The injectivity of the extended Gauss map of general projections of smooth projective varieties

Marc Coppens

Abstract. Let X be a smooth n-dimensional projective variety embedded in some projective space \mathbb{P}^N over the field \mathbb{C} of the complex numbers. Associated with the general projection of X to a space \mathbb{P}^{N-m} (N-m>n+1) one defines an extended Gauss map $\overline{\gamma} \colon \overline{X} \to \operatorname{Gr}(n; N-m)$ (in case N-m>2n-1 this is the Gauss map of the image of X under the projection). We prove that \overline{X} is smooth. In case any two different points of X do have disjoint tangent spaces then we prove that $\overline{\gamma}$ is injective.

Introduction

0.1. Let X be a smooth n-dimensional projective variety embedded in some projective space \mathbb{P}^N over the field \mathbb{C} of the complex numbers. Associated with a point $x \in X$ there is an embedded tangent space $\mathbb{T}_x(X)$. This is an n-dimensional linear subspace of \mathbb{P}^N , hence a point $\gamma(x)$ in the Grassmannian $\operatorname{Gr}(n, N)$. The morphism $\gamma: X \to \operatorname{Gr}(n, N)$ is called the *Gauss map*.

In [2] we studied the following question: does there exist a projective embedding $X \subset \mathbb{P}^{2n+1}$ such that the Gauss map is injective? This question is motivated by the following two facts: for each embedding of X in a projective space the Gauss map is generically injective (see [7, I, Corollary 2.8]) and in general 2n+1 is the smallest possible dimension for a projective space such that X can be embedded in it.

We proved the answer in the affirmative as follows. First we proved that, in case any two different points on X do have disjoint embedded tangent spaces, then a general projection to \mathbb{P}^{2n+1} gives an embedding of X having an injective Gauss map. Next we proved that, starting from an arbitrary embedding of X in some projective space \mathbb{P}^M and composing it with the 3-Veronese embedding of \mathbb{P}^M we obtain an embedding of X such that any two points on X do have disjoint embedded

The author is affiliated with the University of Leuven as a research fellow.

tangent spaces. Motivated by this proof, we introduce the following definition: in case any two different points on X have disjoint embedded tangent spaces to X then we say that X has disjoint embedded tangent spaces.

0.2. In this paper, given an embedding of X in \mathbb{P}^N with disjoint embedded tangent spaces, we consider the behavior of the Gauss map using a general projection to some projective space \mathbb{P}^{N-m} with $N-m \leq 2n$. As soon as N < 2n, in general, the projection is not a local embedding of X at some points, hence the embedded tangent space is not defined at such point. Therefore, the Gauss map associated to the projection $j: X \to \mathbb{P}^{N-m}$ is only defined on a non-empty open subset U of X. Let \overline{X} be the closure of the graph of that map in $X \times \operatorname{Gr}(n, N-m)$. The projection $\overline{\gamma}$ of \overline{X} on $\operatorname{Gr}(n, N-m)$ is called the *extended Gauss map* of $j: X \to \mathbb{P}^{N-m}$.

0.3. We are going to prove the following theorem.

Theorem. Let $i: X \to \mathbb{P}^N$ be an embedding of a smooth n-dimensional projective variety having disjoint embedded tangent spaces. Assume that Λ is a general (m-1)-dimensional linear subspace of \mathbb{P}^N . Then the projection with center Λ gives rise to a morphism $j: X \to \mathbb{P}^{N-m}$. The extended Gauss map of j is injective if $N-m \ge n+2$.

In the first part of the paper we give an explicit description of the domain \overline{X} of the extended Gauss map in the situation of a general projection. In particular we will prove that \overline{X} is smooth. In the second part we will prove the theorem.

Part 1

In this part we will prove the following proposition.

Proposition. Let $X \subset \mathbb{P}^N$ be a smooth n-dimensional projective variety and let Λ be a general (m-1)-dimensional linear subspace of \mathbb{P}^N . The projection with center Λ gives rise to a morphism $j: X \to \mathbb{P}^{N-m}$. Let $\overline{\gamma}: \overline{X} \to \operatorname{Gr}(n; N-m)$ be the extended Gauss map. In case $N-m \ge n+2$ then \overline{X} is smooth.

1.1. First we give a description of the Gauss map of $X \subset \mathbb{P}^N$ using vector bundles.

Let V be a complex vector space of dimension N+1 and let $\mathbb{P}^{N}(V) = \operatorname{Proj}(S^{*}(V^{D}))$ be the projective space of 1-dimensional vector subspace of V (we only consider closed points). We omit the vector space V and write \mathbb{P}^{N} . Dualizing the Euler sequence (see [4, Chapter II, Example 8.20.1]) we have a natural exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^N} \xrightarrow{\alpha} \mathcal{O}_{\mathbb{P}^N}(1) \otimes_{\mathbb{C}} V \xrightarrow{\beta} T_{\mathbb{P}^N} \longrightarrow 0.$$

A point $x \in \mathbb{P}^N$ corresponds to a 1-dimensional vector subspace L(x) of V and one has $\ker(\beta(x)) = L(x)$ (after twisting by $\mathcal{O}(1)$).

