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Endpoint estimates for Riesz transforms
of magnetic Schrödinger operators

Xuan Thinh Duong, El Maati Ouhabaz and Lixin Yan

Abstract. Let A=−(∇−i�a)2+V be a magnetic Schrödinger operator acting on L2(Rn),

n≥1, where �a=(a1, ..., an)∈L2
loc and 0≤V ∈L1

loc. Following [1], we define, by means of the area

integral function, a Hardy space H1
A associated with A. We show that Riesz transforms

(∂/∂xk−iak)A−1/2 associated with A, k=1, ..., n, are bounded from the Hardy space H1
A into L1.

By interpolation, the Riesz transforms are bounded on Lp for all 1<p≤2.

1. Introduction

Consider a real vector potential �a=(a1, ..., an) and an electric potential V . In
this paper, we assume that

ak ∈L2
loc for all k= 1, ..., n,(1.1)

0≤V ∈L1
loc.(1.2)

Let Lk=∂/∂xk−iak. We define the form Q by

Q(u, v)=
n∑

k=1

∫

Rn

LkuLkv dx+
∫

Rn

V uv dx

with domain

D(Q)=
{
u∈L2 :Lku∈L2 for k= 1, ..., n and

√
V u∈L2

}
.

It is well known that this symmetric form is closed. Note also that it was shown
by Simon [21] that this form coincides with the minimal closure of the form given
by the same expression but defined on C∞

0 (Rn) (the space of C∞ functions with
compact support). In other words, C∞

0 (Rn) is a core of the form Q.
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Let us denote by A the self-adjoint operator associated with Q. The domain
of A is given by

D(A)=
{
u∈D(Q), there is v ∈L2 so that Q(u, ϕ)=

∫

Rn

v�ϕ dx, for all ϕ∈D(Q)
}
,

and A is given by the expression

Au=
n∑

k=1

L∗
kLku+V u.(1.3)

Formally, we write A=−(∇−i�a)2+V . For k=1, ..., n, the operators LkA
−1/2 are

called the Riesz transforms associated with A. It is easy to check that

‖Lku‖L2 ≤‖A1/2u‖L2, u∈D(Q)=D(A1/2),(1.4)

for any k=1, ..., n, and hence the operators LkA
−1/2 are bounded on L2. Note that

this is also true for V 1/2A−1/2.

We now remind the reader of some known results of boundedness of Riesz
transforms LkA

−1/2 associated with A. It was recently proved in [20] (Theorem 11)
that by using the finite speed propagation property, for each k=1, ..., n, the operator
LkA

−1/2 is of weak type (1, 1), and hence, by interpolation, is bounded on Lp for
all 1<p≤2. See also Shen’s result, Theorem 0.5 of [18] for Lp-boundedness of
Riesz transforms of certain Schrödinger operators −∆+V . The results in [18] were
extended to the case of magnetic Schrödinger operators in [19]. We note that for
p>2, the counter example studied in [18] with the potential V (x)=|x|−2+ε shows
that the operator ∇(−∆+V )−1/2 is not necessarily bounded on Lp. However,
Lp-boundedness of Riesz transforms for large values of p can be obtained if one
imposes certain additional regularity conditions on the potential V (see [18]). For
information on Lp estimates of Riesz transforms associated with elliptic operators
on manifolds or Euclidean domains, see [4], [2] and [17].

The aim of this paper is to study the endpoint estimates of the Riesz transforms
LkA

−1/2 from the Hardy spaceH1
A into L1, where H1

A is a new class of Hardy spaces
associated with A ([1], see Section 2 below). The following is the main result of this
paper.

Theorem 1.1. Assume that (1.1) and (1.2) hold. Then for each k=1, ..., n,
the Riesz transform LkA

−1/2 and V 1/2A−1/2 are bounded from H1
A into L1, i.e.,

there exists a constant c>0 such that

‖V 1/2A−1/2u‖L1+
n∑

k=1

‖LkA
−1/2u‖L1 ≤ c‖u‖H1

A
.

