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Sharp integral estimates for the fractional
maximal function and interpolation

Natan Kruglyak and Evgeny A. Kuznetsov

Abstract. We give sharp estimates for the fractional maximal function in terms of Hausdorff

capacity. At the same time we identify the real interpolation spaces between L1 and the Morrey

space L1,λ. The result can be viewed as an analogue of the Hardy–Littlewood maximal theorem

for the fractional maximal function.

1. Introduction

Quite a significant role in estimation of various operators in analysis is played
by the Hardy–Littlewood maximal function Mf . There are a lot of papers devoted
to properties of Mf , its variants, and their applications.

One of the most important variants of the Hardy–Littlewood maximal function
is the so-called fractional maximal function defined by the formula

(1.1) Mλf(x)= sup
Q�x

1
|Q|1−λ/n

∫
Q

|f(y)| dy, 1−λ

n
∈ (0, 1].

It coincides with the Hardy–Littlewood maximal function Mf if λ=0, and is inti-
mately related to the Riesz potential operator

Iλf(x)=
∫

f(y)
|x−y|n−λ

dy,

(see, for example, [1] and [25]).
Our main goal in this paper is to establish analogues of some important proper-

ties of the Hardy–Littlewood maximal function for the fractional maximal function.
Maybe, the most important result for the Hardy–Littlewood maximal function

is the Hardy–Littlewood maximal theorem (see [15])

(1.2) ‖Mf‖Lp ≤ c‖f‖Lp, p > 1,
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with the constant c>0 independent of f∈Lp. It may seem that, for the fractional
maximal operator, a good analogue of the Hardy–Littlewood maximal theorem is
the inequality

(1.3) ‖Mλf‖Lq ≤ c‖f‖Lp for p∈
(
1,

n

λ

)
and

1
q

=
1
p
−λ

n
,

which is equivalent to the Sobolev inequality (see [25]). However, in the Hardy–
Littlewood maximal theorem, we have equivalence

‖Mf‖Lp ≈‖f‖Lp, p > 1.

In Theorem 5 below we show that there is no equivalence in (1.3). Moreover, in
Theorem 4 we shall present a couple of spaces X and Y such that for p and q as
above

Lp ⊂X , Y ⊂Lq and Mλ : X −!Y,

and the equivalence occurs:
‖Mλf‖Y ≈‖f‖X.

This result is related to our answer to the problem: what is a good analogue of
the Hardy–Littlewood maximal theorem for the fractional maximal function? Our
approach is based on covering arguments and real interpolation.

2. Preliminaries

In this section we recall some well-known notation and results to be used later.
We start with some notation and definitions. We consider Rn with the norm

|x|= max
1≤i≤n

|xi|, where x= (x1, ..., xn).

Below, by Q=Q(x, r)={y∈Rn||x−y|≤r}, r>0, we denote the cube (closed
cubic interval) with center x, radius r, and sides parallel to the coordinate axes. As
usual, by Q̊ we denote the interior of the cube Q and by λQ(x, r), where λ>0, the
cube Q(x, λr), i.e. the cube with the same centre x and of radius λr.

We say that cubes Q1 and Q2 are disjoint if Q̊1∩Q̊2=∅.
By a packing π we mean a set of disjoint cubes. By |Q| we denote the

n-dimensional volume of the cube Q, i.e. |Q(x, r)|:=(2r)n.
Below we will usually denote by Ω a set of points and by �Ω a set of cubes.
We will use the following covering lemma (see [35, Lemma C′], or the 5r-cover-

ing theorem in [22, p. 23]).
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Lemma 1. Let �Ω={Qj}j∈J be a set of a cubes such that sup
J

|Qj|<∞. Then

there exists a packing π⊂�Ω such that⋃
Q∈�Ω

Q⊂
⋃

Q∈π

5Q.

Definition 1. For 1−λ/n∈(0, 1], we say that a function f∈L1,loc(Rn) belongs
to the Morrey space L1,λ if Mλf∈L∞, and

‖f‖L1,λ = ‖Mλf‖L∞ = sup
Q⊂Rn

1
|Q|1−λ/n

∫
Q

|f(y)| dy <∞.

