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Spectral order and isotonic differential
operators of Laguerre–Pólya type

Julius Borcea

Abstract. The spectral order on Rn induces a natural partial ordering on the manifold Hn

of monic hyperbolic polynomials of degree n. We show that all differential operators of Laguerre–

Pólya type preserve the spectral order. We also establish a global monotony property for infinite

families of deformations of these operators parametrized by the space l∞ of real bounded sequences.

As a consequence, we deduce that the monoid A′ of linear operators that preserve averages of zero

sets and hyperbolicity consists only of differential operators of Laguerre–Pólya type which are

both extensive and isotonic. In particular, these results imply that any hyperbolic polynomial

is the global minimum of its A′-orbit and that Appell polynomials are characterized by a global

minimum property with respect to the spectral order.

Introduction and main results

This is the third part of a series of papers [B1], [B2], [BBS1], [BBS2], [BS] on the
connections between linear operators acting on partially ordered manifolds of poly-
nomials, the distribution of zeros of polynomials, and the theory of majorization.

Linear differential operators acting on various function spaces and classical
majorization have both been extensively studied albeit so far only in separate con-
texts. On the one hand, differential operators of infinite order appear naturally in
many applications. From a topological point of view they form a total set of linear
continuous operators between spaces of differentiable functions [K], which is rather
reminiscent of Peetre’s abstract characterization of differential operators [P]. In
this paper we are mainly concerned with linear operators of Laguerre–Pólya type,
that is, infinite order differential operators induced by the Laguerre–Pólya class of
entire functions. The significance of the latter stems from the fact that it consists
precisely of those functions which are locally uniform limits in C of sequences of
polynomials with all real zeros [L]. There is a very rich literature on differential
operators of Laguerre–Pólya type and their applications to the study of the distri-
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bution of zeros of certain Fourier transforms, Pólya–Schoenberg frequency functions
and totally positive matrices, the inversion and representation theories of convolu-
tion transforms, and the final set problem for trigonometric polynomials. Recently,
such operators were also studied in connection with various generalizations of the
Pólya–Wiman conjecture. Further details on these topics and related questions may
be found in e.g. [CC1], [CC2], [KOW] and references therein.

On the other hand, the notion of (classical) majorization was first studied by
economists early in the twentieth century as a means for altering the unevenness of
distribution of wealth or income. Classical majorization was a key tool in Schur’s
work on Hadamard’s determinantal inequality and the spectra of positive semide-
finite Hermitian matrices [DK]. This notion was later formalized as a preorder on
n-vectors of real numbers—also known as the spectral order on Rn—by Hardy,
Littlewood and Pólya in their study of symmetric means and analytic inequalities
[HLP]. The spectral order has since found important applications in operator the-
ory, convex analysis, combinatorics and statistics [An1], [An2], [MO]. As recent
results have shown, classical majorization plays also a remarkable role in the study
of quantum state mixing and efficient measurements in quantum mechanics [NV],
quantum algorithm design [LM] and the analysis of entanglement transformations
in quantum computation and information theory [JP].

As we explain below, the spectral order on Rn induces a natural partial ordering
� on the manifold Hn of monic univariate polynomials of degree n with all real zeros
(cf. [B1] and [BS]). Polynomials of this type are often called hyperbolic owing to
the standard terminology used in the theory of partial differential equations [G],
singularity theory and related topics [Ar]. Let Π:=C[x] be the space of complex
univariate polynomials regarded as functions on the complex plane. The main
purpose of this paper is to study the properties of the posets (Hn,�), n∈N, under
the action of hyperbolicity-preserving linear operators, that is, operators acting
on Π that map hyperbolic polynomials to hyperbolic polynomials. Given a monic
polynomial P∈Π with degP=n≥1, we define Z(P ) to be the unordered n-tuple
consisting of the zeros of P , each zero occurring as many times as its multiplicity.
Thus Z(P )∈Cn/Σn, where Σn is the symmetric group on n elements. We denote by
ReZ(P ) the unordered n-tuple whose components are the real parts of the points
in Z(P ). Note that P is hyperbolic if and only if ReZ(P )=Z(P ). A hyperbolic
polynomial with simple zeros is called strictly hyperbolic. Let Hn⊂Π be the real
manifold of monic hyperbolic polynomials of degree n. We extend this notation
to n=0 by setting H0={1}⊂Π. Clearly, for n≥1 one has a natural set-theoretic
identification between Hn and Rn/Σn by means of the root map

Z : Hn −!Rn/Σn,

P �−!Z(P ).
(0.1)
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The following theorem is due to Hardy, Littlewood and Pólya [HLP].

Theorem 1. Let X=(x1, x2, ..., xn)∈Rn/Σn, Y =(y1, y2, ..., yn)∈Rn/Σn. The
following conditions are equivalent :

(i) For any convex function f : R!R one has
∑n

i=1 f(xi)≤
∑n

i=1 f(yi).
(ii) There exists a doubly stochastic n×n matrix A such that X̃=AỸ , where

X̃ and Ỹ are column n-vectors obtained by some (and then any) ordering of the
components of X and Y , respectively.

Theorem 1 defines what is usually known as classical majorization or the spec-
tral order on Rn: if the conditions of the theorem are satisfied we say that X
is majorized by Y or that X is less than Y in the spectral order, which we de-
note by X≺Y . One can easily check that if X≺Y then

∑n
i=1 xi=

∑n
i=1 yi. Note

that although the spectral order is only a preordering on Rn, Birkhoff’s theorem
[MO, Theorem 2.A.2] implies that it actually induces a partial ordering on Rn/Σn.
Therefore, Theorem 1 allows us to define a poset structure (Hn,�) by setting Q�P
whenever P,Q∈Hn and Z(Q)≺Z(P ). In this way we may view the spectral order
on Rn as a natural partial ordering on the manifold Hn, which we call the spectral
order on Hn.

We can now state the following isotonicity theorem, which is our first main
result.

Theorem 2. Let n≥1 and P,Q∈Hn be such that Q�P . Then for any λ∈R
one has Q−λQ′�P−λP ′.

This has several natural consequences. Recall that by a classical result of Pólya
all differential operators of Laguerre–Pólya type are hyperbolicity-preserving, see
e.g. [RS, Theorem 5.4.13]. Theorem 2 implies that much more is actually true,
namely all such operators preserve in fact the spectral order (Corollary 1). In
particular, any degree-preserving differential operator of Laguerre–Pólya type is
isotonic with respect to the partial ordering � on the manifold Hn for all n∈N
(Corollary 2). This gives a new characterization of the sequence of Appell polyno-
mials associated with an arbitrary function in the Laguerre–Pólya class by means
of a global minimum property with respect to the spectral order (Corollary 3).

Let D=d/dx denote differentiation with respect to x. The second main result
of this paper is the following monotonicity theorem.

Theorem 3. Fix n≥1 and let λ1, λ2∈R be such that λ1λ2≥0 and |λ1|≤|λ2|.
Then (1−λ1D)eλ1DP�(1−λ2D)eλ2DP for any P ∈Hn.

Theorem 3 allows us to study the orbit of an arbitrarily given hyperbolic poly-
nomial under the action of the monoid of differential operators of Laguerre–Pólya
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type. We equip the space l∞ of real bounded sequences with a natural partial
ordering � and define infinite families of deformations of differential operators of
Laguerre–Pólya type which are parametrized by vectors in l∞. From Theorem 3
we deduce that any such family satisfies a global monotony property with respect
to both partial orderings � and � (Corollary 5). Moreover, these partial orderings
are compatible with each other (Corollary 6). It follows that the monoid A′ of all
linear operators that act on each of the manifolds Hn, n≥1, and preserve averages
of zero sets consists only of differential operators of Laguerre–Pólya type which are
extensive with respect to � (Corollary 7). Thus, any hyperbolic polynomial is the
global minimum of its A′-orbit with respect to the spectral order (Corollary 8).

The above results have further applications to the distribution of zeros of hy-
perbolic polynomials under the action of differential operators of Laguerre–Pólya
type (Corollaries 9–11). At the same time, they seem to suggest even deeper connec-
tions between linear (differential) operators, the distribution of zeros of real entire
functions, and the theory of majorization. As we point out in Section 3, it would
be interesting to know whether appropriate modifications of the aforementioned re-
sults could hold for transcendental entire functions in the Laguerre–Pólya class. On
the other hand, these results and those of [B1], [B2] and [BS] hint at the possible
existence of an “analytic theory of classical majorization” and may therefore also
be seen as natural steps towards developing such a theory. Problem 2 in [B1] and
Problems 1–3 in Section 3 are intended as further steps in this direction.