Hence by interpolation, V 1/2A−1/2 and LkA
−1/2 are bounded on Lp for all 1<p≤2.
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The paper is organized as follows. In Section 2, we recall the definition of the
Hardy space H1

A associated with an operator A and state its molecular characteriza-
tion as in [1]. Our main result, Theorem 1.1, will be proved in Section 3. In Section
4 we show that for the Schrödinger operator A=−∆+V with potential satisfying
the reverse Hölder inequality, the classical Hardy space H1 is a proper subspace of
the space H1

A associated with A. It then follows from Theorem 1.1 that the Riesz
transform ∇A−1/2 is bounded from H1 into L1.

Throughout, the letter “c” will denote (possibly different) constants that are
independent of the essential variables.

2. Hardy spaces associated with operators

Let A=−(∇−i�a)2+V be the magnetic Schrödinger operator in (1.3). By the
well-known diamagnetic inequality (see Theorem 2.3 of [21] and [6]) we have the
pointwise inequality

|e−tAf(x)| ≤ et∆|f |(x) for all t≥ 0, f ∈L2(Rn).

This inequality implies in particular that the semigroup e−tA maps L1 into L∞ and
that the kernel pt(x, y) of e−tA satisfies

|pt(x, y)| ≤ 1
(4πt)n/2

e−|x−y|2/4t(2.1)

for all t>0 and almost all x, y∈Rn.
For any (x, t)∈Rn×(0,+∞), we let

Ptf(x)= e−tAf(x) and Qtf(x)=−tdPt

dt
f(x)= tAe−tAf(x)(2.2)

for f∈Lp, 1≤p<∞. Consider the area integral function SA(f) associated with an
operator A, given by

SA(f)(x)=
(∫ ∞

0

∫

|x−y|<t

|Qt2f(y)|2 dy dt
tn+1

)1/2

.

Since A is a selfadjoint operator, it has a bounded H∞-calculus in L2 (see [16]),
and hence SA(f) is bounded on L2(Rn). By using the upper bound (2.1), it was
proved in [1] (Theorem 6) that SA(f) is bounded on Lp(Rn) for 1<p<∞. This
means that for each p, 1<p<∞, there exist constants c1 and c2 (depending on p)
such that 0<c1≤c2<∞ and

c1‖f‖p ≤‖SA(f)‖p ≤ c2‖f‖p.(2.3)

See Theorem 6 of [1].
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Definition 2.1. ([1]) We say that f∈L1 belongs to the Hardy space H1
A associ-

ated with the semigroup {e−tA}t≥0 of A if SA(f)∈L1. If this is the case, we define
its norm by

‖f‖H1
A

= ‖SA(f)‖L1 .

For any function f(y, t) defined on Rn+1
+ , let

G(f)(x)=
(∫ ∞

0

∫

|x−y|<t

|f(y, t)|2 dy dt
tn+1

)1/2

.

The tent space T p
2 is defined as the space of functions f such that G(f)∈Lp,

when p<∞. The resulting equivalence classes are then equipped with the norm,
|||f |||T p

2
=‖G(f)‖p. Thus, f∈H1

A if and only if Qt2f∈T 1
2 (or G(Qt2f)=SA(f)∈L1).

Next, a function a(t, x) is called a T 1
2 -atom if

(i) there exists some ball B⊂Rn such that a(t, x) is supported in B̂; and
∫

B̂

|a(t, x)|2 dx dt
t

≤ 1
|B| ,(ii)

where B̂={(y, t)∈Rn+1
+ :y∈B and B(y, t)⊂B} and B(y, t) is the open ball with

center y and radius t.
We now describe an A-molecular characterization for these Hardy spaces. Fol-

lowing [1], a function α(x) is called an A-molecule if

α(x)= πA(a)(x)=
72
5

∫ ∞

0

Qt2(I−Pt2)(a(t, · ))(x) dt
t
,(2.4)

where a(t, x) is a usual T 1
2 -atom. Consider the following identity:

5
72

=
∫ ∞

0

(t2ze−t2z)(1−et2z)(t2ze−t2z)
dt

t
,

which is valid for all z 	=0 in a sector S0
µ with µ∈(0, π), where S0

µ is the interior of
Sµ={z∈C:| argz|≤µ}. As a consequence of H∞-functional calculus of the opera-
tor A ([16]), one has the following identity which is valid for all f∈H1

