uj×Vj and
hj(λ, k)=0;

(2) for all j and all λ∈Uj one has hj(λ, · ) �≡0.

1.5. Reduction to the halfcylinder

Assuming Theorems 1.8, 1.9 and Proposition 1.10 we now give the proofs of
Theorems 1.3, 1.4 and 1.5.

Proof of Theorem 1.3. Using Theorem 1.8 one easily finds that the limit (1.6)
exists and satisfies

W
(σ)
± =U∗

(∫
Qd

⊕W
(σ)
± (k) dk

)
U .(1.13)

Moreover, because of the completeness of W
(σ)
± (k),

R(W (σ)
± )=U∗

(∫
Qd

⊕R(P (σ)
ac (k)) dk

)
U ,

where P
(σ)
ac (k) denotes the projection onto the absolutely continuous subspace of

H(σ)(k). This completes the proof of Theorem 1.3. �
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Proof of Theorem 1.4. We follow the approach suggested in [FK1]. Let Λ⊂R
with measΛ=0. Denoting the spectral projections of H(σ) and H(σ)(k) correspond-
ing to Λ by E(σ)(Λ) and E(σ)(Λ, k), respectively, it follows from (1.12) that

U E(σ)(Λ)U∗ =
∫

Qd

⊕E(σ)(Λ, k) dk

and we have to prove that this operator is equal to 0.
For this we write Qd=K1∪K2, where

K1 := {k∈Qd : σp(H(σ)(k))∩Λ = ∅}, K2 := Qd\K1.

Since σsc(H(σ)(k))=∅ by Theorem 1.8, we immediately obtain E(σ)(Λ, k)=0 for
k∈K1. Now we note that with the notation of Proposition 1.10,

K2 ⊂
⋃
j

{k ∈Vj∩Qd : hj(λ, k)= 0 for someλ∈Uj∩Λ}.

It follows from property (2) in Proposition 1.10 and an abstract result about analytic
functions (cf., e.g., [FK1]) that meas K2=0. This completes the proof of Theorem
1.4. �

Proof of Theorem 1.5. It follows from Theorems 1.8 and 1.9 that under the
assumption (1.8) the operators H(σ)(k) have purely absolutely continuous spectrum.
So the wave operators W

(σ)
± (k) are not only complete but unitary, and W

(σ)
± is

unitary by (1.13). Relation (1.9) is the intertwining property of the wave operators.
This completes the proof of Theorem 1.5. �

2. The continuous spectrum of the operators H(σ)(k)

2.1. Scattering for relatively smooth perturbations

Our proof of Theorem 1.8 is based on the “smooth” scattering theory by Kato–
Kuroda. For the reader’s convenience we will recall here some notions and results
we will use. Our exposition follows [Y]. All Hilbert spaces that appear are assumed
to be separable.

Let H0 be a self-adjoint operator in a Hilbert space H. Denote by E0(X)
the spectral projection of H0 corresponding to a measurable set X⊂R. We fix
a compact interval Λ such that the spectrum of H0 on Λ is purely absolutely con-
tinuous of constant multiplicity N∈N∪{∞} and a unitary operator Φ: R(E0(Λ))!
L2(Λ,CN ) which diagonalizes H0 on Λ, i.e., ΦE0(X)Φ∗ is the operator of multi-
plication by the characteristic function χX for any measurable set X⊂Λ. (Here
CN =l2(N) if N =∞.)
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Let G be an “auxiliary” Hilbert space and let G0 : H!G be an |H0|1/2-compact
operator, i.e., D(G0)⊃D(|H0|1/2) and G0(|H0|1/2+I)−1 is a compact operator.
Then Φ(G0E0(Λ))∗ is a (compact) operator from G into L2(Λ,CN ). We recall
that G0 is called strongly H0-smooth on Λ (with exponent 1) if Φ(G0E0(Λ))∗ maps
G continuously into C0,1(Λ,CN ), i.e., if there exists a C>0 such that for all g∈G

and f :=(G0E0(Λ))∗g

sup
λ∈Λ

|Φf(λ)|+ sup
λ�=ν∈Λ

|Φf(λ)−Φf(ν)|
|λ−ν| ≤C‖g‖.

