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Calabi–Yau threefolds arising from
fiber products of rational
quasi-elliptic surfaces, I

Masayuki Hirokado, Hiroyuki Ito and Natsuo Saito

Abstract. In this paper, we construct some unirational Calabi–Yau threefolds in charac-

teristic 3. We adopt the method by Schoen, but we use quasi-elliptic surfaces instead of elliptic

surfaces. We find new examples which do not admit a lifting to characteristic zero.

1. Introduction

Let k be an algebraically closed field of characteristic p≥0. A Calabi–Yau
threefold X is a nonsingular projective threefold over k which satisfies KX =0 and
H1(X,OX)=0. Associated to a Calabi–Yau threefold X is a one-dimensional com-
mutative formal group Φ3(X,Gm) called the Artin–Mazur formal group [1], and we
call X supersingular provided p>0 and Φ3(X,Gm)∼=Ĝa.

A Calabi–Yau threefold X is said to be unirational if there exists a dominant
rational map, which is necessarily inseparable, from the three-dimensional projec-
tive space P3

k. Unirational Calabi–Yau threefolds are known to be supersingular.
Typical examples can be found in the Fermat quintic X5

0 +X5
1 +X5

2 +X5
3 +X5

4 =0 in
characteristic p with p≡2, 3, 4 mod 5 (cf. [29], [8] and [9]). Among supersingular
Calabi–Yau threefolds there are a class with the third l-adic Betti number (l �=p)
vanishing. Such Calabi–Yau threefolds are nonliftable, that is, they do not admit
any projective liftings to characteristic zero. At the moment examples are known
only for p=2 and p=3, namely, one example in p=3 with e(X)=84 in [12], and
examples in p=2, 3 with e(X)=48 in [27].
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We continue to study some concrete examples of Calabi–Yau threefolds and
their peculiar properties. We adopt Schoen’s construction of Calabi–Yau threefolds
with quasi-elliptic surfaces instead of elliptic surfaces. Since we encounter some
difficulties in treating characteristic 2 and 3 cases uniformly, we deal with the p=3
case here and defer the p=2 case to a forthcoming paper.

We obtain examples of supersingular Calabi–Yau threefolds with topological
Euler–Poincaré characteristic e(X)=36, 48, 60, 72, 84 in p=3. Two examples with
b3(X)=0 are found, one of which has the same e(X) as well as Betti numbers as
the one in [12], but is not isomorphic to it.

Theorem 1.1. In characteristic 3, we have Calabi–Yau threefolds with the
following properties :

(1) X is unirational, and therefore supersingular ;
(2) ρ(X)=b2(X);
(3) πalg

1 (X)={1};
(4) (b0, b1, b2, b3, b4, b5, b6)=(1, 0, 20, 6, 20, 0, 1), (1, 0, 25, 4, 25, 0, 1), (1, 0, 30, 2,

30, 0, 1), (1, 0, 35, 0, 35, 0, 1), (1, 0, 41, 0, 41, 0, 1);
(5) X admits at least two types of fibrations X!P

1 whose general fiber is (a)
a non-normal rational surface, (b) a supersingular K3 surface with a rational double
point of type A2;

(6) X has a fibration whose general fiber is a rational curve with an ordinary
cusp (quasi-elliptic fibration).

One of the remaining problems (cf. [6]) is to see if there are any peculiarities
of our examples in cohomologies associated with the Hodge spectral sequence

Eij
1 :=Hj(Ωi

X)=⇒Hi+j
DR (X/k),

and the slope spectral sequence in the Hodge –Witt cohomologies ([15])

Eij
1 :=Hj(WΩi

X)=⇒Hi+j
crys(X/W ).

Another fundamental question would be whether the number of topological
types of supersingular Calabi–Yau threefolds is finite.
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2. Preliminaries

The l-adic Betti number bi(X) of a variety X complete over an algebraically
closed field k of characteristic p≥0, with i≥0 and l a prime not equal to p, is
defined by bi(X):=dimQl

Hi
ét(X,Ql), which is known to be independent of l. The

topological Euler–Poincaré characteristic e(X) of X is

e(X) :=
2dim X∑

i=0

(−1)ibi(X).

For the first Betti number b1(X) we have the equality b1(X)=2q(X), where
q(X) is the dimension of the Albanese variety Alb(X).

