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Rationally convex sets on the unit sphere in C
2

John Wermer

Abstract. Let X be a rationally convex compact subset of the unit sphere S in C2, of three-

dimensional measure zero. Denote by R(X) the uniform closure on X of the space of functions P/Q,

where P and Q are polynomials and Q �=0 on X. When does R(X)=C(X)?

Our work makes use of the kernel function for the δ̄b operator on S, introduced by Henkin

in [5] and builds on results obtained in Anderson–Izzo–Wermer [3].

We define a real-valued function εX on the open unit ball int B, with εX(z, w) tending to 0

as (z, w) tends to X. We give a growth condition on εX(z, w) as (z, w) approaches X, and show

that this condition is sufficient for R(X)=C(X) (Theorem 1.1).

In Section 4, we consider a class of sets X which are limits of a family of Levi-flat hypersur-

faces in int B.

For each compact set Y in C2, we denote the rationally convex hull of Y by ̂Y . A general

reference is Rudin [8] or Aleksandrov [1].

1. Introduction

Let X be a compact subset of the sphere |z|2+|w|2=1 in C2. We assume
(1) X is rationally convex, and
(2) m3(X)=0, where m3 denotes 3-dimensional measure.
For each positive ε we denote by Ωε the set of points (z, w) on S whose

Euclidean distance from X is less than or equal to ε.
̂Ωε denotes the rationally convex hull of Ωε. B is the closed unit ball in C2.

Definition 1.1. For (z, w) in the open unit ball, ε(z, w) is the smallest number ε

such that (z, w) belongs to ̂Ωε.

Theorem 1.1. Assume that for a.a. z in the unit disk there exists a non-zero
number p>0 such that

∫ π

−π

dφ

εX(z, r exp iφ)p

remains bounded as r approaches
√

1−|z|2. Then R(X)=C(X).
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The geometric meaning of the integral in the preceding theorem is as follows:
we let, for given z, Dz represent the disk which consists of all (z, w) in int B. Dz has
the radius

√

1−|z|2. Our integral then is taken over the circle of radius r in Dz.

Note. The number p in Theorem 1.1 is allowed to depend on z.

Theorem 1.1 and its proof arise from the following sources: Let µ be a (complex)
measure on the ζ-plane C, supported on the compact set K. Let µ̂ be the Cauchy
transform of µ. Then for each smooth function f of compact support on C, we have

∫

C

f dµ =
1

2πi

∫

C

(δ̄f)∧µ̂∧dζ.(1.1)

From this one derives the Hartogs–Rosenthal theorem: if m2(K)=0 then
R(K)=C(K).

We let B be the closed unit ball in C2 and S be its boundary. Henkin, in [5],
gave a kernel on S generalizing the Cauchy kernel, and defined for each measure µ

on S the corresponding transform Kµ. Kµ is summable on S and smooth on S

outside of the support X of µ. Henkin proved, as analogue of (1.1), that
∫

S

φdµ =
1

4π2

∫

S

δ̄φ∧Kµω,(1.2)

where ω=dζ1∧dζ2, and φ∈C1(S), provided that µ is orthogonal to all polynomials
on C

2.
Let now X be a rationally convex compact subset of S with m3(X)=0 and

let µ be a measure supported on X which is orthogonal to R(X). H. P. Lee and
the author showed in [7] that Kµ admits holomorphic continuation from S\X to all
of int B. Further, J. T. Anderson, A. J. Izzo, and the author showed in [3] that for
µ as above, if Kµ lies in the Hardy space H1(B), then µ=0. It follows from this,
that if we can show that for each µ orthogonal to R(X) we have Kµ in H1(B), then
R(X)=C(X).

So we need conditions on X which imply suitable bounds on Kµ. For this
purpose one can use the following estimate proved as Lemma 2.3 in [3]:

If X⊂S and µ is a measure on X , then for z in S\X , we have

|Kµ|(z)≤ 4‖µ‖
dist4(z, X)

.

