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Extreme Jensen measures

Sylvain Roy

Abstract. Let Ω be an open subset of Rd, d≥2, and let x∈Ω. A Jensen measure for x on Ω

is a Borel probability measure µ, supported on a compact subset of Ω, such that
∫

u dµ≤u(x) for

every superharmonic function u on Ω. Denote by Jx(Ω) the family of Jensen measures for x on Ω.

We present two characterizations of ext(Jx(Ω)), the set of extreme elements of Jx(Ω). The first is

in terms of finely harmonic measures, and the second as limits of harmonic measures on decreasing

sequences of domains.

This allows us to relax the local boundedness condition in a previous result of B. Cole and

T. Ransford, Jensen measures and harmonic measures, J. Reine Angew. Math. 541 (2001), 29–53.

As an application, we give an improvement of a result by Khabibullin on the question of

whether, given a complex sequence {αn}∞n=1 and a continuous function M : C!R+, there exists

an entire function f �≡0 satisfying f(αn)=0 for all n, and |f(z)|≤M(z) for all z∈C.

1. Introduction

Let Ω be an open subset of Rd, d≥2. We denote by SH(Ω) the set of super-
harmonic functions on Ω (see e.g. [AG, Definition 3.1.2]), and by SH+(Ω) the set of
positive superharmonic functions on Ω.

Given x∈Ω, a Jensen measure for x with respect to Ω is a probability meas-
ure µ, supported on a compact subset of Ω, such that

∫
u dµ≤ u(x), u∈SH(Ω).

Let us denote by Jx(Ω) the set composed of these measures.
Jensen measures have proved to be a very useful tool in many domains such

as (pluri)potential theory, complex analysis, analytic multifunctions theory and
uniform algebra theory. For a survey of this, see [Ra]. The aim of this paper is to
study Jensen measures and get more information about them.

As a few examples of Jensen measures, there is the Dirac measure εx at x,
the normalized Lebesgue measure on a closed ball B centered at x and contained
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in Ω, and the normalized surface measure σ on the sphere ∂B with B as above.
More generally than the last example, there is the set of harmonic measures for x
on domains D with x∈D�Ω (i.e. D is a compact subset of Ω), which we denote
by Hx(Ω).

The space of continuous real-valued functions on Ω, denoted by C(Ω), is
a Fréchet space with the usual uniform convergence on compact subsets. The dual
space C(Ω)* may be identified with the space of finite signed Borel measures on Ω
with compact support. In particular, Jx(Ω)⊂C(Ω)* for each x∈Ω. The following
proposition gives some properties of Jx(Ω) as a subset of C(Ω)*.

Proposition 1.1. ([CR2, Proposition 2.3]) Let Ω be an open subset of Rd,
d≥2, and let x∈Ω.

(a) The set Jx(Ω) is convex and weak*-closed in C(Ω)*.
(b) For each compact K⊂Ω, the set

Jx(Ω,K) := {µ∈Jx(Ω) : suppµ⊂K}

is convex, weak*-compact and metrizable.

Denote by ext(Jx(Ω)) the set of extreme elements of Jx(Ω). As a consequence
of Choquet’s theory (see e.g. [Ph]) and the above proposition, each Jensen meas-
ure can be expressed as an ‘average’ of extreme Jensen measures, and moreover
ext(Jx(Ω)) is the minimal set with this property. This vague statement is formal-
ized in [CR2, Proposition 6.1]. So, extreme Jensen measures can tell us a lot
about Jx(Ω), and our work is based on this perspective.

In [CR2, Theorem 1.5], it is shown that

Hx(Ω)∪{εx}⊂ ext(Jx(Ω)),

and that this inclusion is strict. This result and the minimal property of ext(Jx(Ω))
mentioned above dash our hopes to express Jensen measures as averages of harmonic
measures.

What we shall do in this paper is to give a complete characterization
of ext(Jx(Ω)) in terms of finely harmonic measures (defined below) and also in
terms of sequences of harmonic measures. This is the content of the following the-
orems, which are proved in Sections 3–7. Before stating them, let us give some
explanatory comments.

On Rd, the so-called fine topology related to the set SH(Rd) can be defined. It
is the coarsest topology on Rd which makes every superharmonic function on Rd

continuous in the extended sense of functions taking values in [−∞,+∞]. It is
strictly finer than the Euclidean topology. As is the case for relatively compact



Extreme Jensen measures 155

domains of Ω containing x, it is possible to define the harmonic measure on a fine
domain V (open and connected with respect to the fine topology) for x, provided
that x∈V �Ω. We denote this measure by εΩ\V

x , and by FHx(Ω), the set containing
all of them. A detailed treatment is given in Section 2. Finally, by a regular domain
we mean a domain which is regular with respect to the classical Dirichlet problem
(see e.g. [AG, Chapter 6]).

Theorem 1.2. Let Ω be an open subset of Rd, d≥2. Then, for each x∈Ω,

ext(Jx(Ω))= FHx(Ω)∪{εx}.
Theorem 1.3. Let Ω be an open subset of Rd, d≥2, and x∈Ω.
(i) For each decreasing sequence {Dn}∞n=1 of domains such that x∈Dn�Ω, the

sequence {ωn}∞n=1 converges to εx or to a measure in FHx(Ω) in the weak*-topology
of C(Rd)*, where ωn is the harmonic measure on Dn for x.

(ii) Let V be a fine domain in Ω such that x∈V �Ω. Then, there exists
a decreasing sequence of regular domains {Dn}∞n=1 such that V ⊂Dn�Ω and
(
⋂∞
n=1Dn)\V is polar.

(iii) If {Dn}∞n=1 and V are as described in (ii), then ωn!εΩ\V
x in the weak*-

topology of C(Rd)*, where ωn is the harmonic measure on Dn for x.

These two theorems allow us to give an improved version of the main result
of [CR2], and moreover, to prove it in a shorter and more transparent way. This is
the content of the following theorem which is proved in Section 8. Let us denote
by Hr

x(Ω) the set of harmonic measures of Hx(Ω) defined on regular domains.

Theorem 1.4. Let Ω be an open subset of Rd, d≥2, and x∈Ω. Let
ϕ : Ω![−∞,+∞] be a universally measurable function which satisfies the following
property:

For each open set D with x∈D�Ω, there exists a subharmonic function s on D
such that s(x)>−∞ and ϕ≥s on D.

Then, for each µ∈Jx(Ω),
∫
ϕdµ≤ sup

{∫
ϕdω :ω ∈Hr

x(Ω)∪{εx}
}

.

Note that the condition on ϕ implies that the integrals above exist. To fully
understand this result and its implications, one should have a look at [CR1]
and [CR2].

Finally, in Section 9, we present an application of our work to entire functions
based on Theorem 1.4 and a theorem of Khabibullin [Kh, Section 2, p. 1069] stated
in the same section. Let us explain the context within which this is set.
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Given an entire function f �≡0, it is well known that there is a relation between
the rate of growth of f and the rate of convergence toward infinity of its sequence
of zeros. In particular, if M : C!(0,∞) is a continuous function and {αn}∞n=1 is
a sequence of non-zero complex numbers converging to infinity, one might ask which
conditions M and {αn}∞n=1 must satisfy to assure the existence of f .

Denote by GD the Green function of a bounded domain D and by HD
ϕ the

generalized solution of the Dirichlet problem on D with boundary data ϕ. If such
an f exists, then we can show that

∑

n

GD(αn, 0)≤HD
logM (0)−log |f(0)|

for all bounded domains D which contain 0, where n runs over the integers such that
αn∈D. The proof of this statement is elementary and a full justification appears in
Section 9. Surprisingly, this necessary condition turns out to be almost sufficient,
and this is the content of the next result.

Theorem 1.5. Let M : C!(0,∞) be a continuous function. Let {αn}∞n=1 be
a sequence of non-zero complex numbers. Suppose that there exists a constant c∈R
such that

∑

n

GD(αn, 0)≤HD
logM (0)+c(1)

for each bounded domain D which contains 0, where n runs over the integers such
that αn∈D. Then, for each δ>0, there exists an entire function f �≡0, whose zero
set includes {αn}∞n=1 (counting multiplicities), such that

|f(z)| ≤ max
|ζ−z|≤δ

M(ζ), z ∈C.