For λ=0 the fractional maximal function coincides with the Hardy–Littlewood
maximal function and the Morrey space coincides with the space L∞ with equality
of norms(1). In contrast to the paper [6] we consider everywhere below just functions
and not Radon measures.

The importance of the Hausdorff measure is well-known (see, for example [10]).
In estimating it one often uses the so-called Hausdorff capacity (see, for example [5]
and [10]).We recall that the Hausdorff capacity Λ(∞)

n−λ for the set Ω⊂Rn is defined
by the expression

Λ(∞)
n−λ(Ω)= inf

{Qi}i∈I

( ∑
i∈I

|Qi|1−λ/n

)
,

where the infimum is taken over all families {Qi}i∈I of cubes that cover the set Ω,
i.e. Ω⊂⋃

i∈I Qi (see [3] and [5]).
Moreover, if in the above definition of Λ(∞)

n−λ we take the infimum over all
coverings of Ω by dyadic cubes Qi, then we get the dyadic Hausdorff capacity
Λ̃(∞)

n−λ. We will use the easily proved fact that if Λ̃(∞)
n−λ is finite then in the definition

of the dyadic Hausdorff capacity it is enough to take packings.
The following well-known lemma will be important for us (see, for example [3]).

Lemma 2. Hausdorff capacity and dyadic Hausdorff capacity are equivalent.
More precisely,

Λ(∞)
n−λ(Ω)≤ Λ̃(∞)

n−λ(Ω)≤ 2n(2−λ/n)Λ(∞)
n−λ(Ω).

The left hand-side inequality is immediate. For the right hand-side inequality
it is enough to let {QD}D be the set of all dyadic cubes such that

|Q|< |QD| ≤ 2n|Q|,
and observe that Q is covered by a union of 2n cubes from {QD}D.

(1) Morrey spaces were introduced by C. B. Morrey in 1938 in connection with cer-
tain problems in elliptic partial differential equations and calculus of variations (see [24]).
Later, Morrey spaces found important applications to Navier–Stokes ([23], [34]) and Schrödinger
([26], [28], [29], [31], [30]) equations, elliptic problems with discontinuous coefficients ([9], [12]),
and potential theory ([1], [4]). An exposition of the Morrey spaces can be found in the book [19].
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We finish this section with the notion of the distance function. Let (X0, X1)
be two Banach or quasi-Banach spaces linearly and continuously embedded in some
linear topological space X . If f∈X0+X1, we denote by

ρ(f, BX1(t))X0 = inf
‖g‖X1≤t

‖f−g‖X0

the distance from f to the ball of X1 of radius t in the metric of X0.
For example, for the couple (L1, L∞) the distance function is evidently equal

to
ρ(f, BL∞(t))L1 =

∫
Rn

(|f(x)|−t)+ dt.

In the theory of real interpolation it is known that the so-called (θ, q)-interpolation
spaces can be defined in terms of the distance function (see [8, Theorem 7.1.7,
p. 178]). In particular, the norm in the space (X0, X1)1−1/p,p can be defined by the
expression

(2.1) ‖f‖(X0,X1)1−1/p,p
=

(∫ ∞

0

ρ(f, BX1 (t))X0t
p−1 dt

t

)1/p

.

For example, the space Lp=(L1, L∞)1−1/p,p can be defined by using the distance
function ρ(f, BL∞(t))L1 .

3. Wiener–Stein equivalence and Hausdorff capacity

In this section we show that Hausdorff capacity naturally arises in one possible
generalization of the so-called Wiener–Stein equivalence for the fractional maximal
function. From now on, 1−λ/n∈(0, 1] is fixed.

The following definition (see [18]) will be important for us.

Definition 2. Let �Ω be a set of cubes. We define the (1−λ/n)-capacity of the
set �Ω by

|�Ω|1−λ/n = sup
π⊂�Ω

|π|1−λ/n = sup
π⊂�Ω

∑
Q∈π

|Q|1−λ/n,

where the supremum is taken over all packings π of cubes in �Ω.

Let t∈R+, and let f∈L1+L1,λ. We define the following set of points:

(3.1) Ωt = {x | (Mλf)(x)> t},
and the set of cubes:

(3.2) �Ωt =
{

Q

∣∣∣∣ 1
|Q|1−λ/n

∫
Q

|f(y)| dy > t

}
.
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It is clear that

Ωt =
⋃

Q∈�Ωt

Q.