Acknowledgement. The author would like to thank the anonymous referee for
many useful suggestions and remarks.

1. Theorem 2 and applications

1.1. Proof of Theorem 2

A key ingredient in the proofs of Theorems 2 and 3 is the following criterion
due to Hardy, Littlewood and Pólya [HLP].

Theorem 4. Let X=(x1≤x2≤...≤xn) and Y =(y1≤y2≤...≤yn) be two
n-tuples of real numbers. Then X≺Y if and only if the xi’s and the yi’s satisfy
the following conditions :

n∑

i=1

xi =
n∑

i=1

yi and
k∑

i=0

xn−i ≤
k∑

i=0

yn−i for 0≤ k≤n−2.

We also make extensive use of contractions, a special kind of degree-preserving
transformations acting on hyperbolic polynomials that we define as follows.
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Definition 1. Let P (x)=
∏n

i=1(x−xi)∈Hn, n≥2, and 1≤k<l≤n. Assume that
xi≤xi+1, 1≤i≤n−1, and that xk �=xl. Let further t∈(0, (xl−xk)/2] and define
Q∈Hn to be the polynomial with zeros yi, 1≤i≤n, where yk=xk+t, yl=xl−t, and
yi=xi, i �=k, l. The polynomial Q is called the contraction of P of type (k, l) and
coefficient t and is denoted by Q=T (k, l; t)P . The contraction T (k, l; t) of P is
called simple if l=k+1 and it is called nondegenerate if t �=(xl−xk)/2.

Remark 1. The simple nondegenerate contractions in Definition 1 may be
viewed as elementary versions of the so-called T -transforms for n-tuples of real
numbers. The latter are essentially a mathematical formulation of Dalton’s “prin-
ciple of transfers” (see [MO]) and were first used by Hardy, Littlewood and Pólya
in [HLP].

The proof of Theorem 2 builds on several auxiliary technical results. The first
two of these, Proposition 1 and Lemma 1 below, may also be restated in terms of
n-tuples of real numbers or doubly stochastic matrices in view of Theorems 1 and 4.
However, since we are interested in the dynamics of polynomial zeros under the
action of certain operators, it is convenient to formulate all the results exclusively
in terms of polynomials.

Proposition 1. Let P,Q∈Hn be two distinct strictly hyperbolic polynomials
such that Q�P . Then there exists a finite sequence of strictly hyperbolic polyno-
mials P1, ..., Pm∈Hn such that P1=P , Pm=Q and Pi+1 is a simple nondegenerate
contraction of Pi for 1≤i≤m−1.

The algorithm described in the next lemma will be used to give a constructive
proof of Proposition 1.

Lemma 1. Let a<b, σ∈(0, (b−a)/2) and p∈N. Assume that zi, 1≤i≤p, are
real numbers that satisfy a+σ<z1<...<zp<b−σ and set

P (x)= (x−a)(x−b)
p∏

i=1

(x−zi) and Q(x)= (x−a−σ)(x−b+σ)
p∏

i=1

(x−zi).

There exist simple nondegenerate contractions T1, ..., Ts such that Q=Ts...T1P .

Proof. Set x1=a, xp+2=b and xi=zi−1, 2≤i≤p+1, so that we may write

P (x)=
p+2∏

i=1

(x−xi) with xi <xi+1, 1≤ i≤ p+1.
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Choose d∈N such that σ<2d−1 min(z1−a−σ, b−zp−σ) if p=1 and

σ< 2d−1 min
(
z1−a−σ, b−zp−σ, min

1≤i≤p−1
(zi+1−zi)

)
if p≥ 2.

We let t=σ/2d and build a finite sequence of polynomials {S1,i}p+1
i=0 as follows:

S1,0 =P and S1,i = T (i, i+1; t)S1,i−1, 1≤ i≤ p+1.

Clearly, the contractions used in constructing this sequence are all simple. These
contractions are also nondegenerate since

xi+1−(xi−t)> 2t, 1≤ i≤ p+1,

by the choice of t. Thus, all polynomials S1,i, 0≤i≤p+1, are strictly hyperbolic.
In particular, this is true for the polynomial

P1(x) :=S1,p+1(x)=
p+2∏

i=1

(x−x(1)
i ),

where x(1)
1 =a+t, x(1)

p+2=b−t and x
(1)
i =zi−1, 2≤i≤p+1, so that x(1)

i <x
(1)
i+1 for 1≤

i≤p+1. We now use the same contractions as above to construct a finite sequence
of polynomials {S2,i}p+1

i=0 starting with the polynomial P1:

S2,0 =P1 and S2,i = T (i, i+1; t)S2,i−1, 1≤ i≤ p+1.

Repeating this procedure r times we arrive at the polynomial

Pr(x) :=Sr,p+1(x)=
p+2∏

i=1

(x−x(r)
i ),

where x(r)
1 =a+rt, x(r)

p+2=b−rt and x(r)
i =zi−1 for 2≤i≤p+1. It is clear that all the

contractions used in constructing the polynomial Pr are simple. Moreover, one can
easily check that if r≤2d then

x
(r)
i+1−(x(r)

i −t)> 2t, 1≤ i≤ p+1.

Since Q=P2d the above algorithm shows that Q may be constructed from P by
using a total of s=(p+1)2d simple nondegenerate contractions. �

Definition 2. Let P (x)=
∏n

i=1(x−xi) and Q(x)=
∏n

i=1(x−yi) be two hyper-
bolic polynomials of degree n≥1 whose zeros are arranged in nondecreasing order,
so that if n≥2 then xi≤xi+1 and yi≤yi+1 for 1≤i≤n−1. The number

δ(P,Q) := #{i∈{1, ..., n} |xi �= yi}

is called the discrepancy between P and Q.
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Remark 2. It is clear from Definition 2 that P=Q if and only if δ(P,Q)=0.

Proof of Proposition 1. The proposition is clearly true if n=2 and we may
therefore assume that n≥3. Let x1<x2<...<xn and y1<y2<...<yn denote the
zeros of P and Q, respectively. Let further r=δ(P,Q) and note that r≥1 since P
and Q are distinct polynomials. Actually, since the condition Q�P implies that
∑n

i=1 yi=
∑n

i=1 xi we see that r≥2. We now prove the proposition by induction
on r. If r=2 then by Theorem 4 there exist indices 1≤i<j≤n such that yk=xk

whenever k �=i, j and yi=xi+σ while yj=xj−σ for some σ∈R that satisfies

0<σ<min
(
xi+1−xi, xj−xj−1,

xj−xi

2

)
.

This means that if j=i+1 then Q is already a simple nondegenerate contraction
of P . If this is not the case then Lemma 1 implies that Qmay be obtained from P by
the successive application of a finite number of simple nondegenerate contractions,
which proves the result for r=2.

Suppose that r≥3 and assume that the proposition is true for all pairs of strictly
hyperbolic polynomials whose discrepancies are at most r−1. Since

∑n
i=1(xi−yi)=

0 there must exist both positive and negative numbers among the differences xi−yi,
1≤i≤n. A close examination of consecutive differences shows that at least one of
the following cases has to occur:

Case 1. There exists i∈{1, 2, ..., n} such that xi<yi and xi+1>yi+1. Define
the polynomial R=T (i, i+1; t)P∈Hn, where t=min(yi−xi, xi+1−yi+1). Note that
t∈(0, (xi+1−xi)/2) and thus R is a simple nondegenerate contraction of P . We now
use Theorem 4 to check that one also has Q�R. This is obvious if i=1 and we may
therefore assume that i≥2. It is then clear that

m∑

k=1

xk ≤
m∑

k=1

yk if m≤ i−1 and
n∑

k=m

xk ≥
n∑

k=m

yk if m≥ i+2.

Moreover, using the fact that Q�P we get

(xi+t)+
i−1∑

k=1

xk = yi+
i−1∑

k=1

xk ≤
i∑

k=1

yk,

(xi+1−t)+(xi+t)+
i−1∑

k=1

xk =
i+1∑

k=1

xk ≤
i+1∑

k=1

yk,

which shows that if t=yi−xi then the zeros of Q and R satisfy the inequalities
in Theorem 4. It follows that R is a strictly hyperbolic polynomial that satisfies
Q�R and δ(Q,R)≤r−1. Similar computations show that these relations remain
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true if t=xi+1−yi+1. By assumption, Q may be obtained from R by the successive
application of a finite number of simple nondegenerate contractions. Since R itself
is a simple nondegenerate contraction of P , this proves the proposition in this case.