2. Definitions and preliminaries

In this section, we introduce the definitions and the results one should know
to feel comfortable with the sequel. If there is no contraindication, Ω will denote
an open subset of Rd, d≥2, and x a point of Ω.

As in measure theory, potential theory has its own negligible sets, called polar
sets (see e.g. [AG, Chapter 5]). We will say that a proposition P (y), concerning
a point y in a set A, holds quasi-everywhere (q.e.) or holds for quasi-every y∈A, if
it is true for all y∈A apart from a polar set.

For a positive superharmonic function u∈SH+(Ω) and A⊂Ω, define

RAu := inf{v : v ∈SH+(Ω) and v≥ u on A}.
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This function is called the réduite of u on A (in Ω). Its lower semicontinuous
regularization R̂Au is called the balayage of u on A (in Ω) (see e.g. [AG, Section 5.3]).

Recall that Jx(Ω) denotes the set of Jensen measures. Most of the litera-
ture on the subject defines Jensen measures in terms of subharmonic functions.
Nevertheless, we decided to proceed in a different way and define them in terms
of superharmonic functions since most of the cited literature on potential theory
which appears in this paper is built on superharmonic functions. We thought it
would be more natural in this way.

Let us define an auxiliary class of measures for Jx(Ω). Write µ∈SJx(Ω) if µ is
a Radon measure on Ω such that

∫
u dµ≤ u(x), u∈SH+(Ω).

The next properties of SJx(Ω) are more or less evident. Recall that ext(A) denotes
the set of extreme elements of the convex set A.

Basic properties of SJx(Ω)

(i) If µ∈SJx(Ω), then the support of µ only meets the connected component
of Ω which contains x.

(ii) Suppose that Ω is Greenian (i.e. that Ω possesses a Green function; see
e.g. [AG, Chapter 4]). If P⊂Ω is polar and µ∈SJx(Ω), then P is µ-measurable and
µ(P \{x})=0.

(iii) If µ∈ext(SJx(Ω)) and µ �=εx, then µ({x})=0.
Note that Properties (ii) and (iii) imply that µ(P )=0 if P⊂Ω is polar and

µ∈ext(SJx(Ω))\{εx}.
Here are some classical definitions.

Definition 2.1. Let Ω be a Greenian open subset of Rd, d≥2.
(a) ([AG, Chapter 1]) For y∈Rd, we define Uy : Rd!(−∞,+∞] by

Uy(z) :=

{
− log ‖z−y‖, d=2,

‖z−y‖2−N , d≥3,
z ∈Rd,

where it is understood that Uy(y)=+∞. This function is usually called the funda-
mental harmonic function with pole y. It is harmonic on Rd\{y} and superhar-
monic on Rd.

(b) ([AG, Chapter 4] and [CC, Section 7.1]) Let GΩ( · , · ) denote the Green
function of Ω. If µ is a Borel measure, then the function

GΩµ(z) :=
∫

Ω

GΩ(z, y) dµ(y), z ∈Ω
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is the (Green) potential for µ on Ω if it is superharmonic. In the affirmative, we
say that µ is an admissible measure.

(c) ([CC, Section 7.1]) If µ is admissible and A⊂Ω, then there exists a unique
Borel measure µA such that

∫
u dµA =

∫
R̂Au dµ, u∈SH+(Ω).

The measure µA turns out to be admissible, and is called the balayage of µ on A.

As we mentioned in the introduction, Rd can be equipped with the fine topology
relative to SH(Rd). To avoid confusion, we will use the terms fine and finely when
referring to the fine topology. (For more details, see e.g. [AG, Chapter 7].)

Definition 2.2. ([Fu, Section 3]) Let Ω be a Greenian open subset of Rd, d≥2,
and A⊂Rd.

(a) Given y∈Rd, we shall say that A is thin at y if y is not a fine limit point
of A (that is, y is not a limit point of A with respect to the fine topology).

(b) When A⊂Ω, we denote by b(A) and i(A) respectively the subset of Ω
consisting of the points for which A is non-thin, and the set of finely isolated points
of A.

(c) The sets Ã and ∂fA denote respectively the fine closure and the fine bound-
ary of A.

(d) We say that A⊂Ω is a base if A=b(A). It is easy to see that base sets of
Ω are relatively finely closed in Ω.

The notion of base set is intimately related to the regularity of an open set for
the Dirichlet problem, as we can see in the next result.

Proposition 2.3. ([AG, Section 7.5] and [CC, Section 7.1]) Let Ω be a Green-
ian open subset of Rd, d≥2. Let U�Ω open. Then, the following statements are
equivalent :

(i) U is regular for the Dirichlet problem;
(ii) Ω\U is a base;
(iii) i(Ω\U)=∅.

Note. To avoid misunderstanding, we will only consider the Dirichlet problem
on relatively compact subsets of Ω, since there are different definitions for general
open sets.

This relation between regular open sets and base sets allows us to give a wider
sense for the former notion. We will say that a finely open subset U�Ω is regular
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if Ω\U is a base (see [Fu, p. 34]). Note that, like in the Euclidean case, the
set i(Ω\U) is polar if U is finely open [CC, Corollary 7.2.1].

Let us give a last result on the regular sets.

Proposition 2.4. ([Fu, p. 150]) Let Ω be a Greenian open subset of Rd,
d≥2. Let U⊂Ω be finely open and set V :=U∪i(Ω\U). Then, U is finely connected
(i.e. connected with respect to the fine topology) if and only if V is finely connected.
Also, V is regular.

We now present a series of results which will be needed in the following sections.
Most of them come from the literature.

Proposition 2.5. Let Ω be a Greenian open subset of Rd, d≥2. Then, the
fine Borel subsets of Ω are µ-measurable for each µ∈SJx(Ω). In particular, the fine
Borel functions f : Ω![−∞,+∞] are µ-measurable for each µ∈SJx(Ω).

Proof. Let F be a relatively finely closed subset of Ω and µ∈SJx(Ω). We can
write F=b(F )∪i(F ). The set i(F ) is polar, so it is µ-measurable (property (ii)
of SJx(Ω)). Also, the set b(F ) is of type Gδ. This is not obvious, but we can find
a proof of this in [CC, Corollary 7.2.1]. This implies that F is µ-measurable. Since
it is true for all closed sets, we get the desired result. �

Here is a result which links the balayage of an admissible measure with the
notion of base set.

Proposition 2.6. ([Fu, Section 4.7]) Let Ω be a Greenian open subset of Rd,
d≥2. Let µ be an admissible measure on Ω and A⊂Ω. Then,

(a) µA=µb(A) is carried by b(A);
(b) µA=µ if and only if µ is carried by b(A).

The next result is a motivation for the definition of finely harmonic measure.

Proposition 2.7. ([CC, Theorems 7.1.1 and 7.1.2]) Let Ω be a Greenian open
subset of Rd, d≥2. Let U be an open subset of Ω (in the Euclidean topology) such
that U�Ω. Then,

εΩ\U
y =

{
εy for y∈b(Ω\U),

ω for y∈U,

where ω denotes the harmonic measure on U for y.

We are now ready to define the finely harmonic measure.
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Definition 2.8. ([Fu, p. 37]) Let Ω be a Greenian open subset of Rd, d≥2. Let U
be a finely open subset of Ω such that U�Ω, and let x∈U . The finely harmonic
measure on U for x is the measure εΩ\U

x . We denote by FHx(Ω) the set of finely
harmonic measures εΩ\V

x such that V �Ω is a fine domain containing x.

By the last proposition, we can see that the finely harmonic measure on a rela-
tively compact open subset of Ω is nothing other than the classical harmonic meas-
ure.

Proposition 2.9. Let Ω be a Greenian open subset of Rd, d≥2, and x∈Ω.
Let U be a finely open subset of Ω with x∈U . Then,

(i) εΩ\U
x is carried by ∂fU∩Ω and does not charge polar sets ;

(ii) if U is finely connected, then the measures εΩ\U
y , y∈U , all have the same

null sets.