A∩L2,

f(x)=
72
5

∫ ∞

0

Qt2(I−Pt2)
(
Qt2f

)
(x)

dt

t
.(2.5)

By using identity (2.5) and the atomic decomposition of Qt2f∈T 1
2 (see Theorem 1

of [3]), an A-molecular decomposition of f in the space H1
A is obtained in Theorem 7

of [1] as follows.
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Proposition 2.1. Let f∈H1
A. There exist A-molecules αk(x) and numbers λk

for k=0, 1, 2, ... such that

f(x)=
∞∑

k=0

λkαk(x).(2.6)

The sequence λk satisfies
∑∞

k=0 |λk|≤c‖f‖H1
A
. Conversely, the decomposition (2.6)

satisfies ‖f‖H1
A
≤c∑∞

k=0 |λk|.

The proof of this proposition is based on estimates of area integrals and tent spaces
as in [3]. For the details, we refer the reader to Theorem 7 of [1]. See also [11].

Note. It is proved in [1] that if T is a linear operator which is bounded from
Lp to Lp for some p, 1<p≤∞, and also bounded from H1

A to L1, then T is bounded
on Lq for all 1<q<p. For more properties of the Hardy spaces H1

A and related
topics, we refer to [1], [10] and [11].

3. Proof of Theorem 1.1

Recall that pt(x, y) is the kernel of the semigroup e−tA. We first note that
Gaussian upper bounds carry over from heat kernels to their time derivatives. That
is, for each k∈N, there exist two positive constants ck and Ck such that the time
derivatives of pt satisfy

∣∣∣∣
∂kpt

∂tk
(x, y)

∣∣∣∣≤Ckt
−k−n/2e−ck|x−y|2/t(3.1)

for all t>0 and almost all x, y∈Rn. For the proof of (3.1), see [5], [7], [14] and [17],
Theorem 6.17.

We let p̃t(x, y)=t(d/dt)pt(x, y)=t(d/ds)ps(x, y)|s=t. It follows from the semi-
group property that

p̃2t( · , y)= 2e−tAp̃t( · , y) for all t≥ 0 and y ∈Rn.(3.2)

In particular, for every fixed y, the function p̃t( · , y)∈D(A)⊂D(Q). This shows that
the expression Lkp̃t( · , y)(x) makes sense. In the sequel, we always use the notation
Lkp̃t(x, y) to mean Lkp̃t( · , y)(x).

The following proposition gives a weighted estimate for Lkp̃t(x, y) which will
be useful in the proof of Theorem 1.1.
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Proposition 3.1. There exist constants β>0 and c>0 such that
∫

Rn

|V 1/2p̃t(x, y)|2eβ|x−y|2/t dx+
n∑

k=1

∫

Rn

|Lkp̃t(x, y)|2eβ|x−y|2/t dx≤ ct−n/2−1

for all t>0 and y∈Rn.

The proof of Proposition 3.1 uses the following lemma (see Lemma 2.5 in [21]).

Lemma 3.1. Assume that (1.1) holds. Then for each k=1, ..., n, there exists
a function λk∈L2

loc such that

Lk = eiλk
∂

∂xk
e−iλk .

Moreover, we have

D(Lk)=
{
u∈L2 :

∂

∂xk
u−iaku (as a distribution) ∈L2

}
.

Proof of Proposition 3.1. Let ψ be a C∞ function with compact support on Rn

such that 0≤ψ≤1. Consider

It(ψ)=
n∑

k=1

∫

Rn

|Lkp̃t(x, y)|2eβ|x−y|2/tψ(x) dx.

Using Lemma 3.2, we have

It(ψ) =
n∑

k=1

∫

Rn

∂

∂xk
(e−iλk p̃t(x, y))

∂

∂xk
(e−iλk p̃t(x, y))eβ|x−y|2/tψ(x) dx

=
n∑

k=1

∫

Rn

∂

∂xk
(e−iλk p̃t(x, y))

∂

∂xk
(e−iλk p̃t(x, y)eβ|x−y|2/tψ(x)) dx

−
n∑

k=1

∫

Rn

∂

∂xk
(e−iλk p̃t(x, y))e−iλk p̃t(x, y)

∂

∂xk
(eβ|x−y|2/tψ(x)) dx

= II1−II2.