Case 2. There exist indices i, j∈{1, 2, ..., n} with j≥i+2 such that xi<yi,
xj>yj and xk=yk for i+1≤k≤j−1. Let σ=min(yi−xi, xj−yj) and set

R(x) := (x−xi−σ)(x−xj +σ)
n∏

k=1
k �=i,j

(x−xk),

so that R is a strictly hyperbolic polynomial that satisfies R�P . Note that since σ∈
(0, (xj−xi)/2) it follows from Lemma 1 that R may be constructed by applying to
P a finite number of simple nondegenerate contractions. Clearly, these contractions
affect only the zeros of P and its successive transforms that lie in the interval [xi, xj ].
Computations similar to those used in Case 1 show that Q�R. Moreover, it is clear
that δ(Q,R)≤r−1. Using again the induction assumption we deduce that Qmay be
obtained from R and therefore also from P by the successive application of a finite
number of simple nondegenerate contractions, which completes the proof. �

Before proceeding with the proof of Theorem 2 let us point out that if the non-
degeneracy condition is omitted then minor modifications of the above arguments
yield an analog of Proposition 1 for polynomials with multiple zeros. This result
will not be used in the sequel and so we state it without proof.

Proposition 2. Let P and Q be distinct polynomials in Hn that satisfy Q�P .
There exists a finite sequence of hyperbolic polynomials P1, ..., Pm∈Hn such that
P1=P , Pm=Q and Pi+1 is a simple contraction of Pi for 1≤i≤m−1.

The following proposition is the main step in the proof of Theorem 2.

Proposition 3. If P and Q are strictly hyperbolic polynomials in Hn such
that Q is a simple nondegenerate contraction of P then Q−λQ′�P−λP ′ for any
λ∈R.

For the proof of Proposition 3 we need several additional results. Let us first
fix the notation that we shall use throughout this proof.

Notation 1. We start with a strictly hyperbolic polynomial P∈Hn given by

P (x)=
n∏

i=1

(x−xi) and P ′(x)=n

n−1∏

j=1

(x−wj).
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By Rolle’s theorem we may label the zeros of P and P ′ so that

x1<w1<x2< ... < xn−1<wn−1<xn,

which we assume henceforth. In most of the arguments below we shall also tacitly
assume that n≥3. Fix an index i∈{1, 2, ..., n−1} and set I=(0, (xi+1−xi)/2). For
t∈Ī we let Pt∈Hn denote the polynomial

Pt(x)= (x−xi−t)(x−xi+1+t)
n∏

k=1
k �=i,i+1

(x−xk)

and define the following homotopy of polynomial pencils:

P (λ, t;x)=Pt(x)−λP ′
t (x), where (λ, t)∈R×Ī and P ′

t (x)=
∂

∂x
Pt(x).

Note that Pt is a strictly hyperbolic polynomial whenever t∈{0}∪I and so by the
Hermite–Poulain–Jensen theorem [RS, Theorem 5.4.9], the polynomial P (λ, t;x)
is strictly hyperbolic for all (λ, t)∈R×({0}∪I). Actually, if 0<ε<min(xi−xi−1,

xi+2−xi+1) then the same arguments show that the polynomial P (λ, t;x) has only
simple (real) zeros for any (λ, t)∈R×(−ε, (xi+1−xi)/2). If we now fix such an ε

it follows from the implicit function theorem that the zeros of P (λ, t;x) are real-
analytic functions of (λ, t) in the domain R×(−ε, (xi+1−xi)/2). Therefore, if we
write

P (λ, t;x)=
n∏

k=1

(x−xk(λ, t)) and P ′(λ, t;x) :=
∂

∂x
P (λ, t;x)=n

n−1∏

l=1

(x−wl(λ, t))

and further assume that the zeros and the critical points of P (λ, t;x) are labeled so
that xk(0, 0)=xk, 1≤k≤n, and wl(0, 0)=wl, 1≤l≤n−1, then one has

x1(λ, t)<w1(λ, t)<x2(λ, t)< ... < xn−1(λ, t)<wn−1(λ, t)<xn(λ, t)(1.1)

if (λ, t)∈R×({0}∪I). This notation will be used in all lemmas below.

Lemma 2. If 1≤k≤n and (λ, t)∈R×({0}∪I) then P ′(λ, t;xk(λ, t)) �=0 and

∂

∂λ
xk(λ, t)=

P ′
t (xk(λ, t))

P ′(λ, t;xk(λ, t))
> 0.

In particular, for all j∈{1, 2, ..., n−1} one has

xj(λ, t)<wj(0, t)<xj+1(λ, t) and lim
λ!∞

xj(λ, t)= lim
λ!−∞

xj+1(λ, t)=wj(0, t).

Moreover, limλ!∞ xn(λ, t)=− limλ!−∞ x1(λ, t)=∞.
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Proof. The first assertion follows from the fact that P (λ, t;x) is strictly hy-
perbolic and P (λ, t;xk(λ, t))=0. Implicit differentiation with respect to λ in the
identity

Pt(xk(λ, t))−λP ′
t (xk(λ, t))= 0

yields immediately the equality stated in the lemma. Note that since Pt is strictly
hyperbolic we have P ′

t (xk(λ, t)) �=0, so that if we let P ′′
t (x)=(∂/∂x)P ′

t (x) then

[P ′
t (xk(λ, t))]2

[
∂

∂λ
xk(λ, t)

]−1

= [P ′
t (xk(λ, t))]2−Pt(xk(λ, t))P ′′

t (xk(λ, t))> 0

by Laguerre’s inequality for (strictly) hyperbolic polynomials [RS, Lemma 5.4.4].
If t∈{0}∪I is fixed then −λ−1P (λ, t;x)!P ′

t (x), as |λ|!∞, uniformly on compact
sets. It follows that for 1≤j≤n−1 one has xj(λ, t)<limµ!∞ xj(µ, t)=wj(0, t) and
xj+1(λ, t)>limµ!−∞ xj+1(µ, t)=wj(0, t), which finishes the proof. �

For 1≤k≤n and (λ, t)∈R×({0}∪I) we define the following expressions:

Fk(λ, t) =
[

Pt(xk(λ, t))
(xk(λ, t)−xi−t)(xk(λ, t)−xi+1+t)P ′

t(xk(λ, t))

]2

, if λ �= 0,

Fi(0, t) =Fi+1(0, t)=
1

(2t+xi−xi+1)2
,

Fk(0, t) = 0, if k �= i, i+1.

(1.2)

Note that Fk(0, t)=limλ!0 Fk(λ, t) for all k∈{1, 2, ..., n} and t∈{0}∪I.

Lemma 3. If 1≤k≤n and (λ, t)∈R×({0}∪I) then

∂

∂t
xk(λ, t)= (2xk(λ, t)−xi−xi+1)(2t+xi−xi+1)Fk(λ, t)

∂

∂λ
xk(λ, t),

where Fk(λ, t) is as in (1.2).

Proof. By Lemma 2 one has (∂/∂λ)xk(λ, t)
∣
∣
(0,t)

=1 for all t∈{0}∪I and
1≤k≤n. Moreover, it is clear that (∂/∂t)xk(λ, t)

∣
∣
(0,t)

=0 if k �=i, i+1 while

(∂/∂t)xi(λ, t)
∣
∣
(0,t)

=−(∂/∂t)xi+1(λ, t)
∣
∣
(0,t)

=1. Thus, if λ=0 the lemma is a con-
sequence of (1.2).

Assume now that λ �=0, so that

1
λ

=
P ′

t (xk(λ, t))
Pt(xk(λ, t))

=
1

xk(λ, t)−xi−t
+

1
xk(λ, t)−xi+1+t

+
n∑

r=1
r �=i,i+1

1
xk(λ, t)−xr

.
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Applying ∂/∂t to the relation Pt(xk(λ, t))−λP ′
t (xk(λ, t))=0 we get

[P ′
t (xk(λ, t))−λP ′′

t (xk(λ, t))]
∂

∂t
xk(λ, t)

=
∂

∂t
[−Pt(x)+λP ′

t (x)]
∣
∣
∣
∣
x=xk(λ,t)

= (2t+xi−xi+1)
[ n∏

r=1
r �=i,i+1

(xk(λ, t)−xr)−λ
n∑

r=1
r �=i,i+1

n∏

s=1
s�=i,i+1,r

(xk(λ, t)−xs)
]

= (2t+xi−xi+1)
[

1−λ
n∑

r=1
r �=i,i+1

1
xk(λ, t)−xr

] n∏

r=1
r �=i,i+1

(xk(λ, t)−xr)

=
λ(2t+xi−xi+1)Pt(xk(λ, t))

(xk(λ, t)−xi−t)(xk(λ, t)−xi+1+t)

[
1
λ
−

n∑

r=1
r �=i,i+1

1
xk(λ, t)−xr

]

=
(2xk(λ, t)−xi−xi+1)(2t+xi−xi+1)Pt(xk(λ, t))2

(xk(λ, t)−xi−t)2(xk(λ, t)−xi+1+t)2P ′
t (xk(λ, t))

= (2xk(λ, t)−xi−xi+1)(2t+xi−xi+1)Fk(λ, t)P ′
t (xk(λ, t)).