Proof. (i) See [Fu, p. 37].
(ii) Follows from Propositions 2.4, 2.6 and [Fu, p. 150]. �

We define an auxiliary class of measures for FHx(Ω). Like the set SJx(Ω), it
will play an important rôle later.

Definition 2.10. Let Ω be a Greenian open subset of Rd, d≥2. For each
x∈Ω, we denote by SFHx(Ω) the set which contains the measures of the form εAx ,
where A⊂Ω.

For a finely open subset U of a Greenian open subset Ω, we adopt the same
definitions as [Fu, Section 8] for finely hyperharmonic, finely hypoharmonic
and finely harmonic functions. Note that all these functions are ν-measurable,
ν∈FHx(Ω), as a consequence of Proposition 2.5.

Proposition 2.11. ([Fu, Corollary of p. 86]) Let Ω be a Greenian open subset
of Rd, d≥2. Let u∈SH+(Ω) and A⊂Ω. Then, the function R̂Au is finely harmonic
on {x∈Ω:R̂Au (x)<+∞}\b(A).

By a semibounded potential, we mean a potential for which the lower semi-
continuous regularization of inf{R̂Aλ

p :λ>0} equals 0, where Aλ={x∈Ω:p(x)>λ}
(see e.g. [Fu, Section 2]).

Proposition 2.12. ([Fu, Theorems 9.1 and 12.6]) Let Ω be a Greenian subset
of Rd, d≥2. Let f be a finely hyperharmonic function on a finely open subset U⊂Ω.

(i) If

fine-lim inf
y!z
y∈U

f(x)≥ 0
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for quasi-every z∈∂fU∩Ω, and if moreover there exists a semibounded potential p
on Ω such that f≥−p in U , then f≥0.

(ii) If U is finely connected and f attains a global minimum on U , then f is
constant.

These results are respectively known as the fine boundary minimum principle and
the fine global minimum principle. Note that if U�Ω and f is lower bounded in U ,
then the semibounded potential always exists.

Proposition 2.13. Let Ω be a Greenian open subset of Rd, d≥2, and x∈Ω.
Let F be a relatively finely closed subset of Ω\{x}. Denote by U the finely connected
component of Ω\F which contains x. If U�Ω, then

(i) εFx =εΩ\U
x ;

(ii) εΩ\U
x (Ω)=1.

Proof. (i) Since
∫
u dεFx = R̂Fx (x) and

∫
u dεΩ\U

x = R̂Ω\U
u (x), u∈SH+(Ω),

it suffices to show that

R̂Fu (x)= R̂Ω\U
u (x), u∈SH+(Ω)∩C(Ω).

Take u∈SH+(Ω)∩C(Ω). By Proposition 2.11, the function R̂Fu −R̂Ω\U
u is finely

harmonic in U . Note also that it is bounded on U . Moreover,

lim inf
y!z
y∈U

(
R̂Fu −R̂Ω\U

u

)
(y)≥ lim inf

y!z
y∈U

R̂Fu (y)−u(z)≥ R̂Fu (z)−u(z)= 0

for quasi-every z∈∂fU∩Ω. By the fine boundary minimum principle, it follows that
R̂Fu (x)≥R̂Ω\U

u (x). The reverse inequality can be shown in the same way.
(ii) It is needed to verify that R̂Ω\U

1 (x)=1 since

εΩ\U
x (Ω)=

∫
1 dεΩ\U

x = R̂
Ω\U
1 (x).

By Proposition 2.11, the function R̂
Ω\U
1 −1 is finely harmonic on U . It is also

bounded on U and

lim inf
y!z
y∈U

(R̂Ω\U
1 (y)−1)= 0

for quasi-every z∈∂fU∩Ω. The fine boundary minimum principle then implies the
desired equality. �
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Proposition 2.14. Let Ω1 and Ω2 be Greenian open subsets of Rd, d≥2,
and x∈Ω1∩Ω2. Let U be a finely open set such that x∈U�Ω1∩Ω2. If Ω1εΩ1\U

x and
Ω2εΩ2\U

x denote the finely harmonic measures for U at x with respect to Ω1 and Ω2,
respectively, then

Ω1εΩ1\U
x = Ω2εΩ2\U

x .

Proof. Set Ω′=Ω1∩Ω2. By applying a reasoning similar to the one in Prop-
osition 2.13, we can show that Ω1εΩ1\U

x = Ω′
εΩ

′\U
x = Ω2εΩ2\U

x . �

Proposition 2.15. ([Fu, Theorem 14.1]) Let Ω be a Greenian open subset of
Rd, d≥2. Let U be a finely open subset of Ω and f : b(∂fU)!(−∞,+∞) be a finely
continuous function. If |f |≤p on b(∂fU) for some finite and semibounded potential
p on Ω, then the function

u(y) :=
∫
f dεΩ\U

y , y∈ Ũ ,

is a finely continuous extension of f from b(∂fU) to Ũ which is also finely harmonic
in U , and such that |u|≤p on Ũ .

The function u is unique and is called the proper fine Dirichlet solution on U with
boundary data f . Note that if U�Ω and f is bounded on b(∂fU), then the solution
always exists and is bounded.

Definition 2.16. ([Fu, p. 173]) Let Ω be a Greenian open subset of Rd, d≥2.
Let f :∂fU![−∞,+∞] be a function on the fine boundary of an open subset U�Ω.

(i) A fine superfunction u for f (with respect to U) is a finely hyperharmonic
function defined on U and bounded below there, such that

fine-lim inf
y!z
y∈U

u(y)≥ f(z), z ∈ ∂fU.

We denote by H
U

f the infimum of the fine superfunctions for f .
(ii) The fine subfunctions and HU

f U are defined by ‘inverting’ the preceding
definitions.

(iii) In the case where H
U

f and HU
f coincide and are finite valued on U , we

denote their common value by HU
f and we say that f is finely resolutive.

Proposition 2.17. ([Fu, Theorem 14.6]) Let Ω be a Greenian open subset
of Rd, d≥2. Let f : ∂fU![−∞,+∞] be a function on the fine boundary of an
open subset U�Ω. If f is ε

Ω\U
x -measurable for each x∈U and if the following
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integral exists, then

HU
f (x)=H

U

f (x)=
∫
f dεΩ\U

x .

Moreover, f is finely resolutive if and only if it is integrable with respect to εΩ\U
x ,

x∈U . In the affirmative case, the function HU
f is finely harmonic and

HU
f (x)=

∫
f dεΩ\U

x , x∈U.

This result is usually called the generalized fine Dirichlet problem for U with
boundary data f . Note that this coincides with the classical case when U is open
in the Euclidean topology.

Proposition 2.18. (Generalized fine gluing principle) Let Ω be a Greenian
open subset of Rd, d≥2. Let u and v be finely hyperharmonic functions on the
finely open subset U and V of Ω, respectively. Suppose also that V ⊂U . If

fine-lim inf
y!x
y∈V

v(y)≥ u(x)

for quasi-every x∈∂fV ∩U and if v is lower bounded in some deleted fine neigh-
bourhood of each point of the exceptional set where v does not satisfy the fine lower
limit condition, then the function

w=

{
min{u, v} on V,

u on U \V,
is finely hyperharmonic in U .

Proof. This follows from [Fu, Theorem 9.14 and Lemma 10.1]. �

3. First steps toward Theorem 1.2

The aim of the next four sections is to prove Theorem 1.2. To achieve this, we
shall proceed in the way described below.