This result can be used as follows: Fix a point z0 in int B and construct
a Riemann surface Σ in int B, passing through z0, with boundary on S\X . For µ

orthogonal to R(X), Kµ is holomorphic in int B, and so the restriction of Kµ to Σ
is holomorphic on Σ. By the maximum principle on Σ, then, |Kµ(z0)|≤|Kµ(z)|
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for some z in bd Σ=S∩�Σ. Applying this estimate for each z0 in int B, we can
in certain cases show that Kµ lies in H1(B) for each µ in R(X)⊥, and deduce
that R(X)=C(X). In [3] we applied this method, taking X to be certain smooth
2-manifolds contained in S.

To use this method for a general rationally convex compact subset of S, we need
some conditions on X . S itself is locally non-pseudoconvex. We require our set X to
be “holomorphically flat”. We are motivated by an analogy from geometry in R3.
Let Z be the cylinder: {(x, y, z):0≤z≤1 and x2+y2≤1} in R3. The boundary
of Z is non-convex. We consider the interval I={(1, 0, z):0≤z≤1} in R3. I is
a flat subset of bd Z. We construct a sequence of planes Πn in R3, where Πn has
equation x=1−1/n, n=1, 2, ... . Each Πn is flat, and, as n approaches infinity,
Πn∩Z approaches I.

With Z and bd Z, replaced, respectively, by B and S, and I replaced by
a rationally convex subset X of S, the role of {Πn}∞n=1 can be played by a se-
quence of Levi-flat surfaces {|Fn|=1}∞n=1 in int B, converging to X , where Fn is
a holomorphic function in int B. For the general compact rationally convex set X

contained in S, we do not have Levi-flat hypersurfaces converging to X . It turns
out that the sets bd ̂Ωε (see the introduction) fulfill the same purpose. The key
fact is given in Lemmas 2.5 and 2.6 below, concerning a maximum principle valid
on bd ̂Ωε. Under the hypothesis of Theorem 1.1, we can carry out the argument
based on the Henkin transforms of measures in R(X)⊥ which we sketched earlier.

2. Properties of ̂Ωε

Lemma 2.1. Let U be a relatively open neighborhood of X in B. There exists
a>0 such that for 0<ε<a, ̂Ωε⊂U .

Proof. Suppose no such a exists. Then there is a sequence {εn}∞n=1 tending
to 0 and for each n there is a point pn∈̂Ωεn with pn /∈U . Let p be an accumulation
point of {pn}∞n=1. Then p /∈U .

Choose a polynomial Q with Q(p)=0. Then for all n, Q−Q(pn) vanishes at pn,
Hence there exists yn in Ωεn with (Q−Q(pn))(yn)=0. Let y be an accumulation
point of {yn}∞n=1. Then y belongs to X . Letting n!∞, we see that Q(y)=0. So
Q has a zero in X . Thus p lies in ̂X. This contradicts the rational convexity of X .
So the claim holds. �

Lemma 2.2. Fix ε>0. Then int ̂Ωε is non-empty, and is a pseudoconvex open
set.

Proof. Ωε has non-empty relative interior on S. It follows that the family of
analytic disks with boundary in Ωε is contained in ̂Ωε and has non-empty interior
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in C2. So int ̂Ωε is non-empty. Every function in R(Ωε), restricted to int ̂Ωε, is
analytic there.

Suppose that int ̂Ωε fails to be pseudoconvex. Then there exists an open ball β

which has non-trivial intersection with both ̂Ωε and with its complement such that
every function in R(Ωε) has an analytic continuation from int ̂Ωε∩β to all of β.
Fix a point y in β. Then the map: G!G(y) is a homomorphism of the algebra
R(Ωε)!C. It follows that y is in ̂Ωε. Then β is contained in ̂Ωε, contrary to the
choice of β. So int Ωε is pseudoconvex, and we are done. �

Lemma 2.3. Fix a point y in int B∩bd ̂Ωε and choose an open bidisk D2,
centered at y and contained in int B. Then D2∩int ̂Ωε is pseudoconvex.

Proof. The assertion follows from Lemma 2.2. �

In [9] S�lodkowski showed that the complement of the polynomially convex
hull of a compact subset Y of C2 is locally pseudoconvex, away from Y . In [2,
Chapter 23], a proof is given of S�lodkowski’s theorem . The argument given there
applies equally well when “polynomially convex hull” is replaced by “rationally
convex hull”. This argument yields the following result.