Consider the exact sequence $0 \to T_X \to T_{\mathbb{P}^N}|_X \to N_{X/\mathbb{P}^N} \to 0$. Composing with $\beta|_X$ we obtain an epimorphism of vector bundles $\mathcal{O}_X(1) \otimes V \to N_{X/\mathbb{P}^N}$ on X. Let E_X be its kernel, hence $E_X = (\beta|_X)^{-1}(T_X)$. We obtain the exact sequence:

$$0 \longrightarrow \mathcal{O}_X \xrightarrow{\alpha_X} E_X \xrightarrow{\beta_X} T_X \longrightarrow 0.$$

As a vector subbundle of $\mathcal{O}_X(1) \otimes V$, the vector bundle E_X defines a morphism $X \to \operatorname{Gr}(n; N)$; this is the Gauss map γ_X of X; for $x \in X$ one has that $\gamma_X(x)$ corresponds to the embedded tangent space $\mathbb{T}_x(X) \subset \mathbb{P}^N$ of X at x.

1.2. We give a description of a bundle map u that will be used to define the extended Gauss map associated to $j: X \to \mathbb{P}^{N-m}$.

A general linear subspace $\Lambda \subset \mathbb{P}^N$ of dimension m-1 is a projective space $\mathbb{P}(W)$ for some general *m*-dimensional vector subspace $W \subset V$. The projection with center Λ gives rise to a morphism $\mathbb{I} \colon \mathbb{P}^N(V) \setminus \Lambda \to \mathbb{P}^{N-m}(V/W) = \mathbb{P}^{N-m}$. The image of a point $x \in \mathbb{P}^N(V) \setminus \Lambda$ is defined as being the 1-dimensional vector subspace $(L(x)+W)/W \subset V/W$. On \mathbb{P}^{N-m} we have the natural exact sequence

$$0 \longrightarrow \mathcal{O}_{\mathbb{P}^{N-m}} \xrightarrow{\alpha'} \mathcal{O}_{\mathbb{P}^{N-m}}(1) \otimes_{\mathbb{C}} (V/W) \xrightarrow{\beta'} T_{\mathbb{P}^{N-m}} \longrightarrow 0.$$

For $x \in \mathbb{P}^N \setminus \Lambda$ the tangent map $d_x \mathbb{I} \colon T_{\mathbb{P}^N, x} \to T_{\mathbb{P}^{N-m}, \mathbb{I}(x)}$ lifts to (a multiple of) the natural surjection $V \to V/W$ through β and β' (the multiple depending on a trivialization of $\mathcal{O}_{\mathbb{P}^N}(1)$ and $\mathcal{O}_{\mathbb{P}^{N-m}}(1)$).

Because Λ is general and N-m > n we have $\Lambda \cap X = \emptyset$. Hence the restriction of \mathbb{I} to X is a morphism $j: X \to \mathbb{P}^{N-m}$. We have a commutative diagram

$$\begin{array}{c} \mathcal{O}_X(1) \otimes_{\mathbb{C}} V \xrightarrow{\beta_X} T_{\mathbb{P}^N|_X} \\ \text{natural} & \qquad \qquad \downarrow^{d\mathbb{I}|_X} \\ \mathcal{O}_X(1) \otimes_{\mathbb{C}} (V/W) \xrightarrow{j^*(\beta')} j^*(T_{\mathbb{P}^{N-m}}) \end{array}$$

The restriction to the vector bundle $E_X \subset \mathcal{O}_X(1) \otimes_{\mathbb{C}} V$ gives rise to morphisms $u: E_X \to \mathcal{O}_X(1) \otimes_{\mathbb{C}} (V/W)$ and $E_X \to j^*(T_{\mathbb{P}^{N-m}})$ of vector bundles on X. Clearly $\alpha_X(\mathcal{O}_X) \subset E_X$ belongs to the kernel of this second morphism, hence it induces a morphism $T_X \to j^*(T_{\mathbb{P}^{N-m}})$. This is the tangent map dj defined by $j: X \to \mathbb{P}^{N-m}$. Hence u is a lifting of dj (it induces the identity on $\ker(E_X \to T_X)$).

1.3. Associated with u and dj we can define subschemes of X using rank conditions. Since those subschemes are the same for u and dj we give a description of those subschemes using the morphism u.