Steps toward Theorem 1.2

Let Ω be a Greenian open subset of Rd, d≥2, and x∈Ω. We shall proceed by
showing the following relations:
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SFHx(Ω)⊂ SJx(Ω),(2)

FHx(Ω)⊂ Jx(Ω),(3)

SFHx(Ω)⊂ ext(SJx(Ω)),(4)

FHx(Ω)⊂ ext(Jx(Ω)),(5)

SFHx(Ω) = ext(SJx(Ω)),(6)

FHx(Ω)∪{εx}= SFHx(Ω)∩Jx(Ω),(7)

ext(SJx(Ω))∩Jx(Ω) = ext(Jx(Ω)).(8)

The first four equations are the content of this section. In the next section, we
prove (6) with the aid of a paper of Mokobodzki [Mo]. Equation (7) is shown in
Section 5. Most of the tools from fine harmonicity are used there. Finally, the last
equation is proved in Section 6. It is mostly based on an approximation result from
Gardiner [Gd, Lemma 6.2].

Let us now prove the first two equations.

Proof of (2). Take εAx ∈SFHx(Ω), where A⊂Ω. If u∈SH+(Ω), then

∫
u dεAx = R̂Au (x)≤ u(x).

This shows that εAx ∈SJx(Ω). �

Proof of (3). Take εΩ\V
x ∈FHx(Ω), where V �Ω is a fine domain containing x.

The support of εΩ\V
x is relatively compact in Ω since this measure is carried by ∂fV .

Moreover, Proposition 2.13 implies that εΩ\V
x is a probability measure.

It remains to prove that
∫
u dε

Ω\V
x ≤u(x), u∈SH(Ω). Take u∈SH(Ω). Since

V �Ω and u is lower semicontinuous, there exists a sequence of continuous func-
tions {fn}∞n=1 on Rd, increasing pointwise to u on V (see e.g. [AG, Lemma 3.2.1]).
Consider

hn(y)=
∫
fn dε

Ω\V
y , y∈ Ṽ ,

the proper fine Dirichlet solution on V with boundary data fn|b(∂fV ). The function
u−hn is then finely hyperharmonic and lower bounded on V (see the remark after
Proposition 2.15). Moreover,

fine-lim inf
y!z
y∈V

(u−hn)(y)≥ u(z)−hn(z), z ∈ ∂fV.
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The right-hand side of this expression equals u(z)−fn(z) for quasi-every
z∈∂fV , and u≥fn on ∂fV . By the fine boundary minimum principle, it follows
that u≥hn on V . Hence,

∫
fn dε

Ω\V
x = hn(x)≤ u(x).

Letting n!∞, we get the desired result. �

The last part of this proposition is inspired by [CR2, Proposition 3.2], where
the same result is shown for Hx(Ω) instead of FHx(Ω). Before proceeding to (4)
and (5), let us give a preliminary lemma.

Lemma 3.1. Let Ω be a Greenian open subset of Rd, d≥2, and x∈Ω. If
µ∈SJx(Ω) is carried by a base B of Ω, then

∫
u dµ≤

∫
u dεBx , u∈SH+(Ω).

Proof. Let B a base of Ω and µ∈SJx(Ω) carried by B. Proposition 2.6(b)
implies that µ=µB. Hence,

∫
u dµ=

∫
u dµB =

∫
R̂Bu dµ≤ R̂Bu (x)=

∫
u dεBx , u∈SH+(Ω). �

Proof of (4). Let εAx ∈SFHx(Ω), where A⊂Ω. Let µ1, µ2∈SJx(Ω) and α∈(0, 1)
be such that

εAx =αµ1+(1−α)µ2.

This relation implies that suppµj⊂supp εAx , j=1, 2. So, by Proposition 2.6(a),
we see that µ1 and µ2 are carried by b(A). From Lemma 3.1 we get that

∫
u dµj ≤

∫
u dεb(A)

x =
∫
u dεAx , u∈SH+(Ω), j= 1, 2.

This implies, by considering the equality εAx =αµ1+(1−α)µ2, that
∫
u dµ1 =

∫
u dµ2 =

∫
u dεAx , u∈SH+(Ω).

We then conclude that µ1=µ2=εAx . �

Proof of (5). This is similar to the proof of (4). �
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4. Mokobodzki’s paper

The context in which Mokobodzki’s paper [Mo] takes place is much more gen-
eral than the present one. It is not obvious at first sight that it can be applied to
ours, but a closer look reveals that it is indeed suitable for our purpose. Applied
in the right way, one can see that the main result implies (6). Let us describe the
abstract setting of this paper.

Recall that C(Ω) is the set of continuous real-valued functions defined on Ω.
Denote by C+(Ω) the set of nonnegative functions of C(Ω).

Definition 4.1. Let Ω be an open subset of Rd, d≥2. A subset C of C+(Ω) is
called a convex cone if it satisfies the following properties:

(i) f, g∈C⇒f+g∈C;
(ii) f∈C and λ≥0⇒λf∈C.

On C(Ω) we can define a new order relation with respect to a convex cone C.
For f, g∈C(Ω), we will say that f is specifically smaller than g (with respect to C),
and write f�g, if there exists h∈C such that f+h=g. This is the specific order on
C(Ω) relative to C.

Definition 4.2. Let Ω be an open subset of Rd, d≥2. Let C be a convex cone
in C+(Ω).

(i) C is said to be finitely stable from below if the minimum of each finite family
of functions in C is also a function in C.

(ii) C is said to be linearly separating if, for each pair of points x, y∈Ω, x �=y,
there exist two functions f, g∈C such that

f(x)g(y) �= f(y)g(x).

(iii) C is said to be adapted if, for each f∈C, there exists g∈C such that, given
ε>0, the set {x∈Ω:f(x)>εg(x)} is relatively compact in Ω.

(iv) C is said to satisfy property (P) if, given f, g1, g2∈C with f�g1+g2, there
exist f1, f2∈C such that f=f1+f2, f1�g1 and f2�g2.

(v) We say that a Radon measure µ is C-integrable if
∫
f dµ<+∞, f ∈C.

We now forget about the previous definition of balayage and define two other
ones: the balayage of a measure on a set, and the balayage of a measure with respect
to a convex cone.
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Definition 4.3. Let Ω be an open subset of Rd, d≥2. Let C⊂C+(Ω) be a convex
cone and µ be a C-integrable measure.

A C-integrable measure ν is said to be a balayage of µ with respect to C if
∫
f dν≤

∫
f dµ, f ∈C.

The set of measures which are balayage of µ with respect to C is denoted by Aµ.

For the second definition, we need to work a little more.

Definition 4.4. Let Ω be an open subset of Rd, d≥2. Let C⊂C+(Ω) be a convex
cone and K⊂Ω a compact set. For f∈C, we define

SKf = inf{g∈C : g≥ f on K}.
Proposition 4.5. ([Mo, Corollary 5]) Let Ω be an open subset of Rd, d≥2.

Let C⊂C+(Ω) be a convex cone satisfying properties (i)–(iv) of Definition 4.2, and
let µ be a C-integrable measure.

(i) If K is a compact subset of Ω, then there exists a unique measure µK which
is C-integrable, carried by K, and such that

∫
f dµK =

∫
SKf dµ, f ∈C.

(ii) If A is a Borel subset of Ω, then there exists a unique measure µA which
is C-integrable, and such that

∫
f dµA = sup

{∫
f dµK :K is compact and K ⊂A

}

, f ∈C.

Here is the second definition of the balayage.

Definition 4.6. Let Ω be an open subset of Rd, d≥2. Let C⊂C+(Ω) be a convex
cone satisfying properties (i)–(iv) of Definition 4.2, and µ be a C-integrable measure.
Let A be a Borel subset of Ω. The measure µA defined in the last proposition is
called the balayage of µ on A.

As explained in the introduction of [Mo], the aim of the paper was to relate
these two definitions of the balayage. The main result is given in [Mo, Propositions 8
and 9]. We now present a combination of them both.

Proposition 4.7. ([Mo, Propositions 8 and 9]) Let Ω be an open subset of Rd,
d≥2. Let C⊂C+(Ω) be a convex cone satisfying properties (i)–(iv) of Definition 4.2,
and µ be a C-integrable measure. Then ext(Aµ) coincides with the set of measures
of the form µB , where B is a Borel subset of Ω.
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For our purpose, consider the convex cone of continuous real potentials on Ω,
for Ω Greenian. Denote this cone by P c.

Proposition 4.8. Let Ω be a Greenian open subset of Rd, d≥2. Then P c

satisfies properties (i)–(iv) of Definition 4.2.