Lemma 2.4. Let Y be a compact set in C
2 and ̂Y its rationally convex hull.

Fix y in ̂Y \Y and let D2 be an open bidisk, centered at y and missing Y . Then
D2\ ̂Y is pseudoconvex.

We give a sketch of the proof of Lemma 2.4 in the Appendix A.
We need some terminology. Let T be a compact space and A an algebra

of continuous functions on T . We say that the local maximum modulus principle
(LMMP) holds for A on T if for each point p in T , and each neighborhood N of p,
|f(p)|≤maxbdN |f | for every f in A.

Fix a bidisk D2 as in Lemma 2.3. We can write D2 as the union of the following
three sets:

D2 intersected with the complement of ̂Ωε in B,
D2 intersected with the boundary of ̂Ωε, and
D2 intersected with int ̂Ωε.
These three sets are disjoint.

Claim 2.1. D2\̂Ωε is pseudoconvex.

Proof. It follows from Lemma 2.4 that D2\̂Ωε is pseudoconvex. �

By Lemma 2.2, we have the following result.

Claim 2.2. D2∩int ̂Ωε is pseudoconvex.
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We now use the following result, given as Theorem 1 in [11].
Let X be a relatively closed subset of the open bidisk D2={(z, w):|z|<1 and

|w|<1} in C2. Assume further that X is a singularity set of an analytic func-
tion Φ in the following sense: Φ is analytic on D2\X and if Γ is any bidisk {(z, w):
|z−z0|<R and |w−w0|<R} with (z0, w0)∈D2\X and Γ∩X is non-empty, then Φ
cannot be analytically continued to all of Γ. Then the algebra of polynomials in z

and w satisfies LMMP on X .

Claim 2.3. Put Ξ=D2∩bd ̂Ωε Then the algebra of polynomials in z and w,
restricted to Ξ, satisfies LMMP on Ξ.

Proof. By the preceding two claims, D2\Ξ is pseudoconvex. From Theorem 1
in [11], stated above, we get our claim. �

We now write Yε for bd ̂Ωε. Put BR={(z, w):|z|2+|w|2≤R2}.

Lemma 2.5. Let Φ be a function defined and continuous on Yε. Assume that
Φ has a holomorphic extension to a neighborhood of Yε in int B, and further assume
that for each R<1, Φ is uniformly approximable by polynomials on Yε∩BR. Then
for each point p in Yε, |Φ(p)|≤maxbdΩε |Φ|.

Proof. Fix R, 0<R<1. BR is the closed ball of radius R and center at the
origin, and let SR be its boundary. Let AR be the uniform closure on Yε∩BR of
polynomials in z and w, restricted to Yε.

Claim 2.4. Every peak point of the algebra AR lies on bd ̂Ωε∩SR.

Fix a peak point y of AR and assume that y /∈SR. Choose an open bidisk D2

centered at y, and contained in int BR. We have

Ξ = D2∩bd ̂Ωε.

By the preceding, the algebra of polynomials, restricted to Ξ, satisfies LMMP on Ξ.
Let U be a neighborhood of y on Ξ. By choice of y, there exists f in AR with
f(y)=1 and |f(y)|≤1−ε on bd U , with ε>0.

Choose a polynomial P such that |f−P |<ε/4 on Yε∩BR. Then |f−P |<ε/4
on bd U and |(f−P )(y)|<ε/4. Hence |P |≤1−ε/4 on bd U and |P (y)|>1−ε/4.
This violated the LMMP on the algebra of polynomials in z and w, restricted to Ξ.
Thus y is in SR, and so the claim is proved.

It follows from the claim that the Silov boundary of AR is contained in
bd ̂Ωε∩SR.

Choose a sequence of numbers {Rj}∞j=1 tending to 1 from below. Let p and Φ
be as in the statement of Lemma 2.5. Fix j. Since the Silov boundary of AR is



188 John Wermer

contained in bd ̂Ωε∩SRj , there exists a point pj in that set such that |Φ(p)|≤|Φ(pj)|.
Let p∞ denote an accumulation point of the sequence {pj}∞j=1. Then p∞ lies in the
closure of bd ̂Ωε as well as in S. So p∞ lies in Ωε.