The result follows readily from Lemma 2 since P ′
t (xk(λ, t)) �=λP ′′

t (xk(λ, t). �
Lemma 4. Let m∈{1, 2, ..., n} and (λ, t)∈R×({0}∪I). Then

m∑

k=1

xk(λ, t)≥
m∑

k=1

xk(λ, 0), if m≤ i−1,

n∑

k=m

xk(λ, t)≤
n∑

k=m

xk(λ, 0), if m≥ i+2.

Proof. If (λ, t)∈R×({0}∪I) then (1.1) and Lemma 2 imply that

xk(λ, t)<wk(0, t)<xk+1(0, t)≤ xi(0, t)<
xi+xi+1

2
whenever k≤i−1, while for k≥i+2 one gets that

xk(λ, t)>wk−1(0, t)>xk−1(0, t)≥ xi+1(0, t)>
xi+xi+1

2
.

Furthermore, by Lemma 2 one has that (∂/∂λ)xk(λ, t)>0 and by (1.2) we know that
Fk(λ, t)>0 if k �=i, i+1. Therefore, the above inequalities together with Lemma 3
yield

∂

∂t
xk(λ, t)> 0, if k≤ i−1, and

∂

∂t
xk(λ, t)< 0, if k≥ i+2.

It follows that all the inequalities in the lemma are strict if (λ, t)∈R×I. �
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We can now give a proof of Proposition 3.

Proof of Proposition 3. Using the above notation we let i∈{1, 2, ..., n} and σ∈I
be such that Q=T (i, i+1;σ)P , so that

P (λ, 0;x)=P (x)−λP ′(x) and P (λ, σ;x)=Q(x)−λQ′(x).

It is clear that for any λ∈R one has
n∑

k=1

xk(λ, 0)=
n∑

k=1

xk(λ, σ)=
n∑

k=1

xk+nλ,(1.3)

where xk, 1≤k≤n, denote as before the zeros of P . By Theorem 4 and (1.3) we see
that the relation Q−λQ′�P−λP ′ is equivalent to

m∑

k=1

xk(λ, 0)≤
m∑

k=1

xk(λ, σ), 1≤m≤n−1.(1.4)

These inequalities are trivially true if λ=0 and so we may assume that λ �=0. We
distinguish two cases:

Case 1. λ>0 By Lemma 2 one has (∂/∂λ)xk(λ, t)>0. Thus, if λ>0 then

xi+1(λ, t)>xi+1(0, t)= xi+1−t>
xi+xi+1

2
for t∈ [0, σ].

It follows from Lemma 3 that (∂/∂t)xk(λ, t)<0 if λ>0 and t∈[0, σ]. In particular,

xi+1(λ, σ)<xi+1(λ, 0), if λ> 0.(1.5)

Case 2. λ<0 From Lemma 2 again we deduce that in this case one has

xi(λ, t)<xi(0, t)= xi+t<
xi+xi+1

2
for t∈ [0, σ],

so that by Lemma 3 we get (∂/∂t)xk(λ, t)>0 if λ<0 and t∈[0, σ]. Hence

xi(λ, σ)>xi(λ, 0), if λ< 0.(1.6)

Combining Lemma 4 with (1.5) and (1.6) we see that for any λ∈R\{0} one
has either

m∑

k=1

xk(λ, 0)≤
m∑

k=1

xk(λ, σ), m≤ i,

n∑

k=m

xk(λ, 0)≥
n∑

k=m

xk(λ, σ), m≥ i+2; or

m∑

k=1

xk(λ, 0)≤
m∑

k=1

xk(λ, σ), m≤ i−1,
n∑

k=m

xk(λ, 0)≥
n∑

k=m

xk(λ, σ), m≥ i+1.

It is not difficult to see that these relations together with (1.3) yield the inequalities
in (1.4), which completes the proof of the proposition. �



Spectral order and isotonic differential operators of Laguerre–Pólya type 223

Theorem 2 is now an almost immediate consequence of the above results.

Proof of Theorem 2. In the generic case when both P and Q are strictly hyper-
bolic polynomials it follows from Proposition 1 that Q may be obtained from P by
the successive application of a finite number of simple nondegenerate contractions.
Therefore, in this case the theorem follows directly from Proposition 3.

For the general case we let x1≤x2≤...≤xn and y1≤y2≤...≤yn denote the
zeros of P and Q, respectively, counted according to their respective multiplicities.
Choose an arbitrary positive number ε and let Pε and Qε be the polynomials with
zeros xi−(n−i)ε, 1≤i≤n−1, xn+(n(n−1)/2)ε, and yi−(n−i)ε, 1≤i≤n−1, yn+
(n(n−1)/2)ε, respectively. Note that both Pε and Qε are strictly hyperbolic and
that Qε�Pε. The above arguments imply that

n−1Q′
ε �n−1P ′

ε in Hn−1 and Qε+λQ′
ε �Pε+λP ′

ε, λ∈R.(1.7)

Clearly, the zeros and the critical points of Pε and Qε are continuous functions of ε.
The desired conclusion follows from Theorem 4 and (1.7) by letting ε!0. �

1.2. Applications to differential operators of Laguerre–Pólya type and
Appell polynomials

Theorem 2 has several interesting consequences. In order to state these we
need some additional notation and definitions.

Notation 2. Given a nonconstant polynomial P ∈Π we denote the barycenter
of its zeros by m(P ). Suppose that

f(x)=
∞∑

k=0

akx
k = xmg(x), x∈C,

is an entire function, where m is a nonnegative integer and g is an entire function
such that g(0) �=0. One has a well-defined operator f(D)∈End Π given by

f(D)[P ](x)=
∞∑

k=0

akP
(k)(x), P ∈Π,

since only finitely many terms in this series are nonzero and so the lack of growth
control on the coefficients in the power series expansion of f causes no problems. We
associate with f an infinite family of differential operators {D(f, n)}∞n=m+1 defined
as follows:

D(f, n)= kn(f)f(D), where kn(f)=
[(

n

m

)

f (m)(0)
]−1

, n≥m+1.(1.8)
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Note that these operators are in fact rescalings of f(D) chosen so that if n≥m+1
then D(f, n) maps monic polynomials of degree n to monic polynomials of de-
gree n−m. In particular, if m=0 then all operators D(f, n), n∈N, coincide with
f(0)−1f(D) and preserve the class of monic polynomials of degree d for any d≥0.

Definition 3. A real entire function ϕ is said to be in the Laguerre–Pólya class,
ϕ∈LP, if it can be expressed in the form

ϕ(x)= cxme−a2x2+bx
∞∏

k=1

(1−αkx)eαkx, x∈C,(1.9)

where a, b, c, αk∈R, c �=0,m is a nonnegative integer and
∑∞

k=1 α
2
k<∞. An operator

T∈End Π is said to be a differential operator of Laguerre–Pólya type if T=ϕ(D),
where ϕ∈LP.

Notation 3. Let LP0 :={ϕ∈LP|ϕ(0) �=0}. For m∈N we set

LPm = xmLP0 = {ϕ∈LP |ϕ(k)(0)= 0, 0≤ k≤m−1, and ϕ(m)(0) �= 0}.

Clearly, LP is a commutative monoid under ordinary multiplication of functions.
Actually, LP may be viewed as a Z+-graded monoid, where Z+ denotes the additive
monoid of nonnegative integers. Indeed, note that LP0 is a submonoid of LP which
acts on LPm for each m∈Z+ and that LP decomposes into a disjoint union

LP =
∞⋃

m=0

LPm with LPm1LPm2 =LPm1+m2 for m1,m2 ∈Z+.(1.10)

As we already pointed out in the introduction, by a classical theorem of Pólya
one knows that all differential operators of Laguerre–Pólya type map hyperbolic
polynomials to hyperbolic polynomials. By using Theorem 2 one can actually show
that all such operators are in fact natural preservers of the spectral order.

Corollary 1. Let m,n∈Z+ with n≥m+1 and ϕ∈LPm. If P,Q∈Hn are such
that Q�P then D(ϕ, n)[Q]�D(ϕ, n)[P ] in Hn−m.

Remark 3. It is clear that if ϕ∈LPm then D(ϕ,m)[P ]≡1 for all P∈Hm while
D(ϕ, n)[P ]≡0 if P∈Hn with n≤m−1. This is the reason why we impose the con-
dition n≥m+1 both in Corollary 1 and Corollary 5 of Section 2.