Proof. (i) P c is clearly finitely stable from below.
(ii) The fact that P c is linearly separating is a consequence of [CC, Prop-

osition 2.3.2].
(iii) The fact that P c is adapted is a consequence of [CC, Proposition 2.2.4].
(iv) As on C(Ω), we can consider the specific order on SH(Ω) relative to P c.

Let p, q1, q2∈P c be such that p�q1+q2. By [Fu, p. 16], there exist p1, p2∈SH+(Ω)
such that p=p1+p2, p1�q1 and p2�q2. Both p1 and p2 are clearly potentials.
Moreover, since p1 and p2 are lower semicontinuous and their sum is continuous,
they are continuous. Hence, P c satisfies property (P). �

Given x∈Ω, one can easily verify that the set Aεx corresponds to SJx(Ω).
So, what we would like to get is a relation between the usual notion of balayage
introduced in Section 2 and the second one introduced in the present section. Since
there is a possibility of confusion, let us fix the following notation. Denote by εAx
the usual notion of the balayage of εx on A, and by δAx the one encountered in
Definition 4.6.

Here is the relation between εAx and δAx .

Proposition 4.9. Let Ω be a Greenian open subset of Rd, d≥2. If B is
a Borel subset of Ω, then

δBx =

{
εx, if x∈B,
εBx , if x /∈B.

In particular, if B is a base, then δBx =εBx , x∈Ω.

Before continuing with the proof of this proposition, let us state a preliminary
lemma.

Lemma 4.10. Let Ω be a Greenian subset of Rd, d≥2. If p∈P c and K is
a compact subset of Ω, then R̂Kp =ŜKp .

Proof. Clearly, R̂Kp ≤ŜKp . Let us show the opposite inequality. The set
{q∈P c :q≥p on K} is a saturated family on Ω\K (see e.g. [AG, p. 79]). Hence,

the function SKp is harmonic and equal to Ŝ
K

p on Ω\K. Let u∈SH+(Ω) be such
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that u≥p on K. By applying the domination principle [AG, Theorem 5.1.11] with

u and Ŝ
K

p , we see that u≥ŜKp on Ω. The conclusion follows by taking the infimum
over u∈SH+(Ω) such that u≥p on K. �

Proof of Proposition 4.9. First, suppose that x /∈B. If K is a compact subset
of B, then

∫
p dδKx =SKp (x)= Ŝ

K

p (x)= R̂Kp (x), p∈P c.

This and the fact that A !R̂Ap , A⊂Ω is a capacity (see e.g. [CC, p. 123]) imply that
∫
p dδBx = sup

{
R̂Kp (x) :K is compact and K ⊂B

}
= R̂Bp (x), p∈P c.

Hence,
∫
p dδBx =R̂Bp (x), p∈P c, and this shows that εBx =δBx .

Now let us treat the case where x∈B. If K is a compact subset of B and if
x∈K, then

∫
p dδKx =SKp (x)= p(x), p∈P c.

So,
∫
p dδBx = sup

{∫
p dδKx :K is compact and K ⊂B

}

= p(x)=
∫
p dεx, p∈P c.

It follows that δBx =εx.
Finally, the last remark follows from the fact that εBx =εx if B is a base and

x∈B. �

Proof of (6). By (4), we already know that SFHx(Ω)⊂ext(SJx(Ω)). Let there-
fore µ∈ext(SJx(Ω)). By Proposition 4.7, there exists a Borel set B such that µ=δBx .
If x∈B, then δBx =εx. On the other hand, if x /∈B, then δBx =εBx . In both cases,
µ∈SFHx(Ω). �

5. Relation between SFHx(Ω) and FHx(Ω)

This section is devoted to proving (7). The main result on which it depends is
Proposition 5.2. First, let us give a preliminary lemma.

Lemma 5.1. Let Ω be a Greenian open subset of Rd, d≥2. Let F be a finely
closed subset of Ω such that F�Ω.
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(i) R̂F1 ≡1 on each bounded finely connected component V of Rd\F entirely
contained in Ω.

(ii) If each bounded finely connected component of Rd\F is entirely contained
in Ω, then R̂F1 <1 on U∩Ω, where U is the unbounded component of Rd\F .

Proof. (i) Let V be a bounded finely connected component of Rd\F entirely
contained in Ω. The function R̂F1 −1 is finely harmonic on V , lower bounded on V
and

lim inf
y!z
y∈V

(R̂F1 (y)−1)= 0

for quasi-every z∈∂fV . By the fine boundary minimum principle, it then follows
that R̂F1 ≡1 on V .

(ii) For a contradiction, suppose that the hypothesis of (ii) is satisfied and
R̂F1 (x0)=1 for a certain x0∈U∩Ω. By the global fine minimum principal, we see
that R̂F1 ≡1 on the fine component of U∩Ω which contains x0. This and (i) would
imply that R̂F1 ≡1 on the component of Ω which contains x0. This is impossible
since R̂F1 is a potential (see e.g. [AG, p. 134]). �

Proposition 5.2. Let Ω be a Greenian open subset of Rd, d≥2. Let µ∈Jx(Ω)
be a Jensen measure carried by a finely closed set F such that F�Ω. If V is
either a bounded finely connected component of Rd\F such that V \Ω �=∅, or the
unbounded finely connected component of Rd\F , then x /∈V ∩Ω.

Proof. For a contradiction, first suppose that there exists a bounded finely
connected component V of Rd\F such that V \Ω �=∅ and x∈V ∩Ω. Let x0∈V \Ω.
Suppose temporarily that Ω is bounded. Under this hypothesis, the set Ω′ :=Ω∪V is
Greenian. The function Ux0 is finely harmonic on Ω′\{x0} and finely hyperharmonic
on Ω′. Since Ux0 is bounded on b(∂fV ) and V �Ω′, the proper fine Dirichlet solution
on b(∂fV ) with boundary data Ux0 |b(∂fV ) exists and is bounded. Let us denote it
by f . The function Ux0−f is finely hyperharmonic and lower bounded on V and

fine-lim inf
y!z
y∈V

(Ux0−f)(y)= 0

for quasi-every z∈∂fV . By the fine boundary minimum principle, it follows that
Ux0≥f . Moreover, by applying the global fine minimum principal, we see that
Ux0>f . Let us consider now the function

u(y)=

{
(f−Ux0)(y), if y∈V ∩Ω,

0, if y∈Ω\V.



Extreme Jensen measures 171

The generalized fine gluing principle implies first that u is finely hyperharmonic
on Ω and [Fu, Theorem 9.8] then implies that it is superharmonic. Hence, we come
to the contradiction

∫
u dµ= 0 and u(x)< 0.

We deduce the same result for Ω unbounded.
Suppose now that V is the unbounded component of Rd\F , that x∈V ∩Ω, and

that each bounded finely connected component of Rd\F is entirely contained in Ω.
Part (ii) of the last lemma implies then R̂F1 (x)<1. This is impossible since it would
imply that

1 =
∫

1 dµ=
∫
R̂F1 dµ≤ R̂F1 (x)< 1,

where the second equality follows from the fact that µ is carried by F and does not
charge the polar set not containing x (property (ii) of SJx(Ω)).

Finally, suppose that V is the unbounded component of Rd\F , that x∈V ∩Ω,
and that there exists a bounded finely connected component W of Rd\F such that
W \Ω �=∅. Let x0∈W \Ω and let B be a closed ball with center x0 which is entirely
contained in W � (the Euclidean interior of W ).