A quasi-elliptic surface ϕ : Y!C is a nonsingular projective surface Y with
a morphism to a nonsingular curve C, satisfying OC =ϕ∗OY and such that a general
fiber is a rational curve with an ordinary cusp. Quasi-elliptic surfaces exist only
in characteristic 2 and 3, enjoying properties analogous to elliptic surfaces (cf. [4]).
A fiber Yt of a quasi-elliptic surface will be called special if it is either a multiple
fiber or not of type II in Kodaira’s classification. A fiber Yt is called nonspecial if
it is not special. Let Σ be the closure of the nonsmooth locus of Yη/η inside Y . the
moving cusp of ϕ : Y!C.

A variety X of dimension n is said to be unirational if there exists a dominant
rational map from the n-dimensional projective space Pn to X . X is said to be sep-
arably (resp. purely inseparably) unirational if there exists a dominant rational map
Pn���X whose extension of function fields is separable (resp. purely inseparable).

3. Construction

Let ϕ1 : Y1!P
1 and ϕ2 : Y2!P

1 be relatively minimal rational quasi-elliptic
surfaces with section. We fix the base curve P1 and take a fiber product:

Y1×P1Y2

�����������

�����������

Y1

ϕ1

����������� Y2

ϕ2

�����������

P1.

This Y1×P1Y2 is a locally complete intersection and irreducible. It follows from
the canonical bundle formula for quasi-elliptic surfaces that Y1×P1Y2∈|−KY1×kY2 |,
hence KY1×P1Y2 =0 ([25]). We try to find a crepant resolution of singularities
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π : X!Y1×P1Y2, using the complete classification of rational quasi-elliptic surfaces
with section up to isomorphism in p=2, 3 ([16] and [17]).

We restrict ourselves to p=3 from now on.

Theorem 3.1. ([16]) A rational quasi-elliptic surface with section in p=3 is
given by one of the following:

Type of
degenerate fibers

Weierstrass form

(a) II∗ y2=x3+t
(b) IV, IV∗ y2=x3+t2

(c) Four IV’s y2=x3+t4+t2

where II∗, IV and IV∗ stand for the types of singular fibers in the sense of Kodaira.

In order to find a crepant resolution, we only consider the case where Y1×P1Y2

is normal. If either ϕ−1
1 (t) or ϕ−1

2 (t) is reduced for any t∈P1, then it follows that
Y1×P1Y2 is normal from Serre’s criterion for normality. Thus we treat the following
cases:

(bb): (b) and (b), the singular fibers of type IV∗ do not meet type IV or
type IV∗;

(bc): (b) and (c), the singular fibers of type IV∗ do not meet type IV;
(cc): (c) and (c).
Since the singularities of Y1×P1Y2 arise from the nonsmooth parts of ϕ1 and ϕ2,

Sing(Y1×P1Y2) consists of irreducible curves isomorphic to P1’s whose configuration
is as in Figure 1. Note that the thick lines in Figure 1, which will be denoted by Γ,
are derived from the moving cusps of quasi-elliptic surfaces.

Figure 1.

Proposition 3.2. In the following eight sub-cases of (bb), (bc) and (cc),
the fiber product admits a resolution of singularities π : X!Y1×P1Y2 with KX =
π∗KY1×P1Y2 , which is a crepant resolution:

(bb-1) the singular fiber of type IV meets the singular fiber of type IV;
(bb-2) the singular fiber of type IV does not meet the singular fiber of type IV;
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(bc-1) the singular fiber of type IV meets a singular fiber of type IV;
(bc-2) the singular fiber of type IV does not meet any singular fiber of type IV;
(cc-1) four singular fibers of type IV meet singular fibers of type IV;
(cc-2) two singular fibers of type IV meet singular fibers of type IV;
(cc-3) one singular fiber of type IV meets singular fibers of type IV;
(cc-4) no singular fiber of type IV meets singular fibers of type IV.

The proof will be given in the following section.
To obtain the defining equations of the singularities of Y1×P1Y2, we use the

local descriptions of the quasi-elliptic fibrations ϕ : Y!C at a point where ϕ is not
smooth. The nontrivial part is the folowing result:

Proposition 3.3. Let ϕ : Y!C be a relatively minimal quasi-elliptic surface
in characteristic 3. We take a point P on Y and any local coordinate t on C at
ϕ(P ).