We shall see that the (1−λ/n)-capacity of the set �Ωt is intimately related to
the quantity

ρ(f, BL1,λ(t))L1 = inf
‖g‖L1,λ≤ t

‖f−g‖L1,

i.e. to the distance (in the metric of L1) from the function f to the ball of radius t

of the Morrey space L1,λ.

Theorem 1. Suppose t∈R+ and f∈L1+L1,λ is such that ρ(f, BL1,λ(t))L1 is
finite for all t>0. Let �Ωt be the set of cubes defined by (3.2). Then t|�Ωt|1−λ/n≈
ρ(f, BL1,λ(t))L1 in the sense that

5−n(1−λ/n)ρ(f, BL1,λ(t))L1 ≤ t|�Ωt|1−λ/n ≤ 2ρ

(
f, BL1,λ

(
t

2

))
L1

.

Proof. Let ε>0 be an arbitrary small real number. Then, by the definition of
the (1−λ/n)-capacity, there exists a packing π0 of disjoint cubes belonging to �Ωt

such that

(3.3) |π0|1−λ/n =
∑

Q∈π0

|Q|1−λ/n ≥ 1
1+ε

|�Ωt|1−λ/n,

and for every cube Q∈π0 we have

(3.4)
1

|Q|1−λ/n

∫
Q

|f(y)| dy > t.

Let h be a function such that ‖h‖L1,λ≤t/2. Then, by Definition 1, we have

1
|Q|1−λ/n

∫
Q

|h(y)| dy ≤ t

2

for every cube Q. From this and (3.4), it follows that

‖f−h‖L1 ≥
∑

Q∈π0

∫
Q

|f(y)| dy−
∑

Q∈π0

∫
Q

|h(y)| dy

≥ t
∑

Q∈π0

|Q|1−λ/n− t

2

∑
Q∈π0

|Q|1−λ/n =
t

2

∑
Q∈π0

|Q|1−λ/n.
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Now, (3.3) implies that

t

1+ε
|�Ωt|1−λ/n < t

∑
Q∈π0

|Q|1−λ/n ≤ 2 inf
‖h‖L1,λ≤t/2

‖f−h‖L1 = 2ρ

(
f, BL1,λ

(
t

2

))
L1

.

Hence, letting ε!0, we obtain

(3.5) t|�Ωt|1−λ/n ≤ 2ρ

(
f, BL1,λ

(
t

2

))
L1

.

Now we prove the reverse inequality. We define a function g by

g(x)= f(x)χRn\Ωt
(x).

Observe that ‖g‖L1,λ≤t. Indeed, let Q be an arbitrary cube. In the case when
Q⊂Ωt, we have trivially

1
|Q|1−λ/n

∫
Q

|g(y)| dy = 0.

If Q∩(Rn\Ωt) 	=∅, then Q /∈�Ωt. Therefore,

1
|Q|1−λ/n

∫
Q

|g(y)| dy ≤ 1
|Q|1−λ/n

∫
Q

|f(y)| ≤ t.

Thus, ‖g‖L1,λ≤t and we see that

(3.6) ρ(f, BL1,λ(t))L1 ≤‖f−g‖L1 = ‖f‖L1(Ωt).

For estimating the last quantity, we use a “limiting cubes” construction, used pre-
viously in [18]. Consider the following set of points:

C = {x∈Ωt | there exists Q(x, r)∈�Ωt}.
For any element x∈C we construct a “limiting” cube Q(x, rx) in the following way.
First, we define the function

ϕx(r)=
1

|Q(x, r)|1−λ/n

∫
Q(x,r)

|f(y)| dy, r > 0.