Denote by F ′ and V ′ the inverse of F and V , respectively, with respect to the
sphere ∂B (see e.g. [AG, Section 1.6]). Let f be the proper fine Dirichlet solution
on b(∂fV ′) with boundary data Ux0 |b(∂fV ′). As before, Ux0−f>0 on V ′. By the
generalized fine gluing principle, the function

u(y)=

{
(f−Ux0)(y), if y∈V ′,

0, if y∈B�\V ′,

is finely hyperharmonic on B�. By [Fu, Theorem 9.8], it follows that u is super-
harmonic on B�. Let us denote by v the Kelvin transform of u with respect to ∂B
(see again [AG, Section 1.6]), and extend v to all of Rd\{x0} by defining v=0
on B\{x0}. Then, v≡0 on F , and v(x)<0. This is all we need for a contra-
diction. �

Proof of (7). We already know that FHx(Ω)∪{εx}⊂SFHx(Ω)∩Jx(Ω). Let
µ∈SFHx(Ω)∩Jx(Ω), and write µ=εBx , where B is a base (by part (a) of Prop-
osition 2.6). If x∈B, then εBx =εx. On the other hand, suppose that x /∈B. Since
εBx is carried by B, and µ∈Jx(Ω), we deduce that B is relatively compact in Ω.
By Proposition 5.2, it follows that x is contained in a bounded finely connected
component V of Rd\B entirely contained in Ω. Part (i) of Proposition 2.13 implies
that εBx =εΩ\V

x . In both cases, µ∈FHx(Ω)∪{εx}. �
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6. Proof of Theorem 1.2

The purpose of this section is to prove (8). At the same time, it will conclude
the proof of Theorem 1.2 for Greenian open sets.

Notation. Given a compact subsetK of Ω, we denote by ω1, ..., ωm the bounded
components of Rd\K which are not contained in Ω and by ωm+1 the unbounded
component of Rd\K.

The next proposition is a modification of a lemma from [Gd]. Let us first state
this lemma.

Lemma 6.1. ([Gd, Lemma 6.2]) Let Ω be an open subset of Rd, d≥2, and K
be a compact subset of Ω. Let yk∈ωk, k=1, ...,m. If u∈SH(Ω), then there exists
v∈SH(Rd) and c≥0 such that

u(x)= v(x)−c
m∑

k=1

Uyk
(x)

on an open set which contains K.

Proposition 6.2. Let Ω be an open subset of Rd, d≥2. Let K be a com-
pact subset of Ω. Suppose that ωi\Ω is non-polar for i=1, ...,m, if d≥3, and for
i=1, ...,m+1, if d=2. If u∈SH(Ω), then there exists a lower bounded function
v∈SH(Ω) such that v=u on K.

Proof. Let Wi be a regular open subset of ωi such that ωi\Ω⊂Wi with ∂Wi

compact, i=1, ...,m+1. Set Ui :=Wi∩Ω and U :=
⋃m+1
i=1 Ui. Define a harmonic

function h on U as follows. On Ui, the function h is the proper Dirichlet solution on
Ui with boundary data 0 on ∂Wi, and 1 on ∂Ω∩ωi, i=1...,m and (∂Ω∩ωm+1)∪{∞}.
The hypothesis of the statement and the regularity of the sets Wi imply that h>0
and h!0 on

⋃m+1
i=1 ∂Wi.

Let Vi be a regular open subset of Ω such that ∂Wi⊂Vi and V i�Ω∩ωi. Set
V =

⋃m+1
i=1 Vi and

w(x)=

{
HV
u (x), if x∈V,

u(x), if x∈Ω\V.
By [AG, Theorem 6.6.4] and the classical gluing principal, it follows that
w∈SH(Ω)∩H(V ). If

M > sup{w(x) :x∈ ∂U} and c> sup
{
M−w(x)
h(x)

:x∈U∩∂V
}
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then the function

v(x) :=

⎧
⎪⎨

⎪⎩

w(x) on Ω\U,
min{w(x),M−ch(x)} on U∩V,
M−ch(x) on U \V,

is superharmonic and lower bounded on Ω, and v=u on K. �

Remark. The converse of the last proposition is false. Consider for example
Ω:=B(0, 1)\{0} and K :=S

(
0, 1

2

)
. Of course, the set ω1\Ω is polar. On the other

hand, if u∈SH(Ω), then Lemma 6.1 implies the existence of a function v∈SH(Rd)
and a constant c≥0 such that u=v−cU0 on K. Set

w= v−cU0

((
1
2 , 0, ..., 0

))
.

The function w is lower bounded and superharmonic on Ω. Moreover, u=w
on S

(
0, 1

2

)
.

Proposition 6.3. Let Ω be a Greenian open subset of Rd, d≥2. Then, for
each x∈Ω, the following statements are equivalent:

(a) The set {µ∈SJx(Ω):suppµ�Ω and µ(Ω)=1}=Jx(Ω);
(b) For each compact K contained in the same component of Ω as x, the sets

ωi\Ω are non-polar for i=1, ...,m, if d≥3, and for i=1, ...,m+1, if d=2;
(c) For each compact K contained in the same component of Ω as x and each

function u∈SH(Ω), there exists a lower bounded function v∈SH(Ω) such that v=u
on K.

Note that if Ω is regular, then the previous statements are necessarily fulfilled.

Proof. (b)⇒(c) This is a direct consequence of Proposition 6.2.
(c)⇒(a) Let µ∈{µ∈SJx(Ω):suppµ�Ω and µ(Ω)=1} and set K=suppµ∪{x}.

The set K is necessarily contained in the same component of Ω as x since µ∈SJx(Ω).
Let u∈SH(Ω). If (c) is fulfilled, then there exists a lower bounded superharmonic
function on Ω such that u=v on K. Choose a number α>0 such that v+α≥0.
Then

∫
u dµ=

∫
v dµ=

∫
(v+α) dµ−α≤ v(x)= u(x).

This shows that µ∈Jx(Ω). The reverse inclusion is obvious.
(a)⇒(b) For a contradiction, suppose there exists a compact set K contained

in the same component of Ω as x, and such that ωi\Ω is polar for a certain 1≤i≤m.
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Modify K in such a way that x∈ωi∩Ω. The measure εKx does not belong to Jx(Ω),
by Proposition 5.2. The function R̂K1 is harmonic on Ω\K. By the removable
singularities principle, it possesses an extension to ωi. The minimum principle then
implies that R̂K1 (x)=1, that is εKx (Ω)=1, which brings us to a contradiction.

Suppose, again for a contradiction, that d=2 and ωm+1\Ω is polar. Modify K
in such a way that x∈ωm+1∩Ω. The measure εKx does not belong to Jx(Ω), by
Proposition 5.2. On the other hand, [AG, Theorem 5.2.6] implies that R̂K1 (x)=1,
which brings us again to a contradiction. �

Proof of (8), and at the same time of Theorem 1.2 for Greenian open sets.
We already know that ext(SJx(Ω))∩Jx(Ω)⊂ext(Jx(Ω)). Let us prove the reverse
inclusion. Suppose first that Ω and x satisfy Proposition 6.3(b). This assures us
that {µ∈SJx(Ω):suppµ�Ω and µ(Ω)=1}=Jx(Ω). Let µ∈ext(Jx(Ω)) and write

µ=αµ1+(1−α)µ2,

where µ1, µ2∈SJx(Ω) and 0<α<1. This implies that suppµi�Ω and µi(Ω)=1,
i=1, 2. By the last proposition, it follows that µ=µ1=µ2. This proves (8) and
Theorem 1.2 for Ω and x as mentioned above.

We next remove the restriction on Ω and x. Let µ∈ext(Jx(Ω)), and set K=
suppµ∪{x}. There exists a regular open set Ω′ with K⊂Ω′⊂Ω, and such that
each bounded component of Rd\Ω′ meets Rd\Ω. By [CR2, Proposition 2.1], we
get µ∈Jx(Ω′), and it is not hard to see that µ∈ext(Jx(Ω′)). From this and the
first part, we deduce that µ=εx or µ=δΩ

′\V
x , where V is a fine domain of Ω′ which

contains x and is such that V �Ω′, and δΩ
′\V

x represents the finely harmonic measure
on V for x with respect to Ω′. In the former case, the conclusion follows trivially. In
the latter case, we get from Proposition 2.14 that δΩ

′\V
x =εΩ\V

x , and this concludes
the proof. �

7. From Greenian to general open sets

Up to now, we successfully proved Theorem 1.2 for Greenian open sets. This
seems quite satisfactory since we only defined finely harmonic measures with respect
to these sets and, in fact Definition 2.8 does not make sense anymore for general
open sets. In this section, we give a wider version of Definition 2.8 and prove
Theorem 1.2 for general open sets. Next, we prove Theorem 1.3.