Using (3.2) and the fact that ψ has compact support, we have

p̃t( · , y)eβ|x−y|2/tψ( · )∈D(Q)⊂D(Lk).

We can then write the first term II1 as

II1 =
n∑

k=1

∫

Rn

Lkp̃t(x, y)Lk(p̃t( · , y)eβ|·−y|2/tψ)(x) dx
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Since 0≤V and 0≤ψ, we obtain

II1 ≤
n∑

k=1

∫

Rn

Lkp̃t(x, y)Lk(p̃t( · , y)eβ|·−y|2/tψ)(x) dx

+
∫

Rn

V p̃t(x, y)p̃t(x, y)eβ|x−y|2/tψ(x) dx

=Q(p̃t( · , y), p̃t( · , y)eβ|·−y|2/tψ)

=
∫

Rn

Ap̃t(x, y)p̃t(x, y)eβ|x−y|2/tψ(x) dx.

From the semigroup property, it follows easily that Ap̃t(x, y)=−t(d2/dt2)pt(x, y).
We then apply (3.1) to obtain

II1 ≤ c

∫

Rn

1
tn/2+1

e−c2|x−y|2/t 1
tn/2

e−c1|x−y|2/teβ|x−y|2/tψ(x) dx.

Hence for any constant β<c1, there exists a constant c>0 independent of ψ such
that

II1 ≤ c

tn/2+1
(3.3)

since 0≤ψ≤1.
Next, we rewrite II2 as follows:

II2 =
n∑

k=1

∫

Rn

eiλk
∂

∂xk

(
e−iλk p̃t(x, y)

)
p̃t(x, y)eβ|x−y|2/t

×
[
∂

∂xk
ψ(x)+

2β(xk−yk)
t

ψ(x)
]
dx.

This gives

II2 ≤
n∑

k=1

c√
t

∫

Rn

|Lkp̃t(x, y)| |p̃t(x, y)|e2β|x−y|2/tψ(x) dx

+
n∑

k=1

∫

Rn

|Lkp̃t(x, y)| |p̃t(x, y)eβ|x−y|2/t

∣∣∣∣
∂

∂xk
ψ(x)

∣∣∣∣ dx

= J1(ψ)+J2(ψ).

To estimate the first term J1(ψ), we use (3.1) and Cauchy–Schwarz’ inequality to
obtain

J1(ψ)

≤ c√
t

n∑

k=1

(∫

Rn

t−ne(3β−2c1)|x−y|2/t dx
)1/2(∫

Rn

|Lkp̃t(x, y)|2eβ|x−y|2/tψ(x) dx
)1/2

.
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Hence, if β is small enough (for example, β<2c1/3), there exists a constant c>0,
independent of ψ, such that

J1(ψ)≤ c√
tn/2+1

√
It(ψ).

Using this estimate and (3.3), we obtain

It(ψ)≤ c(t−n/2−1+J2(ψ)),(3.4)

where c>0 is a positive constant independent of ψ.
We now apply (3.4) with ψj(x)=ψ(x/j), where ψ is a function such that

ψ(x)=1 for all x with |x|≤1. Simple computations show that the sequence J2(ψj)
converges to 0 as j!∞. An application of Fatou’s lemma and (3.4) (with ψj in
place of ψ) gives

∫

Rn

|Lkp̃t(x, y)|2eβ|x−y|2/tψ(x) dx≤ ct−n/2−1.

The term
∫

Rn

|V 1/2p̃t(x, y)|2eβ|x−y|2/tψ(x) dx

can be written as

Q(p̃t( · , y), p̃t( · , y)eβ|·−y|2/tψ)−II1.