Suppose p∞ lies in the interior of Ωε, relative to S. Then there exists a non-
empty neighborhood U of p∞ in B with U contained in ̂Ωε. There exist points pj

in bd ̂Ωε belonging to U . Such points then do not lie in the boundary of ̂Ωε. This
is a contradiction. So p∞ belongs to the boundary of Ωε, relative to S.

By the continuity of Φ on Yε and by the fact that |Φ(p)|≤|Φ(pj)| for each j,
|Φ(p)|≤|Φ(p∞)|≤maxbdΩε |Φ|. Lemma 2.5 is proved. �

Lemma 2.6. Let φ be a function holomorphic on int B and continuous on B\X.
Fix a point (z0, w0) in int B and let ε0=ε(z0, w0). Then there exists a point
(z′, w′)∈S with dist((z′, w′), X)≥ε0 such that |φ(z0, w0)|≤|φ(z′, w′)|.

Proof. Fix ε<ε0. Put V =intB\̂Ωε. Then (z0, w0) is in V . By the maximum
principle, there exists (z, w)∈bd V such that |φ(z0, w0)|≤|φ(z, w)|.

Case 1. (z, w)∈S. Since (z, w) /∈Ωε, we have dist((z, w), X)≥ε.

Case 2. (z, w)∈int B. Then (z, w) /∈int ̂Ωε, and (z, w)∈̂Ωε. So (z, w)∈bd ̂Ωε

=Yε. Then by Lemma 2.4 there is a point (a, b)∈bd Ωε so that |φ(z, w)|≤|φ(a, b)|.
Thus dist((a, b), X)=ε.

In either case, we let ε approach ε0 from below. By passing to a convergent
subsequence of the relevant sequence, we get a point (z′, w′)∈S such that
dist((z′, w′), X)≥ε0 and |φ(z0, w0)|≤|φ(z′, w′)|. We are done. �

3. Preliminary material

We now proceed to list material from the work of Henkin in [5] and results
from [3] and [7] which we shall use in the proof of Theorem 1.1.

Let X be a compact set on S and let µ be a finite complex measure on X which
is orthogonal to polynomials.

Henkin defines the kernel H(ζ, z)=A/B, where A=ζ̄1z̄2−ζ̄2z̄1, B=|1−(ζ, z)|2
and ( · , · ) denotes the Hermitean inner product on C2. Define the function Kµ for ζ

in S by

Kµ(ζ) =
∫

S

H(ζ, z) dµ(z).

Then Kµ is summable over S, and Kµ is smooth on S\supp µ.
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Let now X be a set satisfying (1) and (2) and let µ be a measure on X ortho-
gonal to R(X), and hence also orthogonal to polynomials.

It is shown in [7] that under these conditions, Kµ has a holomorphic extension
from S\X to the open ball int B. We denote the extension again by Kµ. Let ∆
denote the closed unit disk in the z-plane.

For z in ∆ we consider the set Dz of all (z, w) with |w|<√

1−|z|2. For each z,
the restriction of Kµ to that disk is analytic on the disk.

Note. If the boundary of Dz lies in S\X , then Kµ is continuous up to the
boundary, while if the boundary of Dz meets X , then Kµ will in general become
singular there.

Since Kµ is summable over S, Kµ is summable over the boundary of Dz with
respect to 1-dimensional measure for almost all z.

The following is proved in [3, Lemma 2.6]. Assume that for a.a. z there exists
a number p>0, depending on z, such that the restriction of Kµ to Dz lies in Hp(Dz).
Then Kµ lies in H1(B).

Further, it is shown in [3, Lemma 2.2] that: Kµ∈H1(B) implies that µ=0.

We now proceed to the proof of Theorem 1.1.

Proof of Theorem 1.1. Let X be as in Theorem 1.1. If we can show that for
each measure µ on X with µ orthogonal to R(X), µ=0, then by the Hahn–Banach
theorem we can deduce that R(X)=C(X).

By the preliminary material given above, it suffices to show that for a.a. z there
exists p>0 such that the restriction of Kµ to Dz lies in Hp. Write ε for εX .

By the hypothesis of Theorem 1.1, for a.a. z in ∆, there exists p>0 such that

∫ π

−π

dφ

ε(z, r exp iφ)p
= O(1), as r!