Marc Coppens

We write E (resp. F) instead of E_X (resp. $\mathcal{O}_X(1) \otimes_{\mathbb{C}} (V/W)$). As a set, we define $D_k(u) = \{x \in X : \operatorname{rk}(u(x)) \leq \dim(X) + 1 - k\}$, hence $x \in D_k(u)$ if and only if $\dim(\ker(u(x))) \geq k$ (this is equivalent to $\dim(\ker(dj(x))) \geq k$). Locally as a scheme, $D_k(u)$ is defined as follows. Let U be an open neighborhood of x in X such that the restrictions of E and F are trivial. Using trivializations, the morphism u defines a morphism $U \to \operatorname{Hom}(\mathbb{C}^{n+1}; \mathbb{C}^{N+1-m})$. The minors of order n+2-k associated with the universal morphism above $\operatorname{Hom}(\mathbb{C}^{n+1}; \mathbb{C}^{N+1-m})$ define universal loci $D_k \subset \operatorname{Hom}(\mathbb{C}^{n+1}; \mathbb{C}^{N-m+1})$ as subschemes and $D_k(u) \cap U$ is the inverse image of D_k .

Let $x \in D_k(u) \setminus D_{k+1}(u)$ and let $x' \in D_k \setminus D_{k+1}$ be the image of x in the space Hom $(\mathbb{C}^{n+1}; \mathbb{C}^{N+1-m})$ using trivializations as before. The tangent space of Hom $(\mathbb{C}^{n+1}; \mathbb{C}^{N+1-m})$ at x' is Hom $(\mathbb{C}^{n+1}; \mathbb{C}^{N+1-m})$ itself in a natural way. This can be described explicitly as follows. Let v be a tangent vector at x'. This corresponds to a morphism of $\mathbb{C}[\varepsilon] = \mathbb{C}[x]/\langle x^2 \rangle$ to Hom $(\mathbb{C}^{n+1}; \mathbb{C}^{N+1-m})$ defined by a \mathbb{C} -linear map $\mathbb{C}^{n+1} \to \mathbb{C}^{N+1-m}[\varepsilon] : \underline{t} \mapsto u(x')(\underline{t}) + \varepsilon \overline{u}(\underline{t})$ (here u(x') is the linear map defined by x'). Then \overline{u} is the linear map associated with v (and we are going to denote this linear map by v too). The tangent vector v is tangent to D_k if and only if $v(\ker(u(x'))) \subset \operatorname{im}(u(x'))$ (see e.g. [3, Example 14.16]). This implies that D_k is smooth at x' and the normal bundle of D_k at x' can be identified with Hom $(\ker(u(x')))$; coker(u(x'))).

The natural map $T_{x'}(\operatorname{Hom}(\mathbb{C}^{n+1};\mathbb{C}^{N+1-m})) \to N_{D_k;x'}$ is the natural map

$$\operatorname{Hom}(\mathbb{C}^{n+1};\mathbb{C}^{N+1-m})\longrightarrow\operatorname{Hom}(\ker(u(x));\operatorname{coker}(u(x))).$$

The local map $U \to \operatorname{Hom}(\mathbb{C}^{n+1}; \mathbb{C}^{N+1-m})$ defined above induces a morphism $T_x(X) \to \operatorname{Hom}(\ker(u(x)); \operatorname{coker}(u(x)))$. This map is called the *Kodaira–Spencer map* RKS(u; x) associated to u at x (see [5, p. 165]). The tangent space $T_x(D_k(u))$ is equal to the kernel of RKS(u; x).

Concerning the behavior of tangent spaces under general projections, there is an important theorem of Mather (see [6]). There is a discussion of that theorem in the setting of complex algebraic geometry in [1]. Here we only use the easy part of that theorem. It says $D_k(u) \setminus D_{k+1}(u)$ is smooth of codimension

$$(N-n-m+1-1+k)k = (N-m-n+k)k = \dim(\operatorname{Hom}(\ker(u(x)); \operatorname{coker}(u(x))))$$

This implies that RKS(u; x) is surjective.

1.4. Using [5, Section 3.4] at the end of Section 1.3 we obtain that $(D_k(u))_k$ is an R_{N-m-n} -like stratification of X. We recall the concept of R_{δ} -like stratification of X (see [5]) and we give a general discussion of that concept in case of a stratification defined by means of rank conditions associated to a map between vector bundles.

Consider a sequence $X = Z_0 \supset Z_1 \supset ... \supset Z_m$ of closed subschemes of X. This defines a stratification: X is the disjoint union of locally closed subschemes $Z_i \setminus Z_{i+1}$. This stratification is called R_{δ} -like if for each $x \in Z_i \setminus Z_{i+1}$ there exists an étale neighborhood Z' of X at x and a smooth morphism $Z' \rightarrow \operatorname{Hom}(\mathbb{C}^i; \mathbb{C}^{\delta+i})$ such that the inverse image of $D_k \subset \operatorname{Hom}(\mathbb{C}^i; \mathbb{C}^{\delta+i})$ on Z' is equal to the inverse image of $Z_k \subset X$ on Z'.