From the continuity property of the Lebesgue integral (see e.g. [13, Theorem 8(e),
p. 323]) it follows that ϕx is a continuous function on R+, and it tends to zero as
r tends to infinity (since f∈L1+L1,λ is such that ρ(f, BL1,λ(t))L1 is finite for all
t>0). Moreover, from x∈C we immediately obtain

sup
r>0

ϕx(r)> t.
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Hence, the number

(3.7) rx = sup{r∈R+ |ϕx(r)> t}

is positive and finite for any x∈C. Therefore, we can consider the family of “limit-
ing” cubes {Q(x, rx)}x∈C . From (3.7) we have three important properties:

(i) for all x∈C we have

(3.8)
1

|Q(x, crx)|1−λ/n

∫
Q(x,crx)

|f(y)| dy≤ t for c≥ 1;

(ii) let ε>0, then, for every x∈C, there exists r′x=r′x(ε)>0 such that

(3.9) Q(x, r′x)∈�Ωt and r′x < rx < (1+ε)r′x;

(iii) for each cube Q∈�Ωt there exists a cube Q̃∈{Q(x, rx)}x∈C such that Q⊂Q̃.
From (3.9) we obtain

∑
π⊂{Q(x,rx)}x∈C

|Q(x, rx)|1−λ/n ≤ (1+ε)n(1−λ/n)
∑

π′⊂�Ωt

|Q(x, r′x)|1−λ/n(3.10)

≤ (1+ε)n(1−λ/n)|�Ωt|1−λ/n.

As from (3.5) it follows that |�Ωt|1−λ/n<∞, and thus

sup
x∈C

|Q(x, rx)|<∞.

Hence, by applying (iii) and Lemma 1, we obtain a packing π⊂{Q(x, rx)}x∈C such
that

(3.11) Ωt ⊂
⋃

x∈C

Q(x, rx)⊂
⋃

Q∈π

5Q.

From this, (3.6), (3.8), and (3.10), it follows that

ρ(f, BL1,λ(t))L1 ≤‖f‖L1(Ωt) ≤‖f‖L1(
⋃

Q∈π 5Q) ≤
∑
Q∈π

∫
5Q

|f(y)| dy

≤ 5n(1−λ/n)t
∑
Q∈π

|Q|1−λ/n ≤ 5n(1−λ/n)(1+ε)n(1−λ/n)t|�Ωt|1−λ/n.

By letting ε!0, we obtain

ρ(f, BL1,λ(t))L1 ≤ 5n(1−λ/n)t|�Ωt|1−λ/n. �
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Now we can prove the main result of this section

Theorem 2. Suppose t∈R+ and f∈L1+L1,λ is such that ρ(f, BL1,λ(t))L1 is
finite for all t>0. Then

tΛ(∞)
n−λ({x |Mλf(x)> t})≈ ρ(f, BL1,λ(t))L1

in the sense that

c1ρ(f, BL1,λ(t))L1 ≤ tΛ(∞)
n−λ({x |Mλf(x)> t})≤ c2ρ

(
f, BL1,λ

(
t

2

))
L1

,

where c1=2−n(2−λ/n)3−n(1−λ/n), c2=2·5n(1−λ/n)

Proof. Let Ωt and �Ωt be the sets defined by (3.1) and (3.2), respectively. From
Lemma 2 and Theorem 1, it follows that it suffices to prove the estimates

(3.12) Λ(∞)
n−λ(Ωt)≤ 5n(1−λ/n)|�Ωt|1−λ/n

and

(3.13) ρ(f, BL1,λ(t))L1 ≤ 3n(1−λ/n)tΛ̃(∞)
n−λ(Ωt).

We start with (3.12). From Theorem 1 we have

sup
Q∈�Ωt

|Q|<∞;

therefore, Lemma 1 yields a packing π that consists of cubes belonging to �Ωt and
such that

Ωt =
⋃

Q∈�Ωt

Q⊂
⋃

Q∈π

(5Q).

Hence, by the definition of Λ(∞)
n−λ, we obtain (3.12):

Λ(∞)
n−λ(Ωt)≤

∑
Q∈π

|5Q|1−λ/n = 5n(1−λ/n)
∑
Q∈π

|Q|1−λ/n ≤ 5n(1−λ/n)|�Ωt|1−λ/n.

Now we prove (3.13). From the finiteness of ρ(f, BL1,λ(t))L1 for all t>0 and
the theorem proved above it follows that Λ(∞)

n−λ(Ωt) is also finite. So from Lemma 2
and the remark above it, it follows that for any ε>0 we can find a packing π of
dyadic cubes that covers Ωt (i.e. Ωt⊂

⋃
Q∈π Q) and satisfies

(3.14)
∑
Q∈π

|Q|1−λ/n ≤ Λ̃(∞)
n−λ(Ωt)+ε.
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Moreover, if some dyadic cube Q and all those of its neighbours which belong to
the next dyadic cube (i.e. the dyadic cube Q̃ which contains Q and has volume
2n|Q|) belong to π then we will replace Q and its neighbours by Q̃. Clearly the
quantity

∑
Q∈π |Q|1−λ/n will not increase in this process. Therefore without loss of

generality, we may assume that all cubes Q in π are such that not all neighbours of
Q belongs to π and so for all cubes in π we have the property

(3.15) 3Q∩(Rn\Ωt) 	= ∅.