√

1−|z|2.(∗)

Fix a z for which (∗) holds and fix r<
√

1−|z|2. Choose w with |w|=r. The
point (z, w) is in int B. Put ε0=ε(z, w). Since Kµ is holomorphic on int B and
continuous on B\X , Lemma 2.5 gives that there exists a point (z′, w′) in S such
that |Kµ(z, w)|≤|Kµ(z′, w′)| and dist((z′, w′), X)≥ε0.

We now need the following result from [3, Lemma 2.3]. If (a, b) is a point of S,
and µ a measure on X , then

|Kµ(a, b)| ≤ 4‖µ‖
(dist4((a, b), X))

.
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It follows that |Kµ(z′, w′)|≤4‖µ‖/ε4
0. Hence

|Kµ(z, w)| ≤ 4‖µ‖
ε4
0

=
4‖µ‖

ε(z, w)4
.

We set p′=p/4 and raise this inequality to the p′-th power. We get

|Kµ(z, w)|p′ ≤ (4‖µ‖)p′

ε(z, w)p
=

�

ε(z, w)p
.

So for −π≤φ≤π,

|Kµ(z, r exp iφ)|p′ ≤ �

ε(z, r exp iφ)p

for all r<
√

1−|z|2. It follows that
∫ π

−π

|Kµ(z, r exp iφ)|p′
dφ≤�

∫ π

−π

dφ

ε(z, r exp iφ)p
.(∗∗)

By hypothesis, there exists a constant M , depending only on z, such that the
right-hand side in (∗∗) is bounded by M for all r<

√

1−|z|2. Thus Kµ belongs
to Hp′

(Dz).
Since this holds for a.a. z in the unit disk, by the results from [3] stated in the

preliminary material, µ=0 and since this holds for each measure µ on X which is
orthogonal to R(X), R(X)=C(X). Theorem 1.1 is proved. �

4. A class of sets

In this section, we shall study the class of sets X on S described as follows:
Let E be an open disk in |z|<1 and put W equal to the set of (z, w) in int B

with z in E, and choose a compact set X on S which lies over E. Let F be a function
holomorphic on W and continuous on�W , such that

|F |< 1 on W,(4.1)

and

|F |= 1 on X.(4.2)

Lemma 4.1. X is rationally convex.

Note. Standard arguments give that every function analytic on W and con-
tinuous on the closure of W is uniformly approximable on the closure of W by
polynomials.
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Proof. Fix (z0, w0) in W . Put λ=|F (z0, w0)|. Then 0≤λ<1. Fix η>0 and
choose a polynomial Q on C2 such that |Q−F |<η on�W . Put Q1=Q−Q(z0, w0).
Then Q1 vanishes at (z0, w0). Fix (z, w) in X . We have

Q1(z, w) = (F−F (z0, w0))(z, w)+(Q−Q(z0, w0))(z, w)−(F−F (z0, w0))(z, w).

Then

|Q1(z, w)| ≥ |F (z, w)−F (z0, w0)|−2η≥ 1−λ−2η.

For η sufficiently small, the right-hand side 
=0. So Q1 does not vanish on X . Hence
(z0, w0) does not lie in ̂X.

It is easy to see, directly, that the remaining points of C2\X do not lie in ̂X.
So X is rationally convex, as asserted. �

Lemma 4.2. Assume (4.1) and (4.2) and also assume that F is in C1(�W ).
There exists a constant M such that the following holds : for every (z, w) in W , if
we put λ=|F (z, w)| and if (a, b) is any point on S∩{(z, w):|F (z, w)|=λ}, then

1−|F (z, w)| ≤M dist((a, b), X).(4.3)

Proof. We now write φ=|F |, and introduce the real coordinates in C2 so that
we may regard φ as a function on R4. We put ∇φ equal to the gradient of φ.

Fix (c, d) in X and put f(t)=φ((a, b)+t(c−a, d−b)), 0<t<1. Then

f ′(t) =∇φ((a, b)+t(c−a, d−b))·((c, d)−(a, b))

and φ(c, d)−φ(a, b)=f(1)−f(0)=f ′(T ) for some T with 0<T <1. Let λ=|F (a, b)|.
So 1−λ=∇φ·((c, d)−(a, b)). Then 1−λ≤|∇φ| |(c, d)−(a, b)|. This holds for all (c, d)
in X . Hence 1−|F (a, b)|=1−λ≤M dist((a, b), X), where M =max |∇φ| over�W . So

1−|F (z, w)|= 1−|F (a, b)| ≤M dist((a, b), X).