To prove Corollary 1 we need to first establish the following result.

Lemma 5. Let n≥2 and P,Q∈Hn with Q�P . Then n−1Q′�n−1P ′ in Hn−1.
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Proof. It is enough to prove the lemma in the generic case when P and Q are
strictly hyperbolic polynomials and Q is a simple nondegenerate contraction of P
(the general case follows from this one by arguing as in the proof of Theorem 2).
Let then Q=T (i, i+1;σ)P , where σ∈I and i∈{1, 2, ..., n}. Using Notation 1 we
may write

P (λ, 0;x)=P (x)−λP ′(x)=
n∏

k=1

(x−xk(λ, 0)) and P ′(λ, 0;x)=n
n−1∏

l=1

(x−wl(λ, 0)),

P (λ, σ;x)=Q(x)−λQ′(x)=
n∏

k=1

(x−xk(λ, σ)) and P ′(λ, σ;x)=n
n−1∏

l=1

(x−wl(λ, σ)).

By Proposition 3 we know that P (λ, σ;x)�P (λ, 0;x), so that (1.4) is valid. There-
fore, if we let λ!∞ in (1.4) and use the second part of Lemma 2 we obtain

m∑

j=1

wj(0, 0)≤
m∑

j=1

wj(0, σ), 1≤m≤n−1.(1.11)

Since Q is a contraction of P one has Q�P , so that m(Q)=m(P ) and thus m(Q′)=
m(P ′). This shows that the inequality in (1.11) corresponding tom=n−1 is actually
an equality, which by Theorem 4 proves the lemma. �

Proof of Corollary 1. Let X=(x1, x2, ..., xn) and Y =(y1, y2, ..., yn) be two
unordered n-tuples of real numbers and set

d(X,Y )= min
π∈Σn

max
1≤i≤n

|xi−yπ(i)|.

This is the so-called optimal matching distance between the unordered n-tuples X
and Y . It is not difficult to see that d defines a metric on the quotient space Rn/Σn

of all such n-tuples and therefore also on the manifold Hn in view of (0.1).
We use the rearrangement-free characterization of the spectral order given in

Theorem 1(i) in the following way: to any function f : R!R we associate a function
f̃ : Rn/Σn!R by setting

f̃(X)=
n∑

i=1

f(xi) for X = (x1, x2, ..., xn)∈Rn/Σn.(1.12)

If f is convex then Theorem 1(i) asserts that f̃(X)≤f̃(Y ) whenever X≺Y , that
is, f̃ is a Schur-convex function (cf. [MO, Chapter 3]). Thus X≺Y if and only if
f̃(X)≤f̃(Y ) for any function f̃ as in (1.12) associated to a convex function f .
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Assume now that P,Q∈Hn are such that Q�P and let ϕ∈LPm, where m∈Z+,
m≤n−1. Suppose that ϕ is as in (1.9) with Maclaurin expansion

ϕ(x)=
∞∑

k=m

akx
k, x∈C.

For j∈N let τj :=b+
∑j

ν=1 αν and define the following polynomials:

ϕj(x)= cxm

(

1− ax√
j

)j(

1+
ax√
j

)j(

1+
τjx

nj

)nj j∏

ν=1

(1−ανx).(1.13)

It is a well-known fact that if one chooses {nj}j∈N as a sequence of integers growing
sufficiently fast to infinity as j!∞ then the sequence of hyperbolic polynomials
{ϕj}j∈N satisfies ϕj ⇒ϕ as j!∞, where ⇒ denotes uniform convergence on all
compact subsets of C (see, e.g., [L, Chapter 8]). Therefore, if we let Nj :=degϕj

and write the polynomial ϕj as

ϕj(x)=
∞∑

k=m

aj,kx
k, x∈C,

with aj,k=0 for k≥Nj+1 then it follows from Cauchy’s integral formula that
limj!∞ aj,k=ak for all k≥m. This implies that for any fixed polynomial R∈Π
with degR=n one has

ϕj(D)[R] =
n∑

k=m

aj,kR
(k) ⇒

n∑

k=m

akR
(k) =ϕ(D)[R], as j!∞.

In particular, D(ϕj , n)[P ]⇒D(ϕ, n)[P ] and D(ϕj , n)[Q]⇒D(ϕ, n)[Q] as j!∞, so
that

d(Z(D(ϕj , n)[P ]),Z(D(ϕ, n)[P ]))! 0,

d(Z(D(ϕj , n)[Q]),Z(D(ϕ, n)[Q]))! 0, as j!∞.
(1.14)

On the other hand, by Theorem 2 and Lemma 5 we know that

Z(D(ϕj , n)[Q])≺Z(D(ϕj , n)[P ]) in Rn−m/Σn−m for j ∈N.

Thus, if f is a real-valued convex function on R and f̃ is as in (1.12) then

f̃(Z(D(ϕj , n)[Q]))≤ f̃(Z(D(ϕj , n)[P ])) for j ∈N.(1.15)
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Since f is convex on R it is also continuous there and so f̃ is a continuous function
on Rn/Σn. Therefore, by letting j!∞ in (1.14) and (1.15) we obtain

f̃(Z(D(ϕ, n)[Q]))≤ f̃(Z(D(ϕ, n)[P ])).

As explained above, this implies that

Z(D(ϕ, n)[Q])≺Z(D(ϕ, n)[P ]) in Rn−m/Σn−m.

Hence D(ϕ, n)[Q]�D(ϕ, n)[P ] in Hn−m, which completes the proof. �

Notation 4. Define the following monoids of linear operators:

A=
∞⋂

n=0

An, where An = {T ∈End Π |T
(
Hn

)
⊆Hn}, n∈Z+.(1.16)

Note that An is the largest submonoid of End Π consisting of linear operators that
act on Hn for fixed n∈Z+, while A is the largest submonoid of EndΠ acting on
each of the manifolds Hn, n∈Z+.

In [CPP, Theorem 1] it was shown that

A= {ϕ(D) |ϕ∈LP and ϕ(0)= 1}⊂LP0.(1.17)

From Corollary 1 and (1.17) we deduce that all operators in A are isotonic (see
Definition 4 below) with respect to the spectral order on Hn for any n∈N.

Corollary 2. If n≥1 and P,Q∈Hn are such that Q�P then T [Q]�T [P ] for
all operators T∈A.

Yet another consequence of Corollary 1 is that the sequence of nonconstant
Appell polynomials associated with any given function in the Laguerre–Pólya class
may be characterized by means of a global minimum property with respect to the
spectral order. Indeed, let n∈N and consider the following submanifold of Hn:

H0
n = {P ∈Hn |m(P )= 0}.(1.18)

Given ϕ∈LP and n∈Z+ one defines the nth Appell polynomial g∗n associated with
ϕ by g∗n(x)=ϕ(D)[xn] (see, e.g. [CC2]). Recall the decomposition of LP from (1.10)
and assume that ϕ∈LPm for some m∈Z+. Clearly, g∗n is a nonconstant polynomial
if and only if n≥m+1 (cf. Remark 3). Corollary 1, Theorem 4, and the fact that
xn�P (x) for any P ∈H0

n, n∈N, yield the following result.
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Corollary 3. Let m∈Z+ and ϕ∈LPm. If n≥m+1 then the monic polyno-
mial kn(ϕ)g∗n is the (unique) global minimum of the poset (D(ϕ, n)[H0

n],�), where
D(ϕ, n)[H0

n]:={D(ϕ, n)[P ]|P∈H0
n}, kn(ϕ) is as in (1.8) and g∗n is the n-th Appell

polynomial associated with ϕ.

In view of Theorems 1 and 4, Corollary 3 admits the following geometrical
interpretation: up to a factor kn(ϕ) the nth Appell polynomial associated with ϕ

coincides with the (unique) polynomial in the image set D(ϕ, n)[H0
n] whose zeros

are less spread out than the zeros of any other polynomial in this set.

Remark 4. A systematic investigation of the topological properties of Hn and
H0

n was initiated by Arnold in [Ar]. These manifolds have since been extensively
studied in singularity theory and related topics.

2. Theorem 3 and some consequences

2.1. Proof of Theorem 3

The result holds trivially for n=1 and so we may assume that n≥2. As in
Section 1, we start with a strictly hyperbolic polynomial P ∈Hn given by

P (x)=
n∏

i=1

(x−xi) and P ′(x)=n

n−1∏

j=1

(x−wj)

with x1<w1<x2<...<xn−1<wn−1<xn and we define the following pencils of poly-
nomials:

Pλ(x)=P (x)−λP ′(x) and P ′
λ(x)=P ′(x)−λP ′′(x), λ∈R.