Then, (3.15) and (3.2) imply that

1
|3Q|1−λ/n

∫
3Q

|f(y)| dy≤ t,

whence we obtain ‖fχ(Rn\Ωt)‖L1,λ≤t by (3.1). Therefore,

ρ(f, BL1,λ(t))L1 ≤‖f−fχRn\Ωt
‖L1 = ‖fχΩt‖L1 ≤

∑
Q∈π

∫
Q

|f(y)| dy

≤
∑
Q∈π

∫
3Q

|f(y)| dy ≤ t
∑
Q∈π

|3Q|1−λ/n ≤ 3n(1−λ/n)t(Λ̃(∞)
n−λ(Ωt)+ε).

Finally, letting ε!0, we get (3.13). �

Remark 1. In the case λ=0, Theorem 2 gives

(3.16) c1ρ(f, BL∞(t))L1 ≤ t|{x |Mf(x)> t}|≤ c2ρ

(
f, BL∞

(
t

2

))
L1

,

with constants c1 and c2 depending only on the dimension n and M is the usual
Hardy–Littlewood maximal function. Moreover, from the exact formula

ρ(f, BL∞(t))L1 =
∫
{x∈Rn||f(x)|>t}

(|f(x)|−t) dx

it follows that
1
2

∫
{x∈Rn||f(x)|>2t}

|f(x)| dx≤ ρ(f, BL∞(t))L1 ≤
∫
{x∈Rn||f(x)|>t}

|f(x)| dx.

Therefore from (3.16) we obtain the well-known Wiener–Stein equivalence (see [35]
and [32])

c1

∫
{x∈Rn||f(x)|>2t}

|f(x)| dx≤ t|{x |Mf(x)> t}|≤ c2

∫
{x∈Rn||f(x)|>t/2}

|f(x)| dx.

Thus Theorem 2 can be considered as one possible generalization of the Wiener–
Stein equivalence for the fractional maximal function.
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4. An analogue of the Hardy–Littlewood maximal theorem

Since the space (L1,L1,λ)1−1/p,p can be described in terms of the distance
function ρ(f, BL1,λ(t))L1 (see (2.1)), Theorem 2 implies the following statement,
which can be viewed as an analogue of the Hardy–Littlewood maximal theorem for
the fractional maximal function.

Theorem 3. Suppose p∈(1,∞) and f∈(L1,L1,λ)1−1/p,p. Then

‖f‖(L1,L1,λ)1−1/p,p
≈‖Mλf‖

Lp(Λ
(∞)
n−λ

)
,

where

‖f‖
Lp(Λ

(∞)
n−λ)

=
(

p

∫
R+

Λ(∞)
n−λ({x∈Rn | |f(x)|> t})tp−1 dt

)1/p

<∞.

Proof. Since f∈(L1,L1,λ)1−1/p,p, the equality

(4.1) ‖f‖(L1,L1,λ)1−1/p,p
=

(∫ ∞

0

ρ(f, BL1,λ(t))L1t
p−1 dt

t

)1/p

shows that ρ(f, BL1,λ(t))L1 is finite for all t>0. Therefore, Theorem 2 implies that
in (4.1) we can replace ρ(f, BL1,λ(t))L1 by tΛ(∞)

n−λ({x|(Mλf)(x)>t}), and therefore

‖f‖(L1,L1,λ)1−1/p,p
≈‖Mλf‖

Lp(Λ
(∞)
n−λ)

. �

Remark 2. In the case λ=0, Theorem 3 gives

‖f‖(L1,L∞)1−1/p,p
≈‖Mf‖Lp.

As (L1, L∞)1−1/p,p=Lp we therefore obtain the Hardy–Littlewood maximal the-
orem with equivalence of norms.