Now let H be another self-adjoint operator in H with

D(|H |1/2)=D(|H0|1/2).

Moreover, assume that there exists an |H0|1/2-compact operator G : H!G such that

(Hf, f0)= (f, H0f0)+(Gf, G0f0)= (f, H0f0)+(G0f, Gf0)

for all f∈D(H) and f0∈D(H0). Then the main result of the “smooth” scattering
theory can be summarized as follows.

Proposition 2.1. Assume that there are compact intervals Λn, n∈N, such
that σ(H0)\

⋃
n∈N Λn is discrete and such that G0 and G are strongly H0-smooth

on each Λn. Then the wave operators W±(H, H0) exist and are complete. Moreover,
if N (G)={0}, then σsc(H)=∅.

The proof can be found in [Y] (see in particular Theorems 4.6.5 and 4.7.9).
Note that under the assumptions of the proposition we have also rather detailed
information about the eigenvalues of H (see Theorem 4.7.10 in [Y]).

In our application the operator G will not be injective, but we can use the
following result.

Lemma 2.2. In the situation of Proposition 2.1, but without any assumption
on N (G), suppose there exists a Hilbert space A and an |H0|1/2-compact oper-
ator A : H!A with N (A)={0} which is strongly H0-smooth on each Λn. Then
σsc(H)=∅.

Proof. It suffices to apply Proposition 2.1 with the auxiliary space G̃:=G⊕A

and the operators G̃0, G̃ : H!G̃,

G̃0f := (G0f, 0), G̃f := (Gf, Af ),

with domains D(G̃0):=D(G0) and D(G̃):=D(G)∩D(A). �
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2.2. Diagonalization of the unperturbed operators H(0)(k)

We fix k∈Qd. In order to apply the method of Subsection 2.1 we need a rather
explicit spectral representation of the unperturbed operator H(0)(k). Applying
a Fourier transformation with respect to the variable x and a Fourier cosine trans-
formation with respect to the variable y we find that the spectrum of H(0)(k) is
purely absolutely continuous and coincides with [|k|2, +∞). The spectral multi-
plicity of a point λ is

N(λ, k) := #{n∈Zd : |n+k|2≤λ}.

In particular, the spectral multiplicity is piecewise constant and changes at the
points of the threshold set

τ(k) := {|n+k|2 : n∈Zd}.

We realize now H(0)(k) as multiplication by the independent variable λ in

h(k) :=
∫ +∞

|k|2
⊕CN(λ,k) dλ.

We write elements in CN(λ,k) as sequences a∈l2(Zd) such that an=0 for |n+k|2>λ.
The operator Γ(k) : L2(Π)!h(k), defined originally on functions u∈C̃∞(Π) with
bounded support by

(Γ(k)u)n(λ) :=
1

(2π)d/2
√

π 4
√

λ−|n+k|2
∫

Π

u(x, y)e−i〈n,x〉 cos
(√

λ−|n+k|2 y
)
dx dy

(2.1)

for |n+k|2<λ, extends by continuity to a unitary operator. (That (Γ(k)u)(λ) is
not completely defined for λ∈τ(k) is not important since meas(τ(k))=0.) Then
Γ(k)H(0)(k)Γ(k)∗ is the operator of multiplication with the independent variable λ

in h(k). In particular, the spectral projection E(0)(Λ, k) of H(0)(k) corresponding
to a measurable set Λ is given by

(E(0)(Λ, k)u)(x, y)

:=
1

(2π)d/2

∑
n∈Zd

(
1√
π

∫
Λ∩(|n+k|2,∞)

(Γ(k)u)n(λ) cos
(√

λ−|n+k|2 y
)

4
√

λ−|n+k|2 dλ

)
ei〈n,x〉

(2.2)

for (x, y)∈Π. (As usual, convergence of the integral and of the sum are understood
in the L2-sense.)
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2.3. Proof of Theorem 1.8