Denote the zeros of Pλ and P ′
λ by xi(λ), 1≤i≤n, and wj(λ), 1≤j≤n−1, respec-

tively. If we assume that these are labeled so that xi(0)=xi, 1≤i≤n, and wj(λ)=wj ,
1≤j≤n−1, then by letting t=0 in (1.1) we see that

x1(λ)<w1(λ)<x2(λ)< ... < xn−1(λ)<wn−1(λ)<xn(λ)(2.1)

for all λ∈R. The following proposition is the key step in the proof of Theorem 3.

Proposition 4. If P is as above then each of the functions fm : R!R given
by

fm(λ)=
m∑

i=1

(xi(λ)−λ), 1≤m≤n−1,

is increasing on (−∞, 0] and decreasing on [0,∞).
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The proof of Proposition 4 is based on two lemmas.

Lemma 6. Let 1≤j≤n−1 and λ∈R. Then
m∑

i=1

1
xi(λ)−wj(λ)

< 0

for all m∈{1, ..., n−1}.

Proof. If m≤j then for each i≤m one has xi(λ)≤xm(λ)<wj(λ) by (2.1), so
that in this case all terms in the sum are negative. Assume that m≥j+1. Then

0 =
P ′

λ(wj(λ))
Pλ(wj(λ))

=
n∑

i=1

1
wj(λ)−xi(λ)

=
m∑

i=1

1
wj(λ)−xi(λ)

+
n∑

i=m+1

1
wj(λ)−xi(λ)

.

Thus
m∑

i=1

1
xi(λ)−wj(λ)

=
n∑

i=m+1

1
wj(λ)−xi(λ)

< 0

since (2.1) implies that xi(λ)≥xm+1(λ)>wj(λ) if i≥m+1. �

Lemma 7. If 1≤j≤n−1 and λ∈R then

w′
j(λ)=

P ′′(wj(λ))
P ′′

λ (wj(λ))
> 0,

where P ′′
λ (x)=(∂/∂x)P ′

λ(x).

Proof. Apply Lemma 2 to P ′(λ, t, wj(λ, t)), 1≤j≤n−1, and set t=0. �

Proof of Proposition 4. Using Lemma 2 and a partial fractional decomposition
we get

x′i(λ)−1 =
λP ′′(xi(λ))
P ′

λ(xi(λ))
=

n−1∑

j=1

P ′′(wj(λ))
P ′′

λ (wj(λ))
λ

xi(λ)−wj(λ)
=

n−1∑

j=1

λw′
j(λ)

xi(λ)−wj(λ)
.

Therefore, if 1≤m≤n−1 then

f ′
m(λ)=

m∑

i=1

(x′i(λ)−1)=λ

n−1∑

j=1

m∑

i=1

w′
j(λ)

xi(λ)−wj(λ)
.(2.2)

Lemmas 6 and 7 imply that
m∑

i=1

w′
j(λ)

xi(λ)−wj(λ)
< 0, λ∈R,

which together with (2.2) shows that λf ′
m(λ)<0 if λ �=0, as required. �
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Theorem 3 is now a straightforward consequence of Theorem 4 and the following
result.

Proposition 5. Let P∈Hn and set Pλ(x)=P (x)−λP ′(x), where λ∈R. For
any fixed λ denote the zeros of Pλ by xi(λ), 1≤i≤n, and arrange these so that
x1(λ)≤...≤xn(λ). Given m∈{1, 2, ..., n} we define a function fm : R!R by

fm(λ)=
m∑

i=1

(xi(λ)−λ).

If 1≤m≤n−1 then fm is nondecreasing on (−∞, 0] and nonincreasing on [0,∞).
Moreover, fn is a constant function on R.

Proof. The first assertion follows from Proposition 4 since P may be approxi-
mated by strictly hyperbolic polynomials in Hn uniformly on compact subsets of C.
Indeed, if ε∈R\{0} then P̂ε(x):=(1−εD)n−1P (x) is a strictly hyperbolic polyno-
mial in Hn (cf., e.g., [CC1, Lemma 4.2]). It is clear that P̂ε⇒P as ε!0. The
second statement follows from the fact that fn(λ)=

∑n
i=1 xi for all λ∈R, where xi,

1≤i≤n, are the zeros of P . �

Remark 5. Proposition 5 has recently been extended to arbitrary hyperbolic
polynomial pencils in [B2], where it was furthermore shown that fm, 1≤m≤n−1,
are actually concave functions on R. Note that by [B1, Theorem 4] these partial
sums cannot have a common local maximum unless the polynomial pencil under
consideration is of logarithmic derivative type, i.e., of the form P−λP ′, λ∈R.

Corollary 4. Let λ1, λ2∈R be such that λ1λ2≥0 and |λ1|≤|λ2|. If m,n∈Z+

with n≥max(2,m+1) then for any P ∈Hn one has

(n

m

)−1

Dm(1−λ1D)eλ1DP �
(n

m

)−1

Dm(1−λ2D)eλ2DP in Hn−m.

In particular, if s1, s2∈R satisfy s1s2≥0 and |s1|≤|s2| then

(n

m

)−1

Dm(1−s1λD)es1λDP �
(n

m

)−1

Dm(1−s2λD)es2λDP,

e−s2
1λ2D2

P � e−s2
2λ2D2

P

for all P∈Hn and λ∈R.
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Proof. The first relation is an immediate consequence of Theorem 4, Proposi-
tion 5 and repeated use of Lemma 5 since (1−λD)eλDP (x)=P (x+λ)−λP ′(x+λ)
for all λ∈R. Setting λi=siλ, i=1, 2, one gets the second relation. Let j∈N and
define a function

ψj(x)=
(

1−λ2x2

j

)j

=
[(

1− λx√
j

)

eλx/
√

j

]j[(

1+
λx√
j

)

e−λx/
√

j

]j

,

where λ is a fixed real number. Clearly, the second relation implies that for any
P ∈Hn and j∈N one has ψj(s1D)[P ]�ψj(s2D)[P ]. Moreover, from ψj(x)⇒e−λ2x2

as j!∞ one easily gets ψj(siD)[P ]⇒e−s2
i λ2D2

P for i=1, 2. The third relation is
obtained by letting j!∞. �

2.2. Orbits of hyperbolic polynomials

Theorem 3 and Corollary 4 allow us to study the orbits of hyperbolic polyno-
mials under the action of differential operators of Laguerre–Pólya type. To do this
we need some new notation.

Notation 5. Let l∞ denote the Banach algebra of bounded real sequences of
the form {si}∞i=0. We endow l∞ with a partial ordering � defined as follows: given
two elements s={si}∞i=0 and t={ti}∞i=0 of l∞ we set s�t if |si|≤|ti| and siti≥0
for all i∈Z+. For fixed s={si}∞i=0∈l∞, m∈Z+ and a function ϕ∈LPm of the form
(1.9) we define the s-deformation of ϕ to be

ϕs(x)= cxme−s2
0a2x2+bx

∞∏

k=1

(1−skαkx)eskαkx, x∈C.(2.3)

Note that ϕs∈LPm and so (2.3) defines an action of l∞ on LPm for any m∈Z+,

l∞×LPm −!LPm,

(s, ϕ) �−!s·ϕ:=ϕs,
(2.4)

by means of which we associate to any ϕ∈LPm an infinite-parameter family of
deformations of the operator ϕ(D), namely

Fϕ := {D(ϕs, n) | s∈ l∞ and n∈N, n≥m+1},

where D(ϕs, n) is as in (1.8).

The operator families Fϕ satisfy the following global monotony property with
respect to the partial orderings � on l∞ and � on Hn, n∈Z+, respectively.
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Corollary 5. Let m,n∈Z+ with n≥m+1 and ϕ∈LPm. If s, t∈l∞ are such
that s�t then D(ϕs, n)[P ]�D(ϕt, n)[P ] in Hn−m for any P ∈Hn.