In case X is a smooth variety; E and F are vector bundles on X of rank e and $e+\delta$, resp.; $u: E \to F$ is a morphism such that for each $x \in X$ the map RKS(u; x) is surjective, then $D_k(u)$ is R_{δ} -like. In this case, let $x \in D_k(u) \setminus D_{k+1}(u)$. Choose $V \subset E(x)$ (resp. $W \subset F(x)$) of dimension e-k (resp. $\delta+k$) complementary to ker $(u(x)) \subset E(x)$ (resp. $\operatorname{im}(u(x)) \subset F(x)$). Using local trivializations of E and F on a neighborhood U of x on X we can consider u as a morphism $U \to \operatorname{Hom}(\ker(u(x)) \oplus V; \operatorname{im}(u(x)) \oplus W)$. At x this induces an isomorphism $V \to \operatorname{im}(u(x))$, by shrinking U we can assume that it induces an isomorphism at each point of U. Then the rank stratification is induced by $U \to \operatorname{Hom}(\ker(u(x)); W)$. This is the morphism $Z' \to \operatorname{Hom}(\mathbb{C}^k; \mathbb{C}^{\delta+k})$ mentioned in the definition of R_{δ} -like.

Let $\pi_{e;F} \colon \operatorname{Gr}(e;F) \to X$ be the Grassmannian of subbundles of rank e of F and let $0 \to E' \to \pi_{e;F}^{-1}(F) \to Q' \to 0$ be the tautological exact sequence. The restriction of u to $X \setminus D_1(u)$ induces a natural section $s \colon X \setminus D_1(u) \to \operatorname{Gr}(e;F)$ such that s(x) corresponds to $\operatorname{im}(u(x))$ for $x \in X \setminus D_1(u)$. Let $\overline{X} \subset \operatorname{Gr}(e;F)$ be the set of points \overline{x} corresponding to a subspace $E_{\overline{x}} \subset F_x$ (here $x = \pi_{e;F}(\overline{x})$) such that $\operatorname{im}(u(x)) \subset E_{\overline{x}}$. Clearly $s(X \setminus D_1(u)) \subset \overline{X}$, the projection $\overline{\pi} \colon \overline{X} \to X$ is surjective and its fibers are connected. For $\overline{x} \in \overline{X}$ let $\operatorname{RKS}(E_{\overline{x}};x)$ be the composition of $\operatorname{RKS}(u;x)$ and the natural map $\operatorname{Hom}(\ker(u(x)); \operatorname{coker}(u(x))) \to \operatorname{Hom}(\ker(u(x)); F_x/E_{\overline{x}})$. Clearly for all $\overline{x} \in \overline{X}$ this map is surjective too. From [5, Section 3.5] it follows that \overline{X} is smooth (in [5] one uses a dual description). In particular it follows that \overline{X} is the closure of $s(X/D_1(u))$.

1.5. We return to the situation obtained in Section 1.3 and we apply the conclusion of Section 1.4.

In this case the Grassmannian bundle $\operatorname{Gr}(n+1;F)$ is equal to the product $X \times \operatorname{Gr}(n; \mathbb{P}(V/W) = \mathbb{P}^{N-m})$ and the composition of s with the projection to $\operatorname{Gr}(n; \mathbb{P}^{N-m})$ is the Gauss map of $j: X \to \mathbb{P}^{N-m}$. It follows that \overline{X} is the closure of the graph of γ , hence $\overline{\gamma}$ (the projection of \overline{X} to $\operatorname{Gr}(n; \mathbb{P}^{N-m})$) is the extended Gauss map of $j: X \to \mathbb{P}^{N-m}$.

Part 2

In this part we are going to prove the theorem from the introduction.

We are going to use induction on m. For each integer m' satisfying $1 \le m' \le m$ let $\Lambda_{m'}$ be a general linear subspace of dimension m'-1 in \mathbb{P}^N . Without loss of generality we can assume that $\Lambda_{m'-1} \subset \Lambda_{m'}$ and once we have chosen a general $\Lambda_{m'-1}$ we can assume that $\Lambda_{m'}$ is general for the condition of containing $\Lambda_{m'-1}$. We write $\Lambda = \Lambda_m$. We obtain morphisms $i_{m'}: X \to \mathbb{P}^{N-m'}$, a Gauss map $\gamma_{m'}$ and an extended Gauss maps $\overline{\gamma}_{m'}$. Clearly $\gamma = \gamma_0 = \overline{\gamma}_0$ is injective and we can assume $\overline{\gamma}_{m-1}$ is injective. We need to prove that $\overline{\gamma}_m = \overline{\gamma}$ is injective.