Definition 7.1. Let Ω be an open subset of Rd, d≥2, and x∈Ω. Let U�Ω be
a finely open set which contains x. Then, the finely harmonic measure on U for x
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(with respect to Ω), denoted εΩ\U
x , is defined by

εΩ\U
x := Ω′

εΩ
′\U

x ,

where Ω′ is a Greenian open subset of Ω such that U�Ω′. This makes sense because
of Proposition 2.14. Denote by FHx(Ω) the set of finely harmonic measures εΩ\V

x

such that V �Ω is a fine domain containing x.

Note that FHx(Ω)=
⋃

FHx(Ω)x(Ω′), where Ω′ runs over the Greenian open
subsets of Ω which contain x. Since FHx(Ω)x(Ω′)⊂Jx(Ω′)⊂Jx(Ω) for these sets, it
follows that FHx(Ω)⊂Jx(Ω).

Proof of Theorem 1.2 in its general form. Let εΩ\V
x ∈FHx(Ω), where V is

a fine domain of Ω with x∈V �Ω. Let Ω′ be a Greenian open set with V �Ω′⊂Ω
and such that each bounded component of Rd\Ω′ meets Rd\Ω. By applying the
weak version of Theorem 1.2, it follows that εΩ\V

x ∈FHx(Ω)x(Ω′)=ext(Jx(Ω′)). Let
µ1, µ2∈Jx(Ω) and 0<α<1 be such that

εΩ\V
x =αµ1+(1−α)µ2.

By [CR2, Proposition 2.1(ii)], it follows that µ1, µ2∈Jx(Ω′). Hence, εΩ\V
x =µ1=µ2,

and this shows that εΩ\V
x ∈ext(Jx(Ω)).

On the other hand, let µ∈ext(Jx(Ω)) and let Ω′ be a Greenian open subset of Ω
with suppµ∪{x}�Ω′ and such that each bounded component of Rd\Ω′ meets Rd\Ω.
By [CR2, Proposition 2.1(i) and (ii)], it follows that µ∈ext(Jx(Ω′)). Hence, apply-
ing the weak version of Theorem 1.2, we conclude that µ∈FHx(Ω). �

Proof of Theorem 1.3. (i) Let {Dn}∞n=1 be a decreasing sequence of domains
such that x∈Dn�Ω. Let ωn be the harmonic measure on Dn for x. By [CC, Prop-
osition 7.2.4], the sequence {ωn}∞n=1 converges to ε

Ω\D
x in the weak*-topology of

C(Rd)*, where D :=
⋂∞
n=1Dn. Proposition 2.6(a) implies that εΩ\D

x =εb(Ω\D)
x . If

x∈b(Ω\D), then ε
b(Ω\D)
x =εx. On the other hand, suppose that x /∈b(Ω\D). Since

Ω\b(Ω\D)�Ω, we can apply Proposition 2.13(i) to find that εb(Ω\D)
x =εΩ\V

x , where
V is the fine component of Ω\b(Ω\D) which contains x.

(ii) Let us first suppose that V is open with respect to the Euclidean topology.
Let Ω′ be a regular domain with V ⊂Ω′�Ω and such that Ω′\V has non-empty
interior. Applying [CR2, Lemma 4.3] to Ω′\V , we find an increasing sequence
{Ln}∞n=1 of compact bases contained in Ω′\V such that (Ω′\V )\(

⋃∞
n=1 Ln) is polar.

DefineDn to be the connected component of Ω′\Ln which contains V . The sequence
{Dn}∞n=1 has the desired properties.
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Let us remove the restriction on V . By [AG, Theorem 7.3.11], there exists
a sequence {Fn}∞n=1 of closed sets contained in Ω\V such that (Ω\V )\(

⋃∞
n=1 Fn)

is polar. Let Ω′ be a regular open set such that V ⊂Ω′�Ω. Set Vn=Ω′\Fn. Each
Vn is then a relatively compact open subset of Ω, and (

⋂∞
n=1 Vn)\V is polar. By

applying the first part to Vn, we find a sequence {Un,m}∞n,m=1 of regular open sets
with V ⊂Un,m�Ω and such that (

⋂∞
n,m=1Un,m)\V is polar. We then construct

inductively the desired sequence.
(iii) Let εΩ\V

x ∈FHx(Ω), where V is a fine domain such that x∈V �Ω. Let
{Dn}∞n=1 be a sequence as described in the statement of (ii), and set D′ :=

⋂∞
n=1Dn

and P :=D′\V . By [CC, Proposition 7.2.4(a)], we get

εΩ\Dn
x ! εΩ\D′

x .

Since P is polar, it follows that

εΩ\D′
x = εP∪(Ω\D′)

x = εΩ\V
x .

We then get the desired conclusion. �

8. Proof of Theorem 1.4

In this section, we prove Theorem 1.4. The proof proceeds via a number of
preliminary results. Given a compact set K⊂Ω, recall that Jx(Ω,K):={µ∈Jx(Ω):
suppµ⊂K}.

Lemma 8.1. Let Ω be an open subset of Rd, d≥2, and x∈Ω. Let µ∈Jx(Ω).
Then, there exists a probability measure σ on ext(Jx(Ω))∩Jx(Ω, suppµ) such that

∫
ϕdµ=

∫

ext(Jx(Ω))

(∫
ϕdν

)

dσ(ν)(9)

for every function ϕ : Ω!(−∞,+∞] which is universally measurable and locally
bounded below.

Proof. Let µ∈Jx(Ω). By [CR2, Proposition 6.1] and its proof, there exists
a probability measure σ on ext(Jx(Ω))∩Jx(Ω, suppµ) such that (9) holds for every
continuous function on Ω.

If ϕ : Ω!(−∞,+∞] is lower semicontinuous, then there exists an increasing
sequence {ϕn}∞n=1 in C(Rd) such that ϕn!ϕ on suppµ. Since (9) holds for each
ϕn, it then holds for ϕ. The same is also true for upper semicontinuous functions.
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Suppose that ϕ : Ω!(−∞,+∞] is a Borel function which is locally bounded
below. Suppose temporarily that ϕ is bounded from above. By Vitali–Carathéo-
dory’s theorem [Ru, Theorem 2.24], given ε>0, we can find two functions u and v

which are upper semicontinuous and lower semicontinuous, respectively, such that
u≤ϕ≤v, and

∫
(v−u) dµ< ε.(10)

This implies that
∫
u dµ≤

∫
ϕdµ≤

∫
v dµ,

and
∫ (∫

u dν

)

dσ(ν)≤
∫ (∫

ϕdν

)

dσ(ν)≤
∫ (∫

v dν

)

dσ(ν).

From (10) and (9) applied to u and v, it follows that
∣
∣
∣
∣

∫ (∫
ϕdν

)

dσ(ν)−
∫
ϕdµ

∣
∣
∣
∣≤ ε.

By the arbitrary nature of ε, the function ϕ satisfies (9). If ϕ is not bounded above,
apply (9) to min{n, ϕ} and take the limit.

Finally, suppose that ϕ : Ω!(−∞,+∞] is universally measurable and locally
bounded below. There exist two Borel functions ψ1 and ψ2 which are locally
bounded below, such that ψ2≤ϕ≤ψ2, and ψ1=ψ2 outside a set E with µ(E)=0.
By a reasoning similar to above, we get the desired result. �

Proposition 8.2. Let Ω be an open subset of Rd, d≥2, and x∈Ω. Let
µ∈Jx(Ω). Then, for each function ϕ : Ω![−∞,+∞] which is universally meas-
urable and such that the integrals

∫
ϕdµ and

∫
ϕdν, ν∈ext(Jx(Ω)), exist,

∫
ϕdµ≤ sup

{∫
ϕdν : ν ∈ ext(Jx(Ω))

}

.

Proof. If
∫
ϕdµ=−∞, then the result is trivial. Suppose this is not the case.