(1) ([3]) Suppose that P lies on the moving cusp Σ. If the fiber over t=0
is nonspecial, then in suitable formal coordinates x and y on Y at P , we have
t=y2+x3.

(2) Suppose that P lies on the moving cusp Σ. If the fiber over t=0 is of type IV,
then in suitable formal coordinates x and y on Y at P , we have t=xy2−x3.

(3) Suppose that the fiber over t=0 is of type IV∗. If P is an intersection
point of the component of multiplicity three and a component of multiplicity two
(resp. the moving cusp Σ), then there exist formal coordinates x and y such that
t=x3y2 (resp. t=x3(1+y2)). If P is on the component of multiplicity three but
outside the four points described above, then t=(1+y)x3.

Proof. (1) See [3].
(2) Any quasi-elliptic surface which has the degenerate fiber of type IV over

t=0 is locally defined in the Weierstrass form by

y2 = x3+t2u(t)

in Spec k[x, y][[t]], where u(t)∈k[[t]] is a unit (cf. [19, p. 479]). We set u(t) :=
1+

∑

l�1

alt
l. After a blow-up at the singular point, we have a local equation

y2
1−t21 = x1

(
1+

∑

l�1

alx
l−1
1 tl+2

1

)
,

where x=x1, y=x1y1, and t=x1t1. Thus

t= t1ỹ
2
1−t31

(
1+

∞∑

j=1

(−1)j
(∑

l�1

alt
l−1t31

)j)
.
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We substitute t recursively to get

t= t1ỹ
2−(unit)3t31.

(3) Any quasi-elliptic surface which has the degenerate fiber of type IV∗ over
t=0 is locally defined in the Weierstrass form by

y2 = x3+t4u(t)

in Spec k[x, y][[t]] (cf. [19, p. 479]). After a succession of blow-ups: (x=x1t1,
y=y1t1, t=t1), (x1=x2, y1=x2y2, t1=x2t2), (x2=x3, y2=x3y3, t2=x3t3) and
(x3=x4, y3=x4y4, t3=x4t4), we have

t= x3
4t4 and y2

4−t4
(
1+t4u

(
x3

4t4
))

= 0.

Substituting y4 with y4−λ (λ∈k), we have

(3.1) (y4−λ)2−t4
(
1+t4u

(
x3

4t4
))

= 0.

The component of multiplicity three is given by x4=0. If λ=0, then we have the
expression t=x3

4y
2
4/(1+t4u(x3

4t4)) which we can put into t=x3
4ỹ

2
4 by taking the

square root of the unit. If λ �=0, then we know from (3.1) that

t4 = u1+y4u2 ∈ k
[[
y4, x

3
4

]]×

with units u1∈k[[x3
4]]× and u2∈k[[y4, x3

4]]×. By further coordinate changes this can
be put into t=x̃3

4(1+ỹ4). By a similar argument on another chart, one obtains the
desired result. �

Remark 3.4. (1) Note that in the assertion (2) in Proposition 3.3, we can choose
the local parameter t of the base curve arbitrarily. Lang obtained similar results in
[19, p. 479], but his assertion claims only the existence of a local parameter t which
gives the normal form as above.

(2) By considering the automorphisms of P1, one knows that under (cc) the
case where exactly three singular fibers of type IV meet singular fibers of type IV
does not occur ([16]).

(3) The morphism f : X!P1, which is the composition of π and the projection
to the base curve ϕ1×P1ϕ2, is a fibration and has a non-normal rational surface as
a general fiber.

(4) The discriminant of a quasi-elliptic surface in p=3 is given by ∆:=(φ′)2 for
the Weierstrass form y2=x3+φ(t).
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4. Crepant resolutions

We seek a crepant resolution of singularities π : X!Y1×P1Y2. Since Y1×P1Y2

is a divisor of a nonsingular fourfold Y1×kY2, all the singularities of Y1×P1Y2 are
hypersurface singularities. In characteristic zero, if there exists a crepant resolution,
any isolated singularity in codimension two is generically a trivial deformation of
a rational double point [23, Corollary 1.14]. But in positive characteristic, this is
not always the case.

Proposition 4.1. The following hypersurface singularities in A4
k=

Spec k[x, y, z, w] with p=3 have crepant resolutions :
(1) x3+y2+z2=0;
(2) x3+y2+z3w=0;
(3) x3+y2+z3w2=0;
(4) x3+y2+z2w=0;
(5) x3+xy2+y2z+zw2=0.