Lemma 3. Let 1−λ/n∈(0, 1). Then

L1,λ ⊃Ln/λ,(4.2)

Lp(Λ
(∞)
n−λ)⊂Lp/(1−λ/n) for p∈ (0,∞).(4.3)

Proof. The first embedding is a consequence of the Hölder inequality. Indeed,

‖f‖L1,λ = sup
Q

|Q|λ/n

|Q|
∫

Q

|f(x)| dx≤ sup
Q

|Q|λ/n

|Q|λ/n

(∫
Q

|f(x)|n/λ dx

)λ/n

≤‖f‖Ln/λ
.
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In order to prove (4.3), it suffices to analyze only the case p=1, i.e. to show
that

(4.4) ‖f‖L1/(1−λ/n) ≤‖f‖
L1(Λ

(∞)
n−λ)

for all f∈L1/(1−λ/n). Indeed, (4.3) immediately follows from (4.4):

‖f‖Lp/(1−λ/n) = ‖|f |p‖1/p
L1/(1−λ/n)

≤‖|f |p‖1/p

L1(Λ
(∞)
n−λ)

= ‖f‖
Lp(Λ

(∞)
n−λ)

.

To verify (4.4), observe that 1−λ/n∈(0, 1) implies that

|a+b|1−λ/n ≤ |a|1−λ/n+|b|1−λ/n

for any a, b∈R+. Therefore, if we consider a covering of the set

Et = {x∈Rn | |f(x)|> t}

by a family {Qi}i∈I of cubes, i.e. Et⊂
⋃

i∈I Qi, then

|Et|1−λ/n ≤ inf
{Qi}i∈I

∣∣∣⋃
i∈I

Qi

∣∣∣1−λ/n

≤ inf
{Qi}i∈I

∑
i∈I

|Qi|1−λ/n = Λ(∞)
n−λ(Et),

where the infimum is taken over all coverings {Qi}i∈I for Et. Since the Lebesgue
measure of Et, i.e. |Et|, is a positive monotone decreasing function of t, we have
(see [21] or [16, p. 100])

(∫ ∞

0

|Et| dt1/(1−λ/n)

)1−λ/n

≤
∫ ∞

0

|Et|1−λ/n dt, when 1−λ

n
∈ (0, 1).

Therefore,

‖f‖L1/(1−λ/n) =
(∫ ∞

0

|Et| dt1/(1−λ/n)

)1−λ/n

≤
∫ ∞

0

|Et|1−λ/n dt≤
∫ ∞

0

Λ(∞)
n−λ(Et) dx= ‖f‖

L1(Λ
(∞)
n−λ)

. �

Now we are ready to prove the main result of this section. But first we observe
that the conditions p∈(1, n/λ) and 1/q=1/p−λ/n imply that (1−λ/n)q∈(1,∞).
As (1−λ/n)q>1 therefore, we can consider the interpolation space

X = (L1,L1,λ)1−1/(1−λ/n)q,(1−λ/n)q.
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Theorem 4. Suppose 1−λ/n∈(0, 1), p∈(1, n/λ), and 1/q=1/p−λ/n. We let
X=(L1,L1,λ)1−1/(1−λ/n)q,(1−λ/n)q and Y =L(1−λ/n)q(Λ

(∞)
n−λ). Then

(4.5) Lp ⊂X, Y ⊂Lq,

and

(4.6) ‖Mλf‖Y ≈‖f‖X

with constants of equivalence not depending on f .

Proof. We start with (4.5). Since (1−λ/n)q∈(1,∞), the second embedding of
Lemma 3 implies that

Y ⊂Lq

and the first one gives the embedding

(4.7) (L1, Ln/λ)1−1/(1−λ/n)q,(1−λ/n)q ⊂X.

A simple direct calculation shows that

(L1, Ln/λ)1−1/(1−λ/n)q,(1−λ/n)q = Lp,(1−λ/n)q,

where Lp,(1−λ/n)q is a Lorentz space. Therefore, the trivial inequality

1
p
− 1

q
= 1−

(
1−λ

n

)
≥ 1

(1−λ/n)q
− 1−λ/n

(1−λ/n)q

yields (1−λ/n)q≥p, which gives

(4.8) Lp,p ⊂Lp,(1−λ/n)q = (L1, Ln/λ)1−1/(1−λ/n)q,(1−λ/n)q.