2.1. First we introduce some notation.

For $q \in X$ we write $\mathbb{T}_q(X, m')$ to denote the linear span of $\mathbb{T}_q(X)$ and $\Lambda_{m'}$. Clearly, the Gauss map $\gamma_{m'}$ is defined at q if and only if $\dim(\mathbb{T}_q(X, m')) = n + m'$. In this case the value of the Gauss map $\gamma_{m'}$ at q corresponds to a linear n-space in $\mathbb{P}^{N-m'}$ denoted by $\mathbb{T}_{q,m'}(X)$ (it is the projection of $\mathbb{T}_q(X, m')$ on $\mathbb{P}^{N-m'}$).

Let $Z_{k,m'}$ be the closure of $X \times X$ of the set of pairs (q,q') with $q \neq q'$ such that $\dim(\mathbb{T}_q(X,m')) = \dim(\mathbb{T}_{q'}(X,m')) = n+m'$ and $\dim(\mathbb{T}_q(X,m') \cap \mathbb{T}_{q'}(X,m')) = m'+k$ (this becomes equivalent to the fact that $\gamma_{m'}$ is defined at the points q and q'and $\dim(\mathbb{T}_{q,m'}(X) \cap \mathbb{T}_{q',m'}(X)) = k$; we use the convention $\dim(\emptyset) = -1$). In case $Z_{n,m} \neq \emptyset$ and (q,q') is a general point of $Z_{n,m}$ then $q \neq q'$; γ_m is defined at the points q and q' but $\mathbb{T}_{q,m}(X) = \mathbb{T}_{q',m}(X)$ In this case the Gauss map γ_m is not injective. So we need to prove that $Z_{n,m} = \emptyset$.

2.2. For each integer $-1 \le k \le n$ let $z_{k,m'} := 2n + (k+1)(m' - N + 2n - k)$. We are going to prove the following claim:

If $z_{k,m'} < 0$ then $Z_{k,m'} = \emptyset$.

If $z_{k,m'} \ge 0$ then $\dim(Z_{k,m'}) \le z_{k,m'}$.

Taking m'=m and k=n we have $z_{n,m}=2n+(n+1)(m-N+n)$ and using that $N-m\geq n+2$ we obtain $z_{n,m}\leq 2n+(n+1)(-2)<0$. Hence proving the claim implies that the Gauss map γ_m is injective. For k=-1 the claim is trivial. By assumption (i.e. $X \subset \mathbb{P}^N$ has disjoint embedded tangent spaces) $Z_{k,0} = \emptyset$ for $k \geq 0$. We can assume the claim to be true for m'=m-1.

Remark. For (q,q') general on $X \times X$ one has $\dim(\langle \mathbb{T}_{q,m'}(X) \cup \mathbb{T}_{q',m'}(X) \rangle) \leq N-m'$ hence $\dim(\mathbb{T}_q(X,m') \cap \mathbb{T}_{q'}(X,m')) \geq 2n-N+2m'$. Therefore $(q,q') \in Z_{k,m'}$ for some $k \geq 2n-N+m'$. This implies that we can always assume that $m' \leq N+k$ -2n. Under this assumption we obtain the natural inequality $z_{k,m'} \leq 2n$.

Proof of the claim. Assume that $Z_{k,m-1} \neq \emptyset$ and let (q,q') be a general element of it. Then dim $(\langle \mathbb{T}_q(X,m-1) \cup \mathbb{T}_{q'}(X,m-1) \rangle) = 2n+m-1-k \leq 2n+N-2n+k-1$ -k=N-1. Since Λ is a general linear (m-1)-space containing Λ_{m-1} we find $\Lambda \not\subset \langle \mathbb{T}_q(X,m-1) \cup \mathbb{T}_{q'}(X,m-1) \rangle$, hence dim $(\langle \mathbb{T}_q(X,m) \cup \mathbb{T}_{q'}(X,m) \rangle) = 2n+m-k$ therefore dim $(\mathbb{T}_q(X,m) \cap \mathbb{T}_{q'}(X,m)) = m+k$. This implies that $(q,q') \in Z_{k,m}$, and hence $Z_{k,m-1} \subset Z_{k,m}$. Since $z_{k,m-1} < z_{k,m}$ for $k \ge 0$, we can assume that $Z_{k,m} \ne Z_{k,m-1}$. Let (q,q') be a general point of $Z_{k,m}$, hence $\dim(\langle \mathbb{T}_q(X,m) \cup \mathbb{T}_{q'}(X,m) \rangle) = 2n + m - k$. Since $(q,q') \notin Z_{k,m-1}$ we need $\Lambda \subset \langle \mathbb{T}_q(X,m-1) \cup \mathbb{T}_{q'}(X,m-1) \rangle$, hence

$$\langle \mathbb{T}_q(X,m-1) \cup \mathbb{T}_{q'}(X,m-1) \rangle = \langle \mathbb{T}_q(X,m) \cup \mathbb{T}_{q'}(X,m) \rangle$$

and therefore dim ($\mathbb{T}_q(X,m-1)\cap\mathbb{T}_{q'}(X,m-1))=(m-1)+(k-1).$ This proves that $(q,q')\in Z_{k-1,m-1}.$