Thus (4.3) holds. �

Lemma 4.3. Let µ be a measure on X orthogonal to R(X). Then there exist
constants C and M ′ such that

|Kµ(z, w)| ≤max
(

C

(1−|F (z, w)|)4 , M ′
)

,(4.4)

if (z, w)∈W .
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Proof. Fix (z, w) in W . Put T ={(u, v)∈B} with u∈bd E. Put λ=|F (z, w)|.
Since Kµ is holomorphic in int B, and {(z, w):|F (z, w)|=λ} is a Levi-flat hyper-
surface, |Kµ(z, w)|≤|Kµ(a, b)| for some (a, b) lying either on the set {(z, w):
|F (z, w)|=λ}∩S or on the set {(z, w):|F (z, w)|=λ}∩T .

Case 1. (a, b)∈{(z, w):|F (z, w)|=λ}∩S. By Lemma 2.3 in [3], |Kµ(a,b)|≤
k/dist4((a,b),X), for some constant k. By (4.3), dist((a, b), X)≥(1−|F (z, w)|)/M .
It follows that

|Kµ(z, w)| ≤ |Kµ(a, b)| ≤ k′

(1−|F (z, w)|)4 ,

for some constant k′. So (4.4) holds.

Case 2. (a, b)∈{(z, w):|F (z, w)|=λ}∩T . T is a compact subset of B, disjoint
from X . So there exists a constant M ′ with |Kµ(a, b)|≤M ′, and so |Kµ(z, w)|≤
|Kµ(a, b)|≤M ′.

So in either case, (4.4) holds. �

Theorem 4.1. Let E, W , F and X be as before. Let µ be a measure on X

orthogonal to R(X). Fix p>0 and put p′=p/4. Then there exist constants Cp

and C′
p such that

∫ π

−π

|Kµ(z, r exp iφ)|p′
dφ≤Cp+C′

p

∫ π

−π

dφ

(1−|F (z, r exp iφ)|)p
, 0 < r <

√

1−|z|2.
(4.5)

Proof. Fix z in E and fix r. Put w=r exp iφ. By (4.4), we have

|Kµ|p′ ≤max
(

Cp′

(1−|F (z, w)|)p
, (M ′)p′

)

,

and so

|Kµ|p′ ≤ Cp′

(1−|F (z, w)|)p
+(M ′)p′

.

Integrating this inequality with respect to dφ, we get (4.5). �

Claim 4.1. Assume that, with w=r exp iφ,
∫ π

−π

dφ

(1−|F (z, w)|)p
= O(1), as r!

√

1−|z|2,(4.6)

for every z in E. Then m3(X)=0.
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Proof. Fix z in E. Let Λz be the set of all w with (z, w)∈X . Assume that
m1(Λz)>0. Fix w∈Λz, w=r exp iφ, and let r!√

1−|z|2. Then
∫ π

−π

lim inf
r!

√
1−|z|2

(

1
(1−|F (z, w)|)p

)

dφ≤ lim inf
r!

√
1−|z|2

∫ π

−π

dφ

(1−|F (z, w)|)p
.(4.7)

Since (z, w) is in X and |F (z, w)|=1 on X , the left-hand side in (4.7) is infinite,
and so the right-hand side is infinite as well. This contradicts (4.6). So m1(Λz) is
zero. Since this holds for every z in E, m3(X)=0. We are done. �

The preceding allows us to give conditions for the equality of R(X)=C(X) in
certain cases. As earlier we fix a disk E in the z-plane and define the region W

as the set of all points (z, w)∈int B such that z∈E. We consider a function F ,
holomorphic in W and C1 in�W , such that |F |<1 on W .

We now choose a set X on S lying over E, such that |F |=1 on X .

Theorem 4.2. Assume that for all z in E, for some p>0, we have
∫ π

−π

dφ

(1−|F (z, r exp iφ)|)p
= O(1), as r!