Hence, by (4.7) and (4.8) we obtain that Lp⊂X .
Finally, observe that (4.6) follows from Theorem 3. �

Note that (1.3) is an immediate consequence of Theorem 4.
We finally present direct calculations, which in particular give a proof of the

fact that (1.3) cannot be reversed.

Theorem 5. Suppose 1−λ∈(0, 1) and ε>0. Then there exists a function f

such that
(i) (Mλf)∗(t)≤ ε·sup

t≤τ<∞
1/τ1−λ

∫ τ

0
f∗(s) ds for some t>0, here by f∗ we denote

the decreasing rearrangement of the function f with respect to the Lebesgue measure;
(ii) ‖Mλf‖Lq≤ε‖f‖Lp for p and q such that p∈(1, 1/λ) and 1/q=1/p−λ.
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Proof. We fix a natural N >0 and consider measurable sets on R defined as
follows:

(4.9) ΩN,k =
{

x∈R
∣∣∣∣k+

k−1
N

≤ x≤ k+
k

N

}
and ΩN =

N⋃
k=1

ΩN,k.

Next, we introduce the function

fN(x)= χΩN (x),

and the following sets:

IN = ΩN ,(4.10)

IIN =
{
x∈R

∣∣ dist(x, ΩN )≤ 1
2

}
,

IIIN =
{
x∈R

∣∣ dist(x, ΩN )> 1
2

}
.

Clearly,

(4.11) ‖fN‖Lp = 1,

and, since 1−λ∈(0, 1), we have

(4.12) sup
t≤τ<∞

1
τ1−λ

∫ τ

0

f∗
N (s) ds =

{
1 for t∈(0, 1],

tλ−1 for t>1.

Now, we observe that

(4.13) MλfN (x)≤

⎧⎪⎪⎨
⎪⎪⎩

1
N(dist(x, IN )+1/N)1−λ

+
2

(1+N)1−λ
for x∈IN ∪IIN ,

2
(dist(x, IIN )+1+N)1−λ

for x∈IIIN .

The estimate (4.13) follows from the fact that the function

sup
Q�x

1
|Q|1−λ

∫
Q

|f(y)| dy

attains its maximum only at intervals that contain an entire set ΩN,k. In other
words, if the closed interval Q touches the set ΩN,k, defined by (4.9), for some k,
then for the smallest possible interval Q̃ such that Q̃⊃Q∪ΩN,k we have

1

|Q̃|1−λ

∫
Q̃

|f(y)| dy ≥ 1
|Q|1−λ

∫
Q

|f(y)| dy.
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Now we can prove the theorem. For (i) it suffices to choose N so as to have

(4.14)
1

Nλ
+

2
(1+N)1−λ

< ε.

Indeed, (4.13) and (4.14) imply that

MλfN (x)≤ ε

for all x∈R. At the same time, together with (4.12), this gives (i) for all t∈(0, 1].
In the case of (ii), direct but tedious calculations show the following estimate:

(4.15) ‖MλfN‖Lq ≤ c

(
1

Nλ
+

1
N (1−λ−1/q)

+
1

(1+N)1−λ
+

1
(1+N)(1−λ)q−1

)
,

where c is a constant depending only on q and 1−λ. Observe that p∈(1, 1/λ) and
the interrelation between p and q implies that (1−λ)q>1. Therefore, by (4.11),
(4.15) and the fact that 1−λ∈(0, 1), we can take N sufficiently large so as to
ensure (ii). �

Remark 3. In the paper [11], it was suggested to view the inequality

(Mλf)∗(t)≤ c sup
t≤τ<∞

1
τ1−λ/n

∫ τ

0

f∗(s) ds,

as an analogue of the Riesz–Herz equivalence (see below) for the fractional maximal
function. From Theorem 5(i) it follows that the converse inequality is not true in
general.

5. Riesz–Herz equivalence

The Wiener–Stein equivalence is related to the so-called (see, e.g. [7]) Riesz–
Herz equivalence

t(Mf)∗(t)≈
∫ t

0

f∗(s) ds.

Since
∫ t

0
f∗(s) ds is equal to Peetre’s K-functional(2) for the couple (L1, L∞) (see [8]),

the last equivalence can be rewritten in the form

t(Mf)∗(t)≈K(t, f ; L1, L∞).