Proof. Let us fix s={si}∞i=0∈l∞ and t={ti}∞i=0∈l∞ such that s�t. Given
m,n∈Z+ with n≥max(2,m+1) and ϕ∈LPm as in (1.9) we approximate ϕs(x) and
ϕt(x) uniformly on compact subsets of C by means of the functions

ϕs
j(x) = cxme−s2

0a2x2+bx

j∏

k=1

(1−skαkx)eskαkx,

ϕt
j(x) = cxme−t20a2x2+bx

j∏

k=1

(1−tkαkx)etkαkx,

respectively, where j∈N. By Corollary 4 we know that

D(ϕs
j , n)[P ] �D(ϕt

j , n)[P ] in Hn−m(2.5)

for arbitrarily fixed P∈Hn and j∈N. Standard arguments involving the uniform
convergence of the above sequences of functions similar to those given in the proof
of Corollary 1 show that D(ϕs

j , n)[P ]⇒D(ϕs, n)[P ] and D(ϕt
j , n)[P ]⇒D(ϕt, n)[P ]

as j!∞. The desired result follows from (2.5) by letting j!∞. �

Recall from (1.17) that A is the largest submonoid of End Π acting on each
of the manifolds Hn, n∈Z+. We define a binary relation on A which by abuse of
notation we denote again by � in the following manner: given T1, T2∈A set T1�T2

if T1[P ]�T2[P ] for all P∈Hn, n∈N.

Lemma 8. The pair (A,�) is a poset.

Proof. Clearly, � inherits the reflexivity and transitivity properties from the
partial orderings on the posets (Hn,�), n∈Z+. Assume that T1, T2∈A are such
that T1�T2 and T2�T1. By (1.16) we may write Ti=ϕi(D), where ϕi∈LP with
ϕi(0)=1, i=1, 2. In particular, ϕ1(D)[xn]�ϕ2(D)[xn] and ϕ2(D)[xn]�ϕ1(D)[xn],
n∈Z+. Since (Hn,�) is a poset for all n∈Z+ we deduce that the sequences of
Appell polynomials associated to ϕ1 and ϕ2 must coincide. It follows that ϕ1=ϕ2

and thus T1=T2, which shows that � is also antisymmetric. �

From Corollary 5 we deduce the following compatibility relation between the
posets (l∞,�) and (A,�).

Corollary 6. If T∈A and s, t∈l∞ with s�t then s·T�t·T .
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Let LP ′ be the class of entire functions of the form

ϕ(x)= cxme−a2x2
∞∏

k=1

(1−αkx)eαkx, x∈C,(2.6)

where a, c, αk∈R, c �=0, m∈Z+ and
∑∞

k=1 α
2
k<∞, so that LP ′⊂LP. For m∈Z+

we set LP ′
m=LP ′∩LPm. By taking constant sequences s={s}∞i=0 and t={t}∞i=0 in

Corollary 5 we obtain the following generalization of Theorems 1.4 and 1.6 in [BS].

Corollary 7. Let n∈N and ϕ∈LP ′ with ϕ(0)=1. If s, t∈R are such that
|s|≤|t| and st≥0 then ϕ(sD)[P ]�ϕ(tD)[P ] for any P∈Hn.

Let A′ be the submonoid of A consisting of all operators that preserve the
barycenter of the zeros of any nonconstant polynomial. Then by (1.17) one has

A′ = {T ∈A |m(T (P ))= m(P ) if P ∈Π, degP ≥ 1}
= {ϕ(D) |ϕ∈LP ′ and ϕ(0)= 1}⊂LP′

0.

Setting s=0 and t=1 in Corollary 7 we deduce that any nonconstant monic hyper-
bolic polynomial is the global minimum of its A′-orbit. In this way we recover
Theorem 6 of [B1].

Corollary 8. If n∈N then P�T [P ] for all P ∈Hn and T∈A′.

Finally, let us note that some of the properties established above may be re-
stated by using the following terminology of set-theoretic topology.

Definition 4. An operator T on a poset (X ,≤) is called isotonic if T [x]≤T [y]
whenever x, y∈X are such that x≤y, while T is said to be extensive (or expanding)
if x≤T [x] for any x∈X . An operator on (X ,≤) which is idempotent, isotonic and
extensive with respect to ≤ is a closure operator on X .

For instance, Corollary 1 asserts that essentially all differential operators of
Laguerre–Pólya type are isotonic on each of the posets (Hn,�), n∈N, while Corol-
lary 7 shows that the monoid A′ consists of differential operators of Laguerre–Pólya
type which are extensive with respect to the spectral order.

Remark 6. The proofs of Theorems 2 and 3 were essentially based on a detailed
analysis of the dynamics of the zeros and critical points of strictly hyperbolic poly-
nomials under the action of differential operators of Laguerre–Pólya type. There are
many known examples of such operators that actually map any hyperbolic polyno-
mial to a strictly hyperbolic polynomial (cf., e.g., [CC1] and [CC2]). For instance,
if Q is a hyperbolic polynomial of degree n and b∈R then ebDQ(D)[P ] is strictly
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hyperbolic whenever P is a hyperbolic polynomial of degree at most n+1. More-
over, if ϕ(x) is a transcendental function in the Laguerre–Pólya class which is not
of the form Q(x)ebx for some hyperbolic polynomial Q and b∈R then a theorem of
Pólya asserts that ϕ(D)[P ] is strictly hyperbolic for any hyperbolic polynomial P .
In particular, this holds if ϕ(x)=e−a2x with a∈R\{0}.

3. Further results and related topics

In this section we state several other consequences of Theorems 2 and 3 and
discuss some related problems.

3.1. The distribution of zeros of hyperbolic polynomials

The results given in Sections 1–2 have interesting applications to the distribu-
tion and the relative geometry of zeros of hyperbolic polynomials and their images
under the action of differential operators of Laguerre–Pólya type. Recall from Sec-
tion 1 that a function Φ: Rn!R is said to be Schur-convex if Φ(X)≤Φ(Y ) whenever
X,Y ∈Rn are such that X≺Y . Given a polynomial P∈Π of degree n≥1 we denote
its zeros by xi(P ), 1≤i≤n. Then Theorems 1 and Corollary 1 yield the following
result.

Corollary 9. Let n,m∈Z+ with n≥m+1. If ϕ∈LPm and Φ: Rn−m!R is
a Schur-convex function then

Φ(x1(ϕ(D)[Q]), ..., xn−m(ϕ(D)[Q]))≤Φ(x1(ϕ(D)[P ]), ..., xn−m(ϕ(D)[P ]))

for all polynomials P,Q∈Hn such that Q�P . In particular, the inequality

n−m∑

i=1

f(xi(ϕ(D)[Q]))≤
n−m∑

i=1

f(xi(ϕ(D)[P ]))

holds for any convex function f : R!R.

In the same spirit, Theorem 3 and Corollaries 7–8 combined with Theorem 1
lead to the following inequalities.

Corollary 10. Let n∈N and ϕ∈LP ′
0. For any pair (s, t)∈R2 satisfying |s|≤

|t| and st≥0 and for any Schur-convex function Φ: Rn!R one has

Φ(x1(ϕ(sD)[P ]), ..., xn(ϕ(sD)[P ]))≤Φ(x1(ϕ(tD)[P ]), ..., xn(ϕ(tD)[P ]))
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whenever P ∈Hn. In particular, the inequalities
n∑

i=1

f(xi(ϕ(sD)[P ]))≤
n∑

i=1

f(xi(ϕ(tD)[P ])),

n∑

i=1

f(xi(P ))≤
n∑

i=1

f(xi(ϕ(tD)[P ]))

hold for any convex function f : R!R.

Let LP ′′ denote the class of entire functions of the form

ϕ(x)= cxmebx
∞∏

k=1

(1−αkx),

where c∈R\{0}, m∈Z+, b≤0, αk≥0 and
∑∞

k=1 αk<∞, so that LP ′′⊂LP. It is
well known that LP ′′ consists precisely of those functions which are locally uniform
limits in C of sequences of hyperbolic polynomials having only positive zeros (cf. [L,
Chapter 8]). According to the terminology introduced by Pólya and Schur, a real
entire function ψ is called a function of type I in the Laguerre–Pólya class if either
ψ(x)∈LP ′′ or ψ(−x)∈LP ′′. For m∈Z+ we set LP ′′

m=LP ′′∩LPm. Let P∈Hn

with n≥1 be such that xi(P )>0 for 1≤i≤n. Using Lemma 2 and polynomial
approximations as in (1.13) and (1.14) one can show that if ϕ∈LP ′′

m and n≥m+1
then xi(ϕ(D)[P ])>0 for 1≤i≤n−m. These observations allow us to derive new
inequalities involving differential operators associated with functions of type I in
the Laguerre–Pólya class. The first two inequalities listed in Corollary 11 below
correspond to the following special choices of convex functions in Corollary 9: minus
the Shannon entropy −H(x)=x logx and minus the Renyi entropies log(

∑n
i=1 x

k
i )

for k≥1, respectively. These are in fact easy consequences of the third inequality,
which is actually the most general inequality of this type.