Remark 4.2. The singularity (1) is a trivial deformation of the rational double
point of type A2. The singularity (2) is an example which is not generically a trivial
deformation of a rational double point, but has a crepant resolution.

Proof. This is done by local calculation. Use the Jacobian criterion for reg-
ularity. In (1) and (4), blowing up with the center of the reduced singular locus
{(x, y, z, w):x=y=z=0} gives a resolution. In (2), blow up the reduced singu-
lar locus {(x, y, z, w):x=y=z=0}. There appears a one-dimensional singular locus
which is locally a trivial deformation of a rational double point of type A1. Blowing
up this singular locus gives a resolution. In (3), one can reduce to the case of type (2)
after a blow-up along {(x, y, z, w):x=y=w=0}. In (5), blow up {(x, y, z, w):x=y=
w=0}, there remain six ordinary double points. The reduced inverse image of the
origin is P2 and blowing up this P2 gives a small resolution. One knows that all the
resolutions are crepant using the following lemma. �

Lemma 4.3. Let X be a hypersurface of an (n+1)-dimensional nonsingular
variety Z, n≥2. Suppose that C⊂X is a nonsingular subvariety of dimension n−2
which is an irreducible component of Sing(X). Consider the blow-up π : Z̃!Z
along C. If the total transform is expressed as π∗X=X̃+2E, where X̃ is the strict
transform and E is the exceptional divisor, then the equality KX̃ =π∗KX holds.

Proof. This follows from the canonical bundle formula, for example in [11,
Chapter II, Exercise 8.5], and the adjunction formula. �

Proof of Proposition 3.2. Let Γ⊂Y1×P1Y2 be the fiber product of the mov-
ing cusps of the quasi-elliptic surfaces ϕi : Yi!P1, i=1, 2, (cf. Figure 1). We use
Proposition 3.3 and obtain local equations of the singularities of Y1×P1Y2.
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First we consider the case (cc). The configuration consists of one irreducible
curve Γ as in Figure 1. At a point in Γ which projects to both triple points of the
singular fibers of type IV, the singularity is given by

xy2−x3+zw2−z3 = 0,

which is isomorphic to the singularity of type (5) in Proposition 4.1. At a point in Γ
which projects to the cusp of a nonspecial fiber and the triple point of the singular
fiber of type IV, the singularity is given by

x3+y2+zw2−z3 = 0,

which is isomorphic to the singularity of type (4). At a point in Γ which projects
to both the cusps of the nonspecial fibers of ϕ1 and ϕ2, we have the equation

x3+y2+z3+w2 = 0,

which is isomorphic to the singularity of type (1) in Proposition 4.1. Consideration
of Autk(P1

k) gives that the case (cc) is subdivided into (cc-1), (cc-2), (cc-3) and
(cc-4) as in Figure 2.

Figure 2.
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For cases (bb) and (bc), Sing(Y1×P1Y2) consists of Γ and other P1’s which
come from the cusp of a nonspecial fiber and components of the singular fiber of
type IV∗ whose multiplicities are greater than one (cf. Figure 1). We already know
the description of singularities of Y1×P1Y2 along Γ. To describe the remaining
singularities, let C (resp. D) be a component which comes from the cusp and the
component of multiplicity three (resp. a component of multiplicity two) in the fiber
of type IV∗. Then it is known that Γ and C intersects at a point, and we know
from Proposition 3.3 that the singularity at this point is given formally by

x3+y2+z3(1+w2)= 0,

which is isomorphic to the singularity of type (3) in Proposition 4.1. C and D also
intersects at a point, where the singularity is given by

x3+y2+z3w2 = 0,

which is the singularity of type (3). At a point in C outside the four points described
above, Proposition 3.3 gives

x3+y2+z3(1+w)= 0,

which is isomorphic to the singularity of type (2). At a point in D which projects
to the cusp of a nonspecial fiber and a point where components of multiplicity one
and two intersect in IV∗, the equation is

x3+y2+z2w= 0,

which is the singularity of type (4). At a point in D outside the two points described
above, we have a local equation

x3+y2+z2 = 0,

which is the singularity of type (1) in Proposition 4.1. From the arguments above,
we obtain the configurations as in Figure 2.