Both terms have already been estimated. This finishes the proof. �

Proof of Theorem 1.1. Firstly, the operators LkA
−1/2 and V 1/2A−1/2 are both

bounded on L2 for all k=1, 2, ..., n. Indeed, for f∈L2 we have

n∑

k=1

∫

Rn

|LkA
−1/2f(x)|2 dx+

∫

Rn

V (x)|A−1/2f(x)|2 dx=Q(A−1/2f,A−1/2f)

= ‖f‖2
L2.(3.5)

The latter equality follows from the fact that for any symmetric form Q associated
with an operator A, one has D(Q)=D(A1/2) and Q(u, v)=(A1/2u,A1/2v) (see, for
example, Chapter VI of [15] or Chapter 7 of [17]).

We now prove that the operators LkA
−1/2 are bounded from H1

A into L1.
By Proposition 2.2, it suffices to verify that for any A-molecule α(x), there exists
a positive constant c independent of α such that

‖LkA
−1/2(α)‖L1 ≤ c.(3.6)
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Assume that α(x)=πA(a)(x) is an A-molecule as in (2.4), where a=a(t, x) is
a standard T 1

2 -atom supported in B̂ (for some ball B=B(xB, rB)⊂Rn). One
writes

‖LkA
−1/2(α)‖L1 =

∫

2B

|LkA
−1/2(α)(x)| dx+

∫

(2B)c

|LkA
−1/2(α)(x)| dx= I+II.

It follows from (a) of Lemma 4.3 in [11] that ‖πA(a)‖L2≤c|||a|||T 2
2
≤c|B|−1/2. Using

Hölder’s inequality and (3.5), we obtain

I ≤ c|B|1/2‖LkA
−1/2(πA(a))‖L2 ≤ c|B|1/2‖πA(a)‖L2 ≤ c|B|1/2|B|−1/2 ≤ c.

We now estimate the term II. Substituting

α(x)= πA(a)(x)=
36
5

∫ ∞

0

tAe−tA(I−e−tA)(a(
√
t, · ))(x) dt

t

into the formula

A−1/2(α)=
1

2
√
π

∫ ∞

0

e−sA(α)
ds√
s
,

we have

LkA
−1/2(α)(x)

=
18

5
√
π

∫ ∞

0

∫ ∞

0

t
(
LkAe

−(s+t)A−LkAe
−(s+2t)A

)
(a(

√
t, · ))(x) dt

t

ds√
s

=
18

5
√
π

∫ ∞

0

∫ ∞

0

(
χ{s>t}
s
√
s−t−

χ{s>2t}
s
√
s−2t

)
Lk

(
s
d

ds
e−sA

)
(a(

√
t, · ))(x) dt ds

=
18

5
√
π

∫ ∞

0

∫ r2
B

0

∫

B

(
χ{s>t}
s
√
s−t−

χ{s>2t}
s
√
s−2t

)
Lkp̃s(x, y)a(

√
t, y) dy dt ds.

Thus the key to proving Theorem 1.1 is to estimate
∫
(2B)c |Lkp̃s(x, y)| dx. Let β>0

be the constant as in Proposition 3.1 and let γ=β/4. We have
∫

(2B)c

|Lkp̃s(x, y)| dx

≤
∫

|x−y|≥rB

|Lkp̃s(x, y)|eβ|x−y|2/2se−β|x−y|2/2s dx

≤
(∫

Rn

|Lkp̃s(x, y)|2eβ|x−y|2/sdx
)1/2(∫

|x−y|≥rB

e−β|x−y|2/s dx
)1/2

≤ cs−n/4−1/2e−γr2
B/s

(∫

Rn

e−β|x−y|2/2s dx
)1/2
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≤ cs−1/2e−γr2
B/s

≤ c√
s

1
(1+r2B/s)ε

for any ε>0. This gives

II≤ c

∫ ∞

0

∫ r2
B

0

∫

B

1
s3/2(1+r2B/s)ε/2

∣∣∣∣
χ{s>t}√
s−t −

χ{s>2t}√
s−2t

∣∣∣∣|a(
√
t, y)| dy dt ds

≤ c

∫ r2
B

0

∫

B

∫ 2t

t

1
s3/2(1+r2B/s)ε/2

1√
s−t |a(

√
t, y)| ds dy dt

+c
∫ r2

B

0

∫

B

∫ ∞

2t

1
s3/2(1+r2B/s)ε/2

∣∣∣∣
1√
s−t−

1√
s−2t

∣∣∣∣|a(
√
t, y)| ds dy dt

= II1+II2, respectively.