Corollary 11. Let n,m∈Z+ with n≥m+1. For any ϕ∈LP ′′
m one has

n−m∑

i=1

xi(ϕ(D)[Q]) log xi(ϕ(D)[Q])≤
n−m∑

i=1

xi(ϕ(D)[P ]) log xi(ϕ(D)[P ]),

n−m∑

i=1

[xi(ϕ(D)[Q])]k ≤
n−m∑

i=1

[xi(ϕ(D)[P ])]k , k ∈ [1,∞),

r(r−1)
n−m∑

i=1

[xi(ϕ(D)[Q])]r ≤ r(r−1)
n−m∑

i=1

[xi(ϕ(D)[P ])]r , r∈R,

for all polynomials P,Q∈Hn with positive zeros that satisfy Q�P .
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3.2. Multiplier sequences, spectral order and isotonic operators

It is natural to ask whether the spectral order is preserved by linear operators
other than those of Laguerre–Pólya type (cf. Problem 3 below). Clearly, any such
operator should necessarily map hyperbolic polynomials to hyperbolic polynomials
of the same degree. An important class of operators that one may consider in this
context is the class of diagonal operators (in the basis of standard monomials) that
preserve hyperbolicity. This is the class of multiplier sequences of the first kind,
which was completely characterized by Pólya and Schur in [PS].

Definition 5. Let Γ={γk}∞k=0 be an arbitrary sequence of real numbers and let
TΓ∈End Π be given by TΓ [xn]=γnx

n, n∈Z+. Then Γ is called a multiplier sequence
of the first kind if TΓ preserves the class of hyperbolic polynomials.

For convenience, we denote by PSI the set of all multiplier sequences of the
first kind and we let Πn be the (n+1)-dimensional subspace of Π consisting of all
complex polynomials of degree at most n, so that Hn⊂Πn. If Γ={γk}∞k=0∈PSI

and γn �=0 for some n∈N we define the n-th normalized truncation of Γ to be the
finite sequence Γn={γ0/γn, ..., γn−1/γn, 1}. Obviously, Γn induces a well-defined
linear operator TΓn

∈EndΠn that satisfies TΓn
(Hn)⊆Hn.

Problem 1. Let Γ={γk}∞k=0∈PSI be such that γn �=0, n∈N. Is it true that for
any n∈N the operator TΓn

∈EndΠn preserves the partial ordering � on Hn, where
Γn is the nth normalized truncation of Γ?

The condition γn �=0, n∈N, imposed in Problem 1 is far from being as restrict-
ive as it may first appear and is actually quite natural in view of well-known proper-
ties of multiplier sequences of the first kind (see, e.g., [L]). Indeed, if Γ={γk}∞k=0∈
PSI then {γi+k}∞k=0∈PSI for any i∈N. Moreover, if γ0 �=0 and γi=0 for some
i∈N then γj=0 for all j≥i. It follows that either Γ contains only zero terms except
for a finite number of consecutive nonzero elements or there exists i∈Z+ such that
γk=0 for k≤i−1 and γk �=0 if k≥i.

As an example, consider the sequence Γ={k}∞k=0 consisting of the Maclaurin
coefficients of xex. Clearly, TΓ [P (x)]=xP ′(x) for any P∈Π hence TΓn

(Hn)⊆Hn,
n∈N. Note that in this case Lemma 5 and Theorem 1 imply that TΓn

indeed
preserves all the poset structures (Hn,�), n∈N . Similar considerations show that
the answer to Problem 1 is affirmative for multiplier sequences of the following type.

Proposition 6. Let m∈N, p∈Z+ and consider Γ={H(k+p)}∞k=0, where
H(x)=

∏m−1
i=0 (x−i). Then Γ∈PSI and for any n≥max(1,m−p) the operator TΓn

preserves the partial ordering � on Hn.
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Proof. If n∈N and P (x)=
∑n

k=0 x
k∈Πn then

TΓ [P (x)] =
n∑

k=0

H(k+p)akx
k = xm−p[xpP (x)](m)

and so by Rolle’s theorem Γ is a multiplier sequence of the first kind. The same
arguments further show that TΓn

(Hn)⊆Hn for all n≥max(1,m−p) as H(n+p) �=0
for such n. Using Lemma 5 and Theorem 1(i) one can easily check that

xm−p[xpQ(x)](m) � xm−p[xpP (x)](m)

whenever n≥max(1,m−p) and P,Q∈Hn are such that Q�P . �

A somewhat different version of Problem 1 is as follows.

Problem 2. Fix n∈N and consider a finite sequence Λ={λk}n
k=0 with associated

operator TΛn
∈EndΠ given by TΛn

[xk]=λkx
k, 0≤k≤n, TΛn

[xk]=0, k>n. If λn=1
and TΛn

(Hn)⊆Hn is it true that TΛn
preserves the spectral order on Hn?

The answer to Problem 2 is trivially affirmative if n=1 and elementary compu-
tations show that this holds for n=2 as well. Indeed, if Λ={λ0, λ1, 1} is a sequence
that satisfies the above hypotheses then λ0≥0 since TΛn

[x2−1]∈H2. Given two
polynomials P (x)=x2+ax+b∈H2 and Q(x)=x2+cx+d∈H2 with Q�P one has
a=c, a2≥4 max(b, d) and

√
a2−4d≤

√
a2−4b. From λ0≥0 we get

√
λ2

1a
2−4λ0d≤√

λ2
1a

2−4λ0b, which shows that TΛn
[Q]�TΛn

[P ].
Problem 2 may actually be viewed as a special case of a yet more general

problem. Fix n∈N and recall the monoid An defined in (1.16). Let A�
n denote

the submonoid of An consisting of all operators that preserve the poset structure
(Hn,�), that is,

A�
n = {T ∈An |T [Q] �T [P ] if P,Q∈Hn and Q�P}.

Recall also the submanifold H0
n of Hn from (1.18) and consider the submonoid A0

n

of An given by

A0
n = {T ∈An |T (H0

n)⊆H0
n}.

Problem 3. Describe all operators in A�
n . Is it true that A�

n =A0
n for all n∈N?

Conjecture 1. Problems 1–3 have all affirmative answers.

Remark 7. The linear transformations on Rn that preserve the majorization
relation ≺ between n-vectors of real numbers were characterized in [An1] and [DV].

Note that Problem 3 implicitly addresses and further motivates both the ques-
tion of describing all operators in the monoid An itself (cf. [B1, Problem 2(iii)])
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and its version with no restriction on the degrees that may be formulated as fol-
lows.

Problem 4. Characterize all operators in the monoid Ã:={T∈EndΠ|T (H)⊆
H∪{0}}, where H=

⋃∞
n=0 Hn.

Problem 4 is actually a long-standing open problem of fundamental interest in
the theory of distribution of zeros of polynomials and transcendental entire functions
(see [CC2, Problem 1.3]). This and similar problems have been completely settled
quite recently in [BBS1]. Moreover, significant progress towards solutions to natural
multivariate extensions of Problem 4 was recently made in [BBS2].

The above results and those of [B1], [B2] and [BS] show that even a partial
knowledge of the operators in An leads to new interesting information on the rel-
ative geometry of the zeros of a hyperbolic polynomial and the zeros of its images
under such operators. Several related questions arise naturally in this context. For
instance, Problem 2(ii) in [B1] asks whether it is possible to describe the spectral
order by means of the action of linear (differential) operators on the partially or-
dered manifold (Hn,�). This would provide a new characterization of classical
majorization which in a way would be dual to the usual characterization in terms
of doubly stochastic matrices given in Theorem 1.

It would also be interesting to know whether there are any “infinite-dimen-
sional” analogs of Theorems 2 and 3. Indeed, it is well known that the class LP
is closed under differentiation [L]. A more general closure property was established
in [CC1], where various types of infinite order differential operators acting on LP
were studied in detail. In particular, Lemmas 3.1 and 3.2 in loc. cit. show that
the subset of LP consisting of entire functions of genus 0 or 1 is stable under the
action of differential operators of Laguerre–Pólya type. Moreover, there are several
known extensions of classical majorization to infinite sequences of real numbers [MO,
p. 16]. One may therefore ask if these extensions or some appropriate modifications
could lead to generalizations of the above results to differential operators acting on
transcendental entire functions in the class LP.

References

[An1] Ando, T., Majorization, doubly stochastic matrices, and comparison of eigenvalues,
Linear Algebra Appl. 118 (1989), 163–248.

[An2] Ando, T., Majorizations and inequalities in matrix theory, Linear Algebra Appl.
199 (1994), 17–67.

[Ar] Arnold, V. I., Hyperbolic polynomials and Vandermonde mappings, Funktsional.
Anal. i Prilozhen. 20 (1986), 52–53 (Russian). English transl.: Funct. Anal.
Appl. 20 (1986), 125–127.



Spectral order and isotonic differential operators of Laguerre–Pólya type 239
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