So we know by Proposition 4.1 that all the singularities have crepant resolutions
locally. One then checks that there exists a sequence of blow-ups along the reduced
centers P1’s in the singular loci followed by blow-ups along P2’s for ordinary double
points which attain crepant resolutions π : X!Y1×P1Y2. �

5. Rationality of the singularities

For a crepant resolution π : X!Y1×P1Y2, whether the sheaf R1π∗OX vanishes
or not is an important question. In characteristic zero, the vanishing follows from
the Grauert–Riemenschneider vanishing theorem ([10]) and KX =0. The Leray
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spectral sequence Ei,j
2 :=Hi(Rjπ∗OX)⇒Hi+j(X,OX) gives an exact sequence

0−!H1(π∗OX)−!H1(X,OX)−!H0(R1π∗OX)−!H2(π∗OX),

and H1(X,OX)=0 would follow from H1(Y1×P1Y2,OY1×P1Y2)=0 under R1π∗OX

=0.

Proposition 5.1. For our examples of threefolds obtained in Proposition 3.2,
we have H1(OX)=0.

Proof. It is observed that X and Y1×P1Y2 are anti-canonical members of non-
singular rational fourfolds, from which the vanishing follows (cf. [13]). �

We employ the definition of rational singularities as in [31], that is, a singular point
x on a normal varietyW is said to be a rational singularity if there exists a resolution
of singularities π : X!W such that (Riπ∗OX)x=0 for all i>0.

Proposition 5.2. The sheaf Riπ∗OX with i=1, 2 is zero for a crepant reso-
lution π : X!Y1×P1Y2 in Proposition 3.2. All the singularities given in Proposi-
tion 4.1 are rational singularities.

Proof. First recall that H2(OY1×P1Y2)=0, H3(OY1×P1Y2)∼=k and H1(OX)=
H2(OX)=0 by Proposition 5.1. It follows that H0(R1π∗OX)=0 by the Leray spec-
tral sequence. On the other hand, the support of the sheaf R1π∗OX is contained
in the singular loci of Y1×P1Y2. Straightforward arguments from the definition give
that it is zero along a trivial deformation of a rational double point. We now prove
that it is zero along the singularity of type (2). By replacing w by z+w, we have
a flat morphism

W := Spec k[x, y, z, w]/(x3+y2+z4+z3w)−! Spec k[w],

whose fibers are rational double points of type E0
6 . Then the first blow-up along

the singular locus of W gives a family W ′ π′−−!W!Spec k[w]. Recall that W ′ has
one-parameter trivial deformation of the rational double point of type A1 as its sin-
gularity, so blowing up its locus as in the proof of Proposition 4.1 gives a resolution
of singularities of W ,

X
π′′−−!W ′ π′−−!W −! Spec k[w].

We know that R1π′′
∗OX =0. So we prove that R1π′

∗OW ′ =0. It can be checked that

the fiber W ′
w

π′
w−−!Ww for any w∈Spec k[w] is a reduced point blow-up of the rational

double point of type E0
6 , and it satisfies H1(OW ′

w
)=0. This gives R1π′

∗OW ′ =0.
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Then the exact sequence coming from the Leray spectral sequence

0−!R1π′
∗(π

′′
∗OX)−!R1(π′

�π′′)∗OX −!π′
∗R

1π′′
∗OX

gives the vanishing along the singularity of type (2). So R1π∗OX is possibly sup-
ported on finite points, but this is ruled out by H0(R1π∗OX)=0.

For R2π∗OX , we know that it is zero outside finite points by looking at the
dimension of fibers of π. Then the spectral sequence says that H0(R2π∗OX)=0, so
R2π∗OX vanishes. �

6. Unirationality and topological invariants

As is mentioned in the introduction, a unirational Calabi–Yau threefold is
supersingular. The converse is an open question, still unsolved for K3 surfaces. For
our examples, we have the following result.

Proposition 6.1. Our examples of Calabi–Yau threefolds are purely insepa-
rably unirational.

Proof. It is observed that the base change of a quasi-elliptic surface ϕ : Y!P1

by the Frobenius morphism P1!P1 is a non-normal rational surface. X has the
fibration f : X!P1 induced from ϕ1×P1ϕ2 as in Remark 3.4. Then the base change
X×P1 P1 of f by the Frobenius morphism P1!P1 is a rational threefold. �

By standard arguments on étale coverings of X as in [22], we have the following
proposition.