Again we fix k∈Qd. We want to apply the method of Subsection 2.1 with
G:=L2(Td) and the operators G0, G : L2(Π)!L2(Td) defined by

G0u := (sgn σ)
√

|σ|u( · , 0) and Gu :=
√
|σ|u( · , 0),

on D(G0)=D(G):=H̃1(Π). The operators G0 and G are compact from H̃1(Π)
to L2(Td) by Proposition 1.1 and the continuity of the trace operator H̃1(Π)!
H1/2(Td), and we have obviously

(H(σ)(k)u, u0)= (u, H(0)(k)u0)+(Gu, G0u0)= (u, H(0)(k)u0)+(G0u, Gu0)

for all u, u0∈H̃1(Π). Let us check strong H(0)(k)-smoothness.

Lemma 2.3. The operators G0 and G are strongly H(0)(k)-smooth on any
compact interval Λ⊂R\τ(k).

Proof. We consider G only. For any Λ⊂R\τ(k) we find easily from (2.1) and
(2.2) that

(Γ(k)(GE(0)(Λ, k))∗f )n(λ)=
1

(2π)d/2
√

π 4
√

λ−|n+k|2
∫
Td

√
|σ(x)| f(x)e−i〈n,x〉 dx

for f∈L2(Td) and λ∈Λ, |n+k|2<λ. Noting that
∣∣∣∣
∫
Td

√
|σ(x)| f(x)e−i〈n,x〉 dx

∣∣∣∣≤‖σ‖1/2
L1

‖f‖,

we obtain the assertion. �

To apply Lemma 2.2 we need a strongly H(0)(k)-smooth operator which is
injective. Put A:=L2(Π) and A : L2(Π)!L2(Π),

(Au)(x, y) := η(y)u(x, y), (x, y)∈Π,

where η is a measurable function on R+ satisfying

0 < η(y)≤C(1+|y|)−s, y∈R+,(2.3)

for some s> 3
2 and C>0. Then A is injective and compact as operator from H̃1(Π)

to L2(Π). Moreover, we have the following consequence.

Lemma 2.4. The operator A is strongly H(0)(k)-smooth on any compact in-
terval Λ⊂R\τ(k).
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Proof. As in the previous proof we use (2.1) and (2.2) to find

(Γ(k)(AE(0)(Λ, k))∗u)n(λ)=
1

(2π)d/2
√

π 4
√

λ−|n+k|2wn

(√
λ−|n+k|2),

where

wn(ξ) :=
∫

Π

η(y)u(x, y)e−i〈n,x〉 cos(ξy) dx dy, ξ ∈R+.

From (2.3) we get that wn∈Hs(R+) with ‖wn‖Hs≤C̃‖u‖. The assertion follows
now from the embedding theorem since s> 3

2 . �

Finally, we can prove Theorem 1.8.

Proof of Theorem 1.8. We write [|k|2, +∞)\τ(k) as a countable union of com-
pact intervals and apply Proposition 2.1 with G0 and G as above. This yields the
existence and completeness of the wave operators W

(σ)
± (k). To prove the absence

of singular continuous spectrum we use Lemma 2.2 with A as above. �

3. The point spectrum of the operators H(σ)(k)

3.1. The operators B(σ)(λ, k) on the boundary. Characterization of
eigenvalues of H(σ)(k)

Let σ be a real-valued periodic function satisfying (1.1) and let λ∈R and k∈Qd.
In the Hilbert space L2(Td) we consider the quadratic forms

D[b(σ)(λ, k)] := H1/2(Td),

b(σ)(λ, k)[f ] :=
∑

n∈Zd

βn(λ, k) |f̂n|2+
∫
Td

σ(x)|f(x)|2 dx,
(3.1)

where

βn(λ, k) :=

⎧⎨
⎩

√∑d
j=1(nj +kj)2−λ , if

∑d
j=1(nj +kj)2>λ,

−
√

λ−∑d
j=1(nj+kj)2 , if

∑d
j=1(nj +kj)2≤λ.

(3.2)

According to (1.2) the forms b(σ)(λ, k) are lower semibounded and closed, so they
generate self-adjoint operators B(σ)(λ, k).