Let σ be as in Lemma 8.1, and set ϕn :=min{ϕ, n}. Then,
∫
ϕn dµ=

∫ (∫
ϕn dν

)

dσ(ν)

≤ sup
{∫

ϕn dν : ν ∈ ext(Jx(Ω))
}

≤ sup
{∫

ϕdν : ν ∈ ext(Jx(Ω))
}

.

We get the desired result by letting n!∞. �
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Lemma 8.3. Let Ω be an open subset of Rd, d≥2. Let ϕ : Ω![0,+∞] be
a universally measurable function. Given x∈Ω, let V and D be a finely open and
an open set, respectively, such that x∈V ⊂D�Ω. Set ψ :=ϕχ, where χ is the char-
acteristic function of ∂fV ∩∂D. Then,

∫
ψ dεΩ\V

x ≤
∫
ϕdω,

where ω is the harmonic measure on D for x.

Proof. Let u∈SH(D) be a superfunction for ϕ onD. By the minimum principal
and the fact that ϕ≥0, we get u≥0 on D. The fact that u is a finely hyperharmonic
function on V satisfying

fine-lim inf
y!z
y∈V

u(y)≥ψ(z), z ∈ ∂fV,

implies that it is a fine superfunction for ψ on V . So,

H
V

ψ (x)≤H
D

ϕ (x).

The conclusion then follows from 2.17. �

Lemma 8.4. Let Ω be an open subset of Rd, d≥2, and x∈Ω. Let V and D

be a finely open and an open set, respectively, such that x∈V ⊂D�Ω. Then, for
each subharmonic function s defined on a neighbourhood of D,

∫
s dεΩ\V

x ≤
∫
s dω,

where ω is the harmonic measure on D for x.

Proof. Let u∈SH(D) be lower bounded and satisfy

lim inf
y!z
y∈D

u(y)≥ s(z), z ∈ ∂D.

Applying the minimum principle to u−s, it follows that u≥s on D. The function
u is then a fine superfunction for s with respect to V . By Proposition 2.17, we get

H
V

s (x)≤HD
s (x).

Since the integral
∫
s dε

Ω\V
x exists, we get
∫
s dεΩ\V

x ≤
∫
s dω. �
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Recall thatHr
x(Ω) is the set of harmonic measures on relatively compact regular

domains in Ω which contain x.

Theorem 8.5. Let Ω be an open subset of Rd, d≥2, and x∈Ω. Let ϕ : Ω!
[−∞,+∞] be a universally measurable function which satisfies the following prop-
erty:

For each open set D with x∈D�Ω, there exists a subharmonic function s on D
such that s(x)>−∞ and ϕ≥s on D.

Then, for each ν∈ext(Jx(Ω)),
∫
ϕdν ≤ sup

{∫
ϕdω :ω ∈Hr

x(Ω)∪{εx}
}

.

Note that the condition on ϕ implies that the integrals above exist.

Proof. The conclusion is trivial if ν=εx, or if
∫
ϕdν=−∞. Suppose then

that ν=εΩ\V
x , where V is a fine domain with x∈V �Ω, and

∫
ϕdν>−∞. Let Ω′

be an open subset of Ω such that V ⊂Ω′�Ω. Let s be a subharmonic function
on Ω′ which satisfies the property of the statement and suppose also that s≤0. Set
sm :=max{s,−m}. Consider {Dn}∞n=1 and {ωn}∞n=1 as in Theorem 1.3 and suppose
also that Dn�Ω′. Denote by χn the characteristic function of ∂fV ∩Dn, and set
ψn :=(ϕ−s)χn. By applying the last two lemmas, we get

∫
ψn dν ≤

∫
(ϕ−s) dωn and

∫
sm dν≤

∫
sm dωn.

Put together these two relations to obtain
∫

(ψn+sm) dν≤
∫

(ϕ+sm−s) dωn.

Since ϕχn≤ψn+sm and
∫
(ϕ+sm−s) dωn!

∫
ϕdωn, as m!∞, we get

∫
ϕχn dν≤

∫
ϕdωn.

Now, the conclusion follows by taking the lower limit on each side. �

Proof of Theorem 1.4. Let ϕ and µ satisfy the hypothesis of the statement.
If

∫
ϕdµ=−∞, then the conclusion is trivial. Suppose this is not the case. Set

ϕn :=min{n, ϕ}. By Proposition 8.2 and Theorem 8.5, we get
∫
ϕn dµ≤ sup

{∫
ϕn dω :ω ∈Hr

x(Ω)∪{εx}
}

≤ sup
{∫

ϕdω :ω ∈Hr
x(Ω)∪{εx}

}

.

The conclusion follows by letting n!+∞. �
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9. Application to entire functions

In this final section, we give an application to entire functions stated in The-
orem 1.5. Denote by M : C!(0,∞) a continuous function and by {αn}∞n=1 a se-
quence of non-zero complex numbers converging to infinity. Let us first explain
why (1) is a necessary condition for the existence of an entire function f �≡0, whose
zero set includes {αn}∞n=1, and is such that |f(z)|≤M(z), z∈C.

Suppose that such a function exists, and let us see the resulting implications.
By replacing f by Cf(z)/zk for appropriate constants C and k, we can suppose that
f(0) �=0. Let D be a bounded domain which contains 0. By [AG, Theorems 4.3.7
and 4.4.1], we get the following representation for log |f |:

log |f(z)|= h(z)−
∞∑

n=1

GD(αn, z), z ∈D,

where h is the greatest harmonic minorant of log |f | on D, and where n runs over
the integers such that αn∈D. By [AG, Theorem 6.4.10] and [CC, Theorem 7.2.4],
the function h can be written as

h(z)=
∫

∂D

log |f(ζ)| dωz(ζ), z ∈D,

where ωz is the harmonic measure for z on D. It then follows that

log |f(z)|=
∫

∂D

log |f(ζ)| dωz(ζ)−
∞∑

n=1

GD(αn, z), z ∈D.

By setting z=0 in the above equation and considering that f≤M on D, we
get (1).

Before continuing with Theorem 1.5, let us state a theorem of Khabibullin [Kh,
Section 2, p. 1069 and Remark 2, p. 1072] on which the previous relies.

Theorem 9.1. (Khabibullin) Let M : C!(0,∞) be a continuous function. If
there exists an entire function g such that g(0) �=0 and

sup
µ∈J0(Ω)

∫
(log |g|−logM) dµ<+∞

then, for each δ>0, there exists an entire function f �≡0, whose zero set includes
that of g, and which satisfies

|f(z)| ≤ max
|ζ−z|≤δ

M(ζ), z ∈C.
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Proof of Theorem 1.5. By Weierstrass’s theorem (see e.g. [Ru, Theorem 15.9]),
there exists an entire function g whose zero set is exactly {αn}∞n=1 (counting mul-
tiplicities). Let D be a bounded domain which contains 0. By a reasoning similar
to the one preceding the statement of the present theorem, we get the formula

∑

n

GD(αn, 0)=HD
log |g|(0)−log |g(0)|,

where n runs over the integers such that αn∈D. If (1) holds, then

HD
log |g|(0)−HD

logM (0)≤−c−log |g(0)|,

and this is true for all bounded domains D which contain 0. This implies that

sup
ω∈H0(C)

∫
(log |g|−logM) dω<+∞.

The conclusion then follows from Theorem 1.4 and Khabibullin’s theorem. �

Remark. In condition (1), it is possible to replace the family of bounded do-
mains which contain 0 by a smaller one. Consider for instance a family D of bounded
domains containing 0, which satisfies the following property:

For each bounded domain D containing 0, there exists an increasing sequence
{Dn}∞n=1⊂D such that D=

⋃∞
n=1Dn.

Then, it is easy to see that it is enough for (1) to hold for the domains in D.
In particular, one could consider the family of bounded domains containing 0 with
smooth boundary.

This work forms part of my PhD thesis. It was written under the supervision
of Thomas J. Ransford. I would like to thank him for his precious advice. I would
also like to thank NSERC and the Bureau international de l’Université Laval for
their financial support.
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