Proposition 6.2. If a nonsingular projective threefold X is purely inseparably
unirational, then its algebraic fundamental group πalg

1 (X) is trivial.

For a nonsingular Calabi–Yau threefold X , whether it satisfies an equality
ρ(X)=b2(X) is a difficult question. In the complex case, the exponential sequence
0!ZX!OX

exp−−!O∗
X!1 gives an affirmative answer, which is not available in our

situation. Instead, Nygaard proves the following result.

Theorem 6.3. ([22]) If a nonsingular projective variety X is unirational, then
the Picard number and the second Betti number of X coincide, i.e. ρ(X)=b2(X).

Proposition 6.4. (1) The Calabi–Yau threefolds obtained in the previous sec-
tions have the following invariants :

(bb-1) (bb-2) (bc-1) (bc-2) (cc-1) (cc-2) (cc-3) (cc-4)
e(X) 72 60 60 48 84 60 48 36
ρ(X) 35 30 30 25 41 30 25 20
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(2) In cases (bb-1) and (cc-1), X has b3(X)=0, and hence does not lift to
characteristic zero.

We use the following lemma frequently in the proof of Proposition 6.4.

Lemma 6.5. Let f : X!Y be a morphism of complete varieties, C⊂Y be
a closed subvariety, and E :=C×Y X be a fiber product. Then we have the formula
of topological Euler–Poincaré characteristics

e(X)−e(Y )= e(E)−e(C).

In case Y is nonsingular and f is a blow-up along a smooth center C⊂Y ,
essentially the same statements can be found, for example, in [5, Proposition 4.4]
and [30, Lemma 2.1].

Proof. Consider the following two exact sequences and homomorphisms f∗

induced from f (cf. [20, p. 94]):

... −−! Hi
c(Y \C,Ql) −−! Hi(Y,Ql) −−! Hi(C,Ql) −−! Hi+1

c (Y \C,Ql) −−! ...
⏐⏐�

⏐⏐�
⏐⏐�

⏐⏐�

... −−! Hi
c(X\E,Ql) −−! Hi(X,Ql) −−! Hi(E,Ql) −−! Hi+1

c (X\E,Ql) −−! ...

Then the isomorphisms Hi
c(Y \C,Ql)∼=Hi

c(X\E,Ql) give the desired result. �

Proof of Proposition 6.4. (1) The invariant e(Y1×P1Y2) is calculated from that
of the normalization of (Y1×P1Y2)×P1 P1, which is the base change by the Frobenius
morphism P1!P1. More precisely, let Ỹi be the normalization of the Frobenius base
change of Yi for i=1, 2, and Zi its resolution. Furthermore, let Si be a P1-bundle over
P1 which is obtained from Zi by blowing down (−1)-curves. In our cases, Ỹ1×P1 Ỹ2

is just the normalization of (Y1×P1Y2)×P1 P1, whose Euler–Poincaré characteristic
is equal to that of Y1×P1Y2. We can calculate e(Ỹ1×P1 Ỹ2) from e(S1×P1S2), which
is 8 since S1×P1S2 is a P1×P1-bundle over P1, via Z1×P1Z2:

S1×P1S2 −Z1×P1Z2 −! Ỹ1×P1 Ỹ2.

Thus we have the following table:

(bb-1) (bb-2) (bc-1) (bc-2) (cc-1) (cc-2) (cc-3) (cc-4)
e(Y1×P1Y2) 44 40 44 40 56 48 44 40

The crepant resolution π is a sequence of blow-ups as in the proof of Propo-
sition 3.2, X=Wr!Wr−1!...!W0 :=Y1×P1Y2. When the center of a blow-up
Wi+1!Wi is isomorphic to P

1, Lemma 6.5 says that

(6.1) e(Wi+1)= e(Wi)+(e(Ei)−2),
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where Ei is the exceptional set. If the exceptional set is isomorphic to P1, the
topological Euler–Poincaré characteristic increases by one.