It follows from the estimate
∫ 2t

t

1
s3/2(1+r2B/s)ε/2

1√
s−t ds≤ cr−ε

B tε/2−1

and Hölder’s inequality that

II1 ≤ cr−ε
B

∫ tB

0

∫

B

tε/2−1|a(√t, y)| dy dt

≤ cr−ε
B

(∫ r2
B

0

∫

B

tε−1 dy dt

)1/2(∫

B̂

|a(t, x)|2 dµ(x) dt
t

)1/2

≤ c.

We now estimate the term II2. We have |1/√s−t−1/
√
s−2t|≤c(t/s√s−2t) for

s>2t. Therefore,
∫ ∞

2t

1
s3/2(1+r2B/s)ε/2

∣∣∣∣
1√
s−t−

1√
s−2t

∣∣∣∣ ds≤ cr−ε
B t

∫ ∞

2t

sε/2

s5/2
√
s−2t

ds≤ cr−ε
B tε/2−1.

This gives

II2 ≤ cr−ε
B

∫ tB

0

∫

B

tε/2−1|a(√t, y)| dy dt≤ c.

By combining the estimates of I, II1 and II2, we obtain the desired estimate (3.6).
All the above arguments work in the same way if we replace LkA

−1/2 by
V 1/2A−1/2. We obtain (3.6) for V 1/2A−1/2. The proof is complete. �

4. A characterization of the Hardy space H1
A

In this section, we continue with the assumption that the magnetic Schrödinger
operator A=−(∇−i�a)2+V satisfies conditions (1.1) and (1.2). We define a Hardy
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space H̃1
A by means of a maximal function associated with the semigroup {e−tA}t>0

as

H̃1
A =

{
f ∈L1 : sup

t>0
|e−tAf(x)| ∈L1

}
.(4.1)

We first have the following proposition.

Proposition 4.1. Let A=−(∇−i�a)2+V satisfy conditions (1.1) and (1.2).
Then, H1

A⊂H̃1
A, i.e., the Hardy space H1

A is a subspace of H̃1
A .

Proof. Define

P∗f(x)= sup
t>0

|e−tAf(x)|.

Because of the decay of the kernel pt(x, y) in (2.1), one has P∗f(x)≤cMf(x), where
M is the Hardy–Littlewood maximal function, given by

Mf(x)= sup
B�x

1
|B|

∫

B

|f(y)| dy.

In order to prove Proposition 4.1, by Proposition 2.2 it suffices to verify that
for any A-molecule α(x), there exists a positive constant c independent of α such
that

‖P∗(α)‖L1 ≤ c.(4.2)

Assume that α(x)=πA(a)(x) is anA-molecule as in (2.4), where a=a(t, x) is a stand-
ard T 1

2 -atom supported in B̂ (for some ball B=B(xB, rB)⊂Rn). One writes

‖P∗(α)‖L1 =
∫

2B

|P∗(α)(x)| dx+
∫

(2B)c

|P∗(α)(x)| dx= I+II.

It follows from (a) of Lemma 4.3 in [11] that ‖πA(a)‖L2≤c|||a|||T 2
2
≤c|B|−1/2. Using

Hölder’s inequality and (3.5), we obtain

I ≤ c|B|1/2‖M(πA(a))‖L2 ≤ c|B|1/2‖πA(a)‖L2 ≤ c|B|1/2|B|−1/2 ≤ c.

We now estimate the term II. Substituting

α(x)= πA(a)(x)=
36
5

∫ ∞

0

tAe−tA(I−e−tA)(a(
√
t, · ))(x) dt

t

into the formula

P∗f(x)= sup
s>0

|e−sAf(x)|,
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we have

P∗(α)(x) =
36

5
√
π

sup
s>0

∣∣∣∣
∫ r2

B

0

tA(e−(s+t)A−e−(s+2t)A)(a(
√
t, · ))(x) dt

t

∣∣∣∣

≤ c sup
s>0

∣∣∣∣
∫ r2

B

0

t(s+t)−1((s+t)A e−(s+t)A)(a(
√
t, · ))(x) dt

t

∣∣∣∣

+c sup
s>0

∣∣∣∣
∫ r2

B

0

t(s+2t)−1((s+2t)A e−(s+2t)A)(a(
√
t, · ))(x) dt

t

∣∣∣∣

= II1+II2.