The compactness of the embedding of H1/2(Td) in L2(Td) implies that the
operators B(σ)(λ, k) have compact resolvent.

Now we characterize the eigenvalues of the operator H(σ)(k) as the values λ

for which 0 is an eigenvalue of the operators B(σ)(λ, k). More precisely, we have the
following result.
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Proposition 3.1. Let k∈Qd and λ∈R.
(1) Let u∈N (H(σ)(k)−λI) and define

f(x) := u(x, 0), x∈Td.(3.3)

Then f∈N (B(σ)(λ, k)), f̂n=0 if |n+k|2≤λ and, moreover,

u(x, y)=
1

(2π)d/2

∑
|n+k|2>λ

f̂n ei〈n,x〉 e−βn(λ,k) y, (x, y)∈Π.(3.4)

(2) Let f∈N (B(σ)(λ, k)) be such that f̂n=0 if |n+k|2≤λ and define u by (3.4).
Then u∈N (H(σ)(k)−λI) and, moreover, (3.3) holds.

The proof of this proposition is straightforward and will be omitted. (See [FS]
for the case d=1.)

Remark 3.2. Obviously, the statement of Proposition 3.1 does not depend on
the definition of βn(λ, k) for |n+k|2≤λ.

3.2. Proof of Theorem 1.9

Using Proposition 3.1 we can now prove Theorem 1.9.

Proof of Theorem 1.9. Let Λ=(λ−, λ+) be an open interval. A Birman–Schwin-
ger-type argument, as in [FS], using Proposition 3.1 and the monotonicity of
B(σ)(λ, k) with respect to λ yields

#cm{λ∈ (λ−,λ+) : λ is an eigenvalue ofH(σ)(k)}(3.5)

≤#cm{µ < 0 : µ is an eigenvalue ofB(σ)(λ+, k)}
−#cm{µ≤ 0 : µ is an eigenvalue ofB(σ)(λ−, k)}.

Here #cm{...} means that the cardinality of {...} is determined according to mul-
tiplicities. The right-hand side of (3.5) is finite since B(σ)(λ±, k) are lower semi-
bounded and have compact resolvent. This proves the first part of the theorem.

Now assume (1.8) and let λ∈R. If f∈N (B(σ)(λ, k)) satisfies f̂n=0 for |n+k|2
≤λ, then

0 = b(σ)(λ, k)[f ]≥
∑

|n+k|2>λ

βn(λ, k)|f̂n|2

and therefore f =0. So by Proposition 3.1(1), λ /∈σp(H(σ)(k)). �



292 Rupert L. Frank

We end this subsection with an example of an infinite sequence of (embedded)
eigenvalues.

Example 3.3. Let σ≡σ0<0 be a negative constant and k∈Qd. Then

σp(H(σ)(k))= {−σ2
0+|n+k|2 : n∈Zd}.

This follows easily by Proposition 3.1 or directly by separation of variables.

3.3. Complexification

Throughout this subsection we fix k=(k1, k
′)∈Qd and λ∈R\τ(k), and assume

that

k1 �= 0.

All the constants in this subsection may depend on k and λ. To simplify the
notation we write B(σ)(µ) and βn(µ) instead of B(σ)(λ, µe1+k′) and βn(λ, µe1+k′),
respectively. (Here e1=(1, 0, ..., 0)∈Rd.)

Note that we can choose δ>0 such that

(n1+µ)2+|n′+k′|2−λ �= 0, n = (n1, n
′)∈Zd,

for all µ∈C with |Re µ−k1|<δ. We will also assume that δ<|k1|. Therefore, the
functions βn, n∈Zd, originally defined on [− 1

2 , 1
2 ] (since λ and k′ are fixed), admit

a unique analytic continuation to

W := {µ∈C : |Reµ−k1|< δ}.
Then we can define sectorial and closed forms b(σ)(µ) for µ∈W by (3.1). The
corresponding m-sectorial operators B(σ)(µ) form an analytic family of type (B)
with respect to µ∈W (see, e.g., Section VII.4 in [K]).