In case $z_{k-1,m-1} < 0$ we have $Z_{k-1,m-1} = \varnothing$, so this can be excluded. So assume that $z_{k-1,m-1} \ge 0$ and let I be the closure in $Z_{k-1,m-1} \times \mathbb{P}^{N-m+1}$ (with \mathbb{P}^{N-m+1} parameterizing linear (m-1)-spaces containing Λ_{m-1} in \mathbb{P}^N) of the subset of pairs $((q,q'), \Lambda)$ such that $\Lambda \subset \langle \mathbb{T}_q(X,m-1) \cup \mathbb{T}_{q'}(X,m-1) \rangle$ and $(q,q') \notin Z_{k,m-1}$. Consider the projections $p_1: I \to Z_{k-1,m-1}$ and $p_2: I \to \mathbb{P}^{N-m+1}$. Components of $Z_{k,m}$ not contained in $Z_{k,m-1}$ are components of $p_1(p_2^{-1}(\Lambda))$. On the other hand, the general fibers of p_1 have dimension 2n-k+1, hence $\dim(I) \le z_{k-1,m-1} + (2n-k+1)$, hence $\dim(Z_{k,m}) \le \dim(I) - (N-m+1) \le z_{k-1,m-1} + (2n-k+1) - (N-m+1) = z_{k,m}$. This finishes the proof of the claim. \Box

2.3. In order to prove the injectivity of the extended Gauss map we extend the notation from Section 2.1. For integers $-1 \le e_1 \le n$ and $-1 \le e_2 \le n$ let $Z_{k,m',e_1,e_2} \subset X \times X$ be the closure of the subset $Z_{k,m',e_1,e_2}^0 \subset X \times X$ equal to the set of the points $(q,q') \in X \times X$ satisfying $q \ne q'$ and

- (1) $\dim(\mathbb{T}_q(X, m')) = n + m' 1 e_1;$
- (2) dim($\mathbb{T}_{q'}(X, m')$)= $n+m'-1-e_2$;
- (3) dim($\mathbb{T}_q(X, m') \cap \mathbb{T}_{q'}(X, m')$) = m' + k.

Let $d_q(i_{m'}): T_q(X) \to T_{i_{m'}(q)}(\mathbb{P}^{N-m'})$ be the tangent map of $i_{m'}$ at q (and similar for q'). Then condition (1) (resp. (2)) means that $d_q(i_{m'})$ (resp. $d_{q'}(i_{m'})$) has rank $n-1-e_1$ (resp. $n-1-e_2$). In particular $i_{m'}$ is not a local embedding at q (resp. q') if and only if $e_1 \ge 0$ (resp. $e_2 \ge 0$). Assuming conditions (1) and (2), condition (3) is equivalent to $\dim(\langle \mathbb{T}_q(X,m') \cup \mathbb{T}_{q'}(X,m') \rangle) = 2n+m'-2-e_1-e_2-k$. In particular we need $2n+m'-2-e_1-e_2-k \le N$ hence we can always assume that $m' \le N-2n+2+e_1+e_2+k$.

Using the description of \overline{X} and $\overline{\gamma}$ in Part 1, we obtain a contradiction to the injectivity of the extended Gauss map $\overline{\gamma}_{m'}$ if and only if we find two different points q and q' on X and an (n+m')-dimensional linear subspace Γ of \mathbb{P}^N such that $\Gamma \supset \langle \mathbb{T}_q(X,m') \cup \mathbb{T}_{q'}(X,m') \rangle$. In case $(q,q') \in \mathbb{Z}^0_{k,m',e_1,e_2}$ then such a subspace Γ exists if and only if $n+m' \ge 2n+m'-2-e_1-e_2-k$, hence $n \le e_1+e_2+k+2$.

So in order to prove the injectivity of the extended Gauss map $\overline{\gamma}_{m'}$ we need to prove that $Z_{k,m',e_1,e_2} = \emptyset$ in case $n \le e_1 + e_2 + k + 2$. In case m' = 0 then this condition is satisfied. We are going to assume that this condition holds for m' = m - 1 and we are going to prove that it holds for m' = m.

In the proof we can assume that $e_1 \ge e_2$. In case $e_1 = e_2 = -1$ the condition becomes $Z_{k,m} = \emptyset$ for $n \le k$. This is proved in Section 2.2, so we can assume that $e_1 \ge 0$.