In (cc-1), the inverse image of the blow-up along Γ, we have the exceptional
set which consists of two rational ruled surfaces and four P2’s on which six ordinary
double points sit each. Then we can calculate e(X). For the exceptional set in
(cc-2) (resp. (cc-3) and (cc-4)), the inverse image of the blow-up along Γ consists
of a non-normal surface and two P2’s (resp. a non-normal surface and one P2, and
a non-normal surface). The normalization of the non-normal surface is a ruled
surface over a curve of genus 1 (resp. 2 and 3). The topological Euler–Poincaré
characteristic of the inverse image of Γ is 0 (resp. −2 and −4). Taking into account
the existence of the ordinary double points, we obtain e(X).

Similarly, the inverse image of the blow-up along Γ consists of a non-normal
surface and one P2 (resp. a non-normal surface, a non-normal surface and one P2,
and a non-normal surface) for the case (bb-1) (resp. (bb-2), (bc-1) and (bc-2)). The
normalization of the non-normal surface is a ruled surface over a curve of genus 0
(resp. 1, 1 and 2). Thus we can calculate the contribution to the topological Euler–
Poincaré characteristic from them. The remaining contribution from the inverse
image of the blow-ups along the components except Γ is 10 (resp. 20) for the cases
(bc-1) and (bc-2) (resp. the cases (bb-1) and (bb-2)). Thus we get the results.

For the Picard number, we use the following formula:

ρ(X)= 3 +
∑

t∈P1

(#{irreducible components of f−1(t)}−1)

+ #{irreducible exceptional divisors with respect to π which are

horizontal to f}.

This essentially comes from the exact sequence [25, (3.2), p. 182].
(2) The Betti numbers can be calculated by Theorem 6.3 and the Poincaré

duality theorem because b1(X)=0 follows from H1(OX)=0. Thus b3(X)=0 in
cases (bb-1) and (cc-1), which implies that X is not liftable to characteristic zero
(cf. [12]). �

Proposition 6.6. The Betti numbers of the example of Calabi–Yau three-
fold X with e(X)=84 obtained in the previous proposition coincides with those of
the example in [12], but the examples are not isomorphic to each other.

Proof. The Calabi–Yau threefold X we obtained here admits a fibration to P1.
However, the example in [12] does not have a fibration to P1. Indeed, suppose
that it has a fibration X!P1. Then one can see from the construction that there
exists a purely inseparable finite morphism of degree 3 from a nonsingular rational
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threefold S to X , which induces a fibration of S to P1. But since S is obtained by
blowing up 40 distinct points on P3, it can be observed by arguments on intersection
numbers that S does not have a nontrivial divisor D with D2 trivial as an element
of N1(S/k) (cf. [18, Chapter I]), and we have a contradiction. �

Remark 6.7. (1) We cannot answer the question whether birationally equiva-
lent Calabi–Yau threefolds in positive characteristic have equal topological invari-
ants such as Betti numbers (cf. [2]). We do not know whether the two examples in
Proposition 6.6 are birationally equivalent to each other or not.

(2) For a fibration f : X!P
1, one has the formula (cf. [5])

e(X)=
∑

t∈P1

(e(Xt)−e(Xη)+d(Xt))+e(Xη)e(P1).

From the above proposition, we know that d(Xt), which comes from Serre’s measure
of wild ramification, for the fibration f :=(ϕ1×P1ϕ2)�π is zero (cf. [28]). However,
if we could prove that d(Xt)=0 for all t∈P

1 a priori, we could spare the tedious
calculation in the proof of Proposition 6.4.

(3) As for other examples with b3(X) �=0, we are not able to determine whether
they are liftable to characteristic zero (cf. [26] and [7]).

(4) For the unirational Calabi–Yau threefolds constructed from fiber products
of elliptic and quasi-elliptic rational surfaces in [13], we calculate the topological
Euler–Poincaré characteristic in the same way as above. Now we can compute the
Betti numbers of these Calabi–Yau threefolds X as

(b0, b1, b2, b3, b4, b5, b6)=

{
(1, 0, 27, 8, 27, 0, 1) if p=2,

(1, 0, 35, 0, 35, 0, 1) if p=3.

The one in p=3 has b3(X)=0 and is another example of a nonliftable Calabi–Yau
threefold.