Our goal in this subsection is to study the operators B(σ)(µ) with large |Im µ|.
We begin with the unperturbed case σ=0 and consider the symbol β(µ)=
(βn(µ))n∈Zd . Noting that

|βn(µ)|4 = |(n1+Reµ)2−(Im µ)2+|n′+k′|2−λ|2+4|Imµ|2|n1+Reµ|2

for n=(n1, n
′)∈Zd and recalling the properties of δ we find easily that there is

a C1>0 such that

|βn(µ)| ≥ 1
C1

(1+|Imµ|)1/2, n∈Zd, µ∈W.(3.6)

This is an estimate of β(µ) in l∞(Zd). We also need the following refined estimate
in the class ls,∞(Zd) from [BS].
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Lemma 3.4. Let d≥2 and let k, λ and W be as above. Put s:=max{d,

2(d−2)}. Then there exists C2>0 such that

|β(µ)−1|s,∞ ≤C2, µ∈W.

Proof. When λ=0 and Imµ= 1
2 , our |β(µ)|−1 coincides with |h0(Im µ)|−1/2 in

[BS] (up to multiples of 2π) and our lemma is a special case of Theorem 3.1 therein.
The extension to our situation is straightforward. �

The following is the main result of this subsection.

Proposition 3.5. Assume that σ satisfies (1.7) and let k, λ and W be as
above. Then there exist η0 and C3>0 such that for all µ∈W with |Imµ|>η0 the
operator B(σ)(µ) is boundedly invertible with

‖(B(σ)(µ))−1‖≤ C3

(1+|Imµ|)1/2
.(3.7)

Remark 3.6. If d=1, then the exponent 1
2 in the right-hand side of (3.7) can

be replaced by 1, see [FS].

Proof. In view of the preceding remark we can assume that d≥2. We have
to find η0 and C3>0 such that for all 0 �=f∈H1/2(Td) and µ∈W with |Im µ|>η0,
there exists 0 �=g∈H1/2(Td) such that

|b(σ)(µ)[f, g]| ≥ 1
C3

(1+|Imµ|)1/2‖f‖‖g‖.

For given 0 �=f∈H1/2(Td) and µ∈W , we define g by its Fourier coefficients

ĝn :=
βn(µ)
|βn(µ)| f̂n, n∈Zd.

Then we have 0 �=g∈H1/2(Td),

‖g‖= ‖f‖,(3.8)

and

|b(σ)(µ)[f, g]| ≥
∑

n∈Zd

|βn(µ)||f̂n|2− 1
2

∥∥√
|σ|f∥∥2− 1

2

∥∥√
|σ|g∥∥2

.(3.9)

Because of (1.7) we can, for given ε>0, write
√|σ|=ρ1,ε+ρ2,ε with ρ1,ε∈L∞(Td)

and |ρ2,ε|2s,∞<ε, s:=max{d, 2(d−2)}. Then by (3.6), Lemma 3.4 and Prop-
osition 1.1,

∥∥√
|σ|f∥∥≤ (C1/2

1 (1+|Imµ|)−1/4‖ρ1,ε‖∞+c2s,dC
1/2
2 |ρ2,ε|2s,∞)‖|B(0)(µ)|1/2f‖.



294 Rupert L. Frank

Now choose ε>0 small and then η0 large such that

∥∥√
|σ|f∥∥2 ≤ 1

2

∑
n∈Zd

|βn(µ)||f̂n|2

for all µ∈W with |Im µ|>η0. Using a similar estimate for
∥∥√|σ|g∥∥2 and (3.9), (3.6)

and (3.8) we arrive at

|b(σ)(µ)[f, g]| ≥ 1
2

∑
n∈Zd

|βn(µ)||f̂n|2 ≥ 1
2C1

(1+|Imµ|)1/2‖f‖‖g‖,

whenever |Im µ|>η0, as claimed. �

3.4. Proof of Proposition 1.10

The core of Proposition 1.10 is contained in the following proposition.