Using the induction we can assume that Λ_{m-1} is a general hyperplane in Λ . Let (q, q') be a general element of Z_{k,m,e_1,e_2} . Since Z_{k,m,e_1,e_2} does not depend on the choice of Λ_{m-1} inside Λ we can consider Λ_{m-1} to be general in Λ independent of (q, q'). In particular, since $e_1 \ge 0$ we have dim $(\mathbb{T}_q(X) \cap \Lambda) \ge 0$ and so

$$\dim(\mathbb{T}_q(X) \cap \Lambda_{m-1}) = \dim(\mathbb{T}_q(X) \cap \Lambda) - 1$$

and also

$$\dim(\langle \mathbb{T}_q(X) \cup \mathbb{T}_{q'}(X) \rangle \cap \Lambda_{m-1}) = \dim(\langle \mathbb{T}_q(X) \cup \mathbb{T}_{q'}(X) \rangle \cap \Lambda) - 1.$$

This implies that $\mathbb{T}_q(X,m) = \mathbb{T}_q(X,m-1)$ and

$$\langle \mathbb{T}_q(X,m) \cup \mathbb{T}_{q'}(X,m) \rangle = \langle \mathbb{T}_q(X,m-1) \cup \mathbb{T}_{q'}(X,m-1) \rangle.$$

2.4. In the induction argument we are going to distinguish between two cases and in both cases we are going to prove a dimension inequality between varieties Z for the values m and m-1.

(A) In case $e_2 \ge 0$ we also have $\mathbb{T}_{q'}(X,m) = \mathbb{T}_{q'}(X,m-1)$. In particular

$$\mathbb{T}_q(X,m) \cap \mathbb{T}_{q'}(X,m) = \mathbb{T}_q(X,m-1) \cap \mathbb{T}_{q'}(m-1).$$

It follows that $(q, q') \in Z^0_{k+1, m-1, e_1-1, e_2-1}$.

In this case we have $\Lambda \subset \mathbb{T}_q(X, m-1) \cap \mathbb{T}_{q'}(X, m-1)$.

(B) In case $e_2 = -1$ we have $\dim(\mathbb{T}_{q'}(X, m)) = \dim(\mathbb{T}_{q'}(X, m-1))+1$. In particular $\dim(\mathbb{T}_q(X, m-1)) \cap \mathbb{T}_{q'}(X, m-1)) = \dim(\mathbb{T}_q(X, m) \cap \mathbb{T}_{q'}(X, m))-1$. It follows that $(q, q') \in Z^0_{k, m-1, e_1-1, -1=e_2}$.

In this case we have $\Lambda \not\subset \mathbb{T}_{q'}(X, m-1)$.

Let T be an irreducible component of Z_{k,m,e_1,e_2} and let τ_1 and τ_2 be the restrictions to T of the projections of $X \times X$ on X. Let $c = \dim(T)$ and $c_i = \dim(\tau_i(T))$ for i=1,2.

In case (A) there exists an irreducible component T' of $Z_{k+1,m-1,e_1-1,e_2-1}$ such that $T \subset \{(q,q') \in T' : \Lambda \subset \mathbb{T}_q(X,m-1) \cap \mathbb{T}_{q'}(X,m-1)\}$. Instead of starting with $\Lambda = \Lambda_m$ and considering Λ_{m-1} as a general hyperplane in Λ , we can start with a general linear subspace Λ_{m-1} of dimension m-2 in \mathbb{P}^N and consider $\Lambda = \Lambda_m$ as a general element of the space \mathbb{P}^{N-m+1} of (m-1)-dimensional linear subspaces of \mathbb{P}^N containing Λ_{m-1} . Let T' be an irreducible component of $Z_{k+1,m-1,e_1-1,e_2-1}$ and let (q,q') be a general point of T'. The space of (m-1)-dimensional linear subspaces of $\mathbb{T}_q(X,m-1) \cap \mathbb{T}_{q'}(X,m-1)$ containing Λ_{m-1} has dimension k+1. For a suitable component T' the union of these spaces has to dominate \mathbb{P}^{N-m+1} and T is a component of a general fiber of this union above \mathbb{P}^{N-m+1} . Writing $c'=\dim(T')$ we conclude that $c'+k+1\geq N-m+1$, i.e. $m\geq N-c'-k$. Under this condition we find that c=c'+k-N+m.

In case (B) there exists an irreducible component T' of $Z_{k,m-1,e_1-1,-1}$ such that $T \subset \{(q,q') \in T': \Lambda \subset \mathbb{T}_q(X,m-1)\}$. Again, starting with a general linear subspace Λ_{m-1} of dimension m-2 in \mathbb{P}^N we consider an irreducible component T' of $Z_{k,m-1,e_1-1,-1}$. Let \mathbb{P}^{N-m+1} be as before. Let c' (resp. c'_1) be the dimension of T' (resp. $\tau'_1(T') \subset X$; the projection on the first factor). For (q,q') general on T' the (m-1)-dimensional linear subspaces of $\mathbb{T}_q(X,m-1)$ containing Λ_{m-1} give rise to a linear subspace of \mathbb{P}^{N-m+1} of dimension $\dim(\mathbb{T}_q(X,m-1))-(m-1)=n-e_1$. For a suitable component T' the union of these spaces has to dominate \mathbb{P}^{N-m+1} and T is a component of a general fiber of this union above \mathbb{P}^{N-m+1} . This implies that $c'_1+n-e_1\geq N-m+1$ and $c_1\leq c'_1+n-e_1+m-N-1$.