7. Fibrational structures

A fibration of a Calabi–Yau threefoldX is a surjective morphism g : X!S with
S normal and OS

∼=g∗OX , henceKg−1(s)red =0. In characteristic zero, it follows from
generic smoothness of g and classification theories that a general fiber of g is an
elliptic curve when dimS=2, and either a K3 surface or an abelian surface when
dimS=1. In positive characteristic, we need to add quasi-elliptic fibrations, however
it is not known whether there exists a fibration g whose general fiber is not reduced
(cf. [24] and [21]). When dimS=1, very little is known about what kind of surfaces
appear as a general fiber of g.
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Proposition 7.1. In characteristic 3, the Calabi–Yau threefold X obtained in
the previous sections admits a fibration g : X!P1 whose general fiber is a super-
singular K3 surface with one rational double point of type A2. Moreover, if Y1 or
Y2 is of type (b), then X also has another fibration X!P1 whose general fiber is
a smooth supersingular K3 surface.

Proof. Let ρ1 : Y1!P1 be one of the P1-fibrations on the rational quasi-elliptic

surface Y1. We consider the composition g1 : X π−−!Y1×P1Y2
proj1−−−!Y1

ρ1−−!P1, which
indeed is a fibration.

Let Fϕ1 and Fρ1 be general fibers of ϕ1 : Y1!P1 and ρ1 : Y1!P1, respectively.
By the canonical bundle formula for Y1, we observe that Fϕ1 ·Fρ1 =2. This means
that a general fiber of the composition Y1×P1Y2

proj1−−−!Y1
ρ1−−!P1 is obtained as the

base change of Y2 by a double cover ϕ1|Fρ1
: P1!P1, which is ramified at two points

by the Hurwitz formula. We consider a double cover ψ1 :=(ϕ1, ρ1) : Y1!P1×P1. We
investigate the ramification divisor R1 of ψ1. Note that the configurations of special
fibers and sections on rational quasi-elliptic surfaces of type (b) and (c) are given
in [16, p. 11].

Case 1. (Y1 is of type (b).) Y1 has three sections O, P and Q, whose self-
intersection numbers are all −1. Let Θi, i=0, ..., 6, be the components of the fiber of
type IV∗ (see Figure 3). We can blow down eight curves O, P , Q and Θi, i=0, ..., 4,
in this order to get a Hirzebruch surface of degree 1, and denote by ρ1 : Y1!P1 the
P1-fibration induced by the P1-bundle structure on the above Hirzebruch surface.
Then 2Θ5 is the pull-back of a fiber of proj1 : P1×P1!P1 by the finite part of the
Stein factorization of ψ1. This means that Θ5 is a component of the ramification
divisor R1. Moreover, if we denote the moving cusp of the quasi-elliptic surface
Y1 by Σ1, then it follows from Σ1 ·Fρ1 =1 and Fϕ1 ·Fρ1 =2 that ψ1 is also ramified
along Σ1. Thus taking a crepant resolution π : X!Y1×P1Y2, we have a smooth
K3 surface as a general fiber of g1 : X!P1, which is supersingular since it has
a quasi-elliptic fibration.

Figure 3. Configurations of sections.
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We can choose other configurations of eight curves to obtain Hirzebruch sur-
faces of degree 0, 1 and 2, such that no fiber of ϕ1 : Y1!P1 has a component of R1.
In these cases, a general fiber of g1 : X!P1 has one rational double point of type A2.

Case 2. (Y1 is of type (c).) As in Case 1, we can observe that the moving cusp
Σ1 is a component of R1 for any P1-fibration ρ1 : Y1!P1. On the other hand, since
all components of the fibers are reduced in this case, no fiber of ϕ1 : Y1!P1 contains
a component of the ramification divisor, hence the other irreducible component of
R1 exists horizontally to ϕ1. Thus a general fiber of g1 : X!P1 is a supersingular
K3 surface with one rational double point of type A2. �

Remark 7.2. (1) In Case 1 of the proof above, we can choose other configu-
rations of eight curves to get Hirzebruch surfaces of degree 0 and 2, and a general
fiber of g1 : X!P1 is smooth.

(2) We note that the quasi-elliptic fibrational structure on a general fiber of
g1 : X!P1 depend on Y2. Figure 4 illustrates the case when Y1 and Y2 are of
type (b) and (c), respectively.

Figure 4. The case Y1, Y2 are of type (b) and (c).
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(3) As for the classification of singularities on general fibers of fibrations on
Fano and Calabi–Yau threefolds over P1, a partial answer in rational double points
and simple elliptic singularities is obtained in [14].
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