Proposition 3.7. Assume that σ satisfies (1.7) and let k0∈Qd and λ0∈
σp(H(σ)(k0))\τ(k0). Then there exist neighbourhoods U⊂R and V ⊂Rd of λ0

and k0, and a real-analytic function h : U×V!R satisfying
(1) for all λ∈U , k∈V one has h(λ, k)=0 if and only if 0∈σ(B(σ)(λ, k));
(2) for all λ∈U one has h(λ, · ) �≡0.

Proof. We will construct an analytic extension of the operators B(σ)(λ, k) near
(λ, k)=(λ0, k

0). (However now, in contrast to Subsection 3.3, with respect to all
variables.) Indeed, since λ0 /∈τ(k0), there exist neighbourhoods Ũ⊂C and Ṽ ⊂Cd

of λ0 and k0 such that the functions βn, n∈Zd, admit analytic continuations to
Ũ×Ṽ . Then we can define sectorial and closed forms b(σ)(z,�) for z∈Ũ , �∈Ṽ by
(3.1) and obtain corresponding m-sectorial operators B(σ)(z,�). These operators
have compact resolvent.

We only sketch the major steps in the construction of the function h and
refer to Theorem VII.1.7 in [K] for details. After possibly decreasing Ũ and Ṽ

we can use a Riesz projection to separate the eigenvalues of B(σ)(z,�) around 0
from the remaining part of the spectrum. The resulting operator acts in a finite-
dimensional space and is analytic with respect to z and �. Hence its determinant
h : Ũ×Ṽ!C is analytic and satisfies h(z,�)=0 if and only if 0∈σ(B(σ)(z,�)).
Moreover, h(λ, k)∈R if λ∈U :=Ũ∩R and k∈V :=Ṽ ∩Rd. This proves property (1)
in the proposition.

To prove property (2) we assume that h(λ, · )≡0 for some λ∈U . We choose
k∈V such that k1 �=0 and λ /∈τ(k) and consider the family B(σ)(λ, µe1+k′), µ∈W ,
constructed in Subsection 3.3. It follows from the analytic Fredholm alternative
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(see, e.g., Theorem VII.1.10 in [K]) that all operators of this family have 0 as an
eigenvalue. But this contradicts Proposition 3.5. �

Finally, we can prove Proposition 1.10.

Proof of Proposition 1.10. In order to cover threshold eigenvalues we include
the functions hn, n∈Zd, defined by hn(λ, k):=

∑d
j=1(nj +kj)2−λ in our collection.

In the remaining set {(λ, k)∈R×Qd :λ/∈τ(k)} we apply Proposition 3.7 noting that
0∈σ(B(σ)(λ, k)) whenever λ∈σp(H(σ)(k)) by Proposition 3.1. �

4. Additional channels of scattering of the operators H(σ)

4.1. The negative spectrum of H(σ)

For k∈Qd we denote by l(k) the number of eigenvalues of H(σ)(k) in (−∞, |k|2),
counting multiplicities. By Theorem 1.9, l(k) is a finite number, possibly equal to 0.
Moreover, let

λ1(k)≤λ2(k)≤ ...≤λl(k)(k)< |k|2(4.1)

be the corresponding eigenvalues and set λl(k):=|k|2 if l>l(k). The functions λl

are (Lipschitz) continuous on Qd for each l∈N. Combining this with (1.12) we find
that

σ(H(σ))=
⋃
l∈N

λl(Qd)∪[0, +∞),(4.2)

i.e., the spectrum of H(σ) has band structure.
Under assumption (1.7) none of the functions λl is constant, since this would

correspond to an eigenvalue of H(σ) contradicting Theorem 1.4.
If σ is non-negative, we have of course σ(H(σ))∩(−∞, 0)=∅. Conversely, we

prove now that additional bands in the negative spectrum of H(σ) appear if σ is
“non-positive in mean”.

Proposition 4.1. Assume that σ satisfies (1.1) and
∫
Td σ(x) dx≤0, σ �≡0.

Then

σ(H(σ))∩(−∞, 0) �= ∅.