Note that for any x /∈2B and y∈B, we have that |x−y|≥|x−xB|/2. This, together
with (3.1), give

II1 ≤ c sup
s>0

∫ r2
B

0

∫

B

t(s+t)−1(
√
t+s)ε|a(√t, y)| dt dy

t
|x−xB|−n−ε

≤ c

(∫ r2
B

0

∫

B

tε−1 dy dt

)1/2

|||a|||T 2
2
|x−xB|−n−ε

≤ crε
B|x−xB|−n−ε

for any ε>0.
Similarly, we also have II2≤crε

B|x−xB|−n−ε for any ε>0. Therefore,
∫

(2B)c

|P∗(α)(x)| dx≤ crε
B

∫

(2B)c

|x−xB|−n−ε dx≤ c.

We obtain (4.2) from the estimates of I and II. Thus we have H1
A⊂H̃1

A. The proof
of Proposition 4.1 is complete. �

Next, a natural question is to ask whether the space H1
A is the same as H̃1

A.
The question is still open in general. However, we will give an affirmative answer
in the case of A=−∆+V with the assumption that V is a fixed non-negative func-
tion on Rn, n≥3, belonging to the reverse Hölder class RHs(Rn) for some s>n/2;
that is, there exists a constant c=c(s, V )>0 such that the reverse Hölder inequal-
ity

(
1
|B|

∫

B

V s dx

)1/s

≤ c

(
1
|B|

∫

B

V dx

)
(4.3)

holds for every ball B in Rn.
We now show that the spaces H̃1

A and H1
A coincide, and that they contain the

classical Hardy space H1 as a proper subspace.
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Theorem 4.1. Let A=−∆+V (x), where V satisfies condition (4.3) and is
not identically zero. Then, we have

H1 � H̃1
A ≡H1

A.(4.4)

As a consequence, the Riesz transform ∇A−1/2 is bounded from H1
A into L1, and

from H1 into L1. More specifically, there exist positive constants c1 and c2 such
that

‖∇A−1/2u‖L1 ≤ c1‖u‖H1
A
≤ c2‖u‖H1 .

Proof. By Proposition 4.1, we have H1
A⊂H̃1

A. By Lemma 6 of [12], H̃1
A⊂H1

A.
Therefore, H̃1

A≡H1
A.

Theorem 1.5 of [13] implies that the classical Hardy space H1 is a subspace
of H̃1

A. In order to see that H1 is a proper subspace of H̃1
A, we note that if they

coincide then their duals BMO and BMOA coincide. Therefore, by Proposition 6.7
of [11], the semigroup e−tA satisfies the conservation property e−tA1=1 for all t≥0.
This latter property does not hold if V is not identically zero.

It follows then from Theorem 1.1 that the Riesz transform ∇A−1/2 is bounded
from H1

A into L1, and from H1 into L1. This proves Theorem 4.2. �

We observe that [13] gives an atomic decomposition for functions in H̃1
A which

shows that the atoms for the H̃1
A space satisfy the same size conditions as the

classical H1 atoms, but the mean-value zero condition for H̃1
A atoms is required

only for those supported on small balls. This, together with Theorem 1.5 of [13],
imply that the classical Hardy space H1 is a proper subspace of H̃1

A, and thus
H1�H̃1

A≡H1
A.

Notes. Let A=−(∇−i�a)2+V be a magnetic Schrödinger operator with as-
sumptions (1.1) and (1.2).

(α) Weak type (1, 1) of the Riesz transforms LkA
−1/2 associated with A can

be obtained by modifying the proof in [4]. See also [20].
(β) To the best of our knowledge, the question of boundedness of Riesz trans-

form LkA
−1/2 from the classical H1 space into L1 is still open.
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