Below we consider an analogue of this equivalence for the fractional maximal func-
tion. We define the rearrangement of f with respect to the Hausdorff capacity Λ(∞)

n−λ

(2) Recall that Peetre’s K-functional for the couple (X0, X1) is defined by K(t, f ; X0, X1)=
infg∈X1(‖f−g‖X0 +t‖g‖X1 ).
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to be a monotone nonincreasing and right-continuous function f∗
n−λ on (0,∞) such

that

(5.1) Λ(∞)
n−λ({x∈Rn | |f(x)|> t})= |{s∈R+ | |f∗

n−λ(s)|> t}|.
Here, on the right-hand side, | · | means the Lebesgue measure of the set.

Theorem 6. Suppose t∈R+ and f∈L1. Then

t(Mλf)∗n−λ(t)≈K(t, f, L1,L1,λ),

with constants of equivalence not depending on f and t.

Proof. Let ε>0 be an arbitrary small number. Then, from the definition of
f∗

n−λ, we obtain

(5.2) Λ(∞)
n−λ({x∈Rn |Mλf(x)> (Mλf)∗n−λ(t)+ε})≤ t

and

(5.3) t≤Λ(∞)
n−λ({x∈Rn |Mλf(x)> (Mλf)∗n−λ(t)−ε}).

Indeed, to verify (5.2) and (5.3), it suffices to observe that

|{s∈R+ | (Mλf)∗n−λ(s)> (Mλf)∗n−λ(t)+ε}| ≤ t,

|{s∈R+ | (Mλf)∗n−λ(s)> (Mλf)∗n−λ(t)−ε}| ≥ t.

From Theorem 2 we have

(5.4) ρ(f, BL1,λ(s))L1 ≤ c1sΛ
(∞)
n−λ({x |Mλf(x)> c2s})

and

(5.5) sΛ(∞)
n−λ({x |Mλf(x)> s})≤ c3ρ(f, BL1,λ(c4s))L1 .

We put

s+ =
(Mλf)∗n−λ(t)+ε

c2
and s− = (Mλf)∗n−λ(t)−ε.

Then, by using (5.2) and (5.4) we obtain

(5.6) ρ(f, BL1,λ(s+))L1 ≤ c1s+t.

Moreover, by (5.3) and (5.5) we get

(5.7) ts− ≤ c3ρ(f, BL1,λ(c4s−))L1 .
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Observe that (5.6) yields

K(t, f, L1,L1,λ)≤ inf
‖g‖L1,λ≤s+

(‖f−g‖L1+t‖g‖L1,λ)(5.8)

≤ ρ(f, BL1,λ(s+))L1 +ts+ ≤ (c1+1)ts+.

On the other hand, if ‖g‖L1,λ≤c4s−, then (5.7) implies

inf
‖g‖L1,λ≤c4s−

(‖f−g‖L1+t‖g‖L1,λ)≥ ρ(f, BL1,λ(c4s−))L1 ≥
1
c3

ts−.

But if ‖g‖L1,λ >c4s−, we have trivially

inf
‖g‖L1,λ >c4s−

(‖f−g‖L1+t‖g‖L1,λ)≥ c4ts−.

Therefore,

(5.9) K(t, f, L1,L1,λ)≥min
(

1
c3

, c4

)
ts−.

Finally, letting ε!0, from (5.8) and (5.9), we deduce that

c5t(Mλf)∗n−λ(t)≤K(t, f, L1,L1,λ)≤ c6t(Mλf)∗n−λ(t),

where the constants c5, c6>0 depend only on 1−λ/n and the dimensional n. �

The Hardy–Littlewood maximal theorem follows easily from the Riesz–Herz
equivalence. Indeed

‖f‖Lp ≈‖f‖(L1,L∞)1−1/p,p
=

(∫ ∞

0

(t1/p−1K(t, f, L1, L∞))p dt

t

)1/p

≈
(∫ ∞

0

(t1/p(Mf)∗(t))p dt

t

)1/p

=
(∫

Rn

(Mf(x))p dt

)1/p

= ‖Mf‖Lp.

In the same way we can give a second proof of our analogue of the Hardy–
Littlewood maximal theorem for the fractional maximal function.
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