Proof. Indeed, fix k∈Qd. We claim that under the above assumption H(σ)(k)
has an eigenvalue smaller than |k|2. We give the proof here only for the case
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∫
Td σ(x) dx=0 the other one being simpler. (One can then take γ=0 below, see

[FS].) By our assumptions there exists f∈H1(Td) such that

Re
∫
Td

σ(x)f(x) dx< 0 and
∫
Td

f(x) dx= 0,

and we consider the “trial function”

u(x, y) :=
1

(2π)d/2
e−αy+γf(x)e−βy, (x, y)∈Π,

with constants α, β, γ>0 to be determined later. A simple calculation shows that

h(σ)(k)[u]
‖u‖2

= |k|2+
α

β+αγ2‖f‖2
(I(β, γ)+αβ),

where

I(β, γ) := 2βγ

(
1

(2π)d/2
2 Re

∫
Td

σ(x)f(x) dx+γ

∫
Td

σ(x)|f(x)|2 dx

)

+β2γ2‖f‖2+γ2(‖(Dx+k)f‖2−|k|2‖f‖2).

By the variational principle our claim follows if we can prove that I(β, γ)<0 for
some β, γ>0. This can be shown by minimizing I(β, γ) with respect to β and then
choosing γ small. �

Remark 4.2. The result of the proposition is sharp. Indeed, with more elabo-
rate techniques one can show that if

∫
Td σ(x) dx>0 and k∈(−π, π)d, then there ex-

ists an α(k, σ)>0 such that H(ασ)(k) has no eigenvalue below |k|2 for 0≤α<α(k, σ).

Finally, we remark that it is possible to construct examples where H(σ) has an
arbitrary finite number of open gaps in its spectrum (see [FS] for the case of one
open gap if d=1).

4.2. Surface states

It is illuminating to look at the additional bands in the spectrum of H(σ) from
the point of view of scattering theory. We recall that

R(W (σ)
± ) =U∗

(∫
Qd

⊕R(P (σ)
ac (k)) dk

)
U ,

R(W (σ)
± )⊥ =U∗

(∫
Qd

⊕R(P (σ)
p (k)) dk

)
U ,

(4.3)
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where P
(σ)
ac (k), P

(σ)
p (k) denote the projections onto the absolutely continuous and

pure point subspaces of H(σ)(k), respectively. The first identity was established in
the proof of Theorem 1.3, and the second one follows since H(σ)(k) has no singular
continuous spectrum by Theorem 1.8.

It is a general fact that the subspace R(W (σ)
± ) reduces H(σ) and that the part

of H(σ) on this subspace is unitarily equivalent to H(0). Additional bands in the
spectrum of H(σ) are due to its part on R(W (σ)

± )⊥. We remark that the spectrum
of that part might be strictly larger than

⋃
l∈N λl(Qd) in (4.2). This is because of

possible embedded eigenvalues of the fiber operators H(σ)(k), see Example 3.3.
From (4.3) we obtain easily (see [DS]) a geometric characterization of the spaces

R(W (σ)
± ), R(W (σ)

± )⊥. Namely, with the notation U (σ)(t):=exp(−itH(σ)), t∈R, one
has

R(W (σ)
± ) =

{
u∈L2(Rd+1

+ ) : lim
t!±∞

∫
Rd×(0,a)

|U (σ)(t)u|2 dx dy = 0, a∈R+

}
,

R(W (σ)
± )⊥ =

{
u∈L2(Rd+1

+ ) : lim
a!+∞ sup

t∈R

∫
Rd×(a,+∞)

|U (σ)(t)u|2 dx dy = 0
}

.

The second identity shows that states in R(W (σ)
± )⊥ are surface states, i.e., they are

concentrated near the boundary for all time.
We have not been able to exclude the existence of bound states corresponding

to eigenvalues of H(σ) under the assumption (1.1). However, under the assumption
(1.7) the spectrum of H(σ) is absolutely continuous and R(W (σ)

± )⊥ represents add-
itional channels of scattering. The appearance of additional channels of scattering is
equivalent to the non-completeness of the wave operators W

(σ)
± . In Proposition 4.1

and Theorem 1.5 we gave sufficient conditions for the existence and non-existence
of additional channels.
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