√

1−|z|2.(4.8)

Then R(X)=C(X).

Proof. Making use of (4.5), the proof follows the argument in the proof of
Theorem 1.1. �

5. A special case

Let E and W be as in Section 2 and assume that �E is disjoint from 0.
In this section we verify condition (4.8) for the case that F is the function

z/
√

1−w2. We take X={(z,
√

1−|z|2):z∈E}. Then (4.1) and (4.2) hold.
For (z, w)∈W we shall write w=r exp iφ. For fixed z∈E, an elementary calcu-

lation gives

1−|F | ≥ k2r2(1−cos 2φ),(5.1)

where k is a constant independent of r.
For w∈Dz, w=r exp iφ, r≥ 1

2

√

1−|z|2, we have

1
1−|F (z, w)| ≤C

1
1−cos2φ

,

where C is a constant.
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It follows that for some positive constant c′,
∫ π

−π

dφ

(1−|F (z, w)|)1/4
≤ c′

∫ π

−π

dφ

(1−cos2φ)1/4
.

The right-hand side is finite, so we have (4.8) holding in this case, with p= 1
4 .

Note. The approximation result R(X)=C(X) in this case can be obtained
directly from the fact that w=

√

1−|z|2 on X .

Appendix A

In this appendix we sketch a proof of Lemma 2.4.

Definition A.1. A Euclidean Hartogs figure in C
2 is a pair of sets (P, H), chosen

as follows. Let P ={z=(z1, z2)∈C2 :|z1|≤1 and |z2|≤1} and choose numbers q1 and
q2, 0<q1, q2<1. Let H={z=(z1, z2)∈P :|z1|≥q1 or |z2|≤q2}.

Definition A.2. Let (P, H) be a Euclidean Hartogs figure in C2 and let Φ be
a biholomorphism: P!C2. Set ˜P =Φ(P ) and ˜H=Φ(H). Then the pair ( ˜P , ˜H) is
a general Hartogs figure in C2.

Lemma A.1. Let W be a bounded domain in C2 that is not pseudoconvex.
Then there exists a general Hartogs figure ( ˜P , ˜H) in C2 such that ˜H⊂W and ˜P is
not contained in W .

Proof. Lemma A.1 is the same as [2, Lemma 23.2], and a proof of it is given
there. �

Proof of Lemma 2.4. We are given a compact set Y in C
2. Let ̂Y be its

rationally convex hull. Fix a point y∈ ̂Y \Y and a ball β in C
2, centered at y,

with β disjoint from Y .
Let W be a connected component of β\ ̂Y . Arguing by contradiction, we assume

that W is not pseudoconvex. By Lemma A.1, we then have a general Hartogs figure
( ˜P , ˜H) in C2 such that ˜H⊂W and ˜P is not contained in W . Here “ball” is replaced
by “bidisk”, but the argument is the same.

The argument in the proof of [2, Theorem 23.1] applies to the present case of
a rationally convex hull ̂Y even though it is concerned with the polynomially convex
hull ̂YP . The proof uses the following result.

Claim A.1. Let K be a compact subset of ̂YP \Y . Then the LMMP holds for
the algebra of functions on K which are restrictions to K of functions holomorphic
in a C2-neighborhood of K.
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This claim holds also for the rationally convex hull ̂Y . This follows from a gen-
eral result on commutative Banach algebras due to Graham Allan, and given as
Theorem 9.3 in [10].

Using this claim, the argument in the proof of Theorem 23.1 of [2] arrives at
a contradiction. Hence W is pseudoconvex, and Lemma 2.4 is proved. �

A related result on rational approximation is given by Kytmanov in [6]. The
result concerns sets X on the unit sphere which are peak sets for functions in the
ball algebra.

Note. The author is grateful to John Anderson for help with this paper. In
particular, John Anderson pointed out to me the following result, which follows
from work of T. Duchamp and E. L. Stout [4, Section 5].

Theorem A.1. With B and S as above, let F be a function holomorphic on
int B and continuous on B. Let X be a compact subset of S such that

(i) |F |<1 on B outside of X, and
(ii) |F |=1 on X.
Then R(X)=C(X).

This result gives a treatment, based on the theory of uniform algebras, related
to the class of sets in Section 4 above.
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