In this situation, for q general on $\tau_1(T) \subset \tau'_1(T')$ we find that $\tau_1^{-1}(q) = \tau'_1^{-1}(q)$. If we take Λ general in \mathbb{P}^{N-m+1} and q general in $\tau_1(T)$, then q is general in $\tau'_1(T')$. This implies that $\dim(\tau'_1^{-1}(q)) = c' - c'_1$. Hence

$$c = c_1 + \dim(\tau_1^{-1}(q)) \le c'_1 + n - e_1 + m - N - 1 + c' - c'_1 = c' + n - e_1 + m - N - 1.$$

2.5. From the inequalities between c and c' we are going to finish the proof of the theorem.

To make the computations easier, from now on we write N-m=2n-t, and hence m=N+t-2n. Since we only have to consider Z_{k,m,e_1,e_2} in the case $(e_1,e_2) \neq (-1,-1)$ and since i_m is a local embedding at each point of X in case $N-m \geq 2n$ we can assume that $t \geq 0$. Also, for t=0 we know that $Z_{k,N-2n,e_1,e_2} = \emptyset$ if $(e_1,e_2)\neq (-1,-1)$. We already proved that $Z_{k,m,e_1,-1} \subset Z_{k,m-1,e_1-1,-1}$ for $e_1 \geq 0$ and $Z_{k,m,e_1,e_2} \subset Z_{k+1,m-1,e_1-1,e_2-1}$ for $e_2 \geq 0$, hence $Z_{k,N-2n+t,e_1,e_2} = \emptyset$ for $e_1 \geq t$. So we only have to consider $Z_{k,N-2n+t,e_1,e_2}$ for $t \geq 0$ and $e_1 \leq t-1$.

Claim. For $-1 \le e_1 \le t - 1$ one has

$$\dim(Z_{k,N+t-2n,e_1,-1}) \le -k^2 + k(t-2-e_1) - (e_1+2)(e_1+1) - (e_1-1)n + (e_1+2)t$$
$$= z_{k,t,e_1,-1}.$$

Proof. In case $e_1 = -1$ one has $z_{k,t,-1,-1} = z_{k,N-2n+t}$ and we already have proved the claim in this case. This proves the claim if t=0. So we can use induction on t.

Assume that t > 0 and $e_1 \ge 0$. From case (B) of Section 2.4 we concluded that

$$\dim(Z_{k,N-2n+t,e_1,-1}) \le \dim(Z_{k,N-2n+(t-1),e_1-1,-1}) + n - e_1 + N - 2n + t - N - 1.$$

Using the induction hypothesis we find that

 $\dim(Z_{k,N-2n+t,e_1,-1}) \leq z_{k,t-1,e_1-1,-1} + t - n - e_1 - 1 = z_{k,t,e_1,-1}.$

Now we conclude that the sets $Z_{k,m,e_1,-1}$ cannot give a contradiction to the injectivity of the extended Gauss map. From Section 2.3 we know that we need to prove that $z_{k,t,e_1,-1}<0$ if $n \le e_1+k+1$. Also $2n-t \ge n+2$, hence $t \le n-2$. So $n \le e_1+k+1$ implies that $k \ge t-e_1+1$.

Consider $\phi(k) = -z_{k,t,e_1,-1}$. From $e_1 \le t-1$ we obtain $t-e_1+1 \ge (t-e_1-2)/2$, hence $\phi(k) \ge \phi(t-e_1+1)$. One has $\phi(t-e_1+1) = (e_1-1)(e_1+1+n-t)+6$. So in case $e_1 \ge 1$, since $t \le n-2$, we find that $\phi(t-e_1+1) > 0$. In case $e_1=0$ we have $\phi(k) = k^2 - (t-2)k+2-n+2t$. We need to prove that $\phi(k) > 0$ if $n \le k+1$, hence $k \ge n-1$. Since $n-1 \ge (t-2)/2$ we find that $\phi(k) \ge \phi(n-1)$. But $\phi(n-1) = (n-1)^2 - (t-2)(n-1) + 2-n-2t$ and $t \le n-2$ hence, $\phi(n-1) \ge (n-1)^2 - (n-4)(n-1) + 2-n-2n+4 = 3 > 0$.

From case (A) we know that

$$\dim(Z_{k,N-2n+t,e_1,0}) \le \dim(Z_{k+1,N-2n+t-1,e_1-1,-1}) + k - 2n + t$$

From the previous claim we obtain that

$$\dim(Z_{k,N-2n+t,e_1,0}) \le z_{k+1,t-1,e_1-1,-1} + k - 2n + t$$

= $-k^2 + k(t-3-e_1) + (e_1+3)t - e_1n - e_1(e_1+3) - 4 := -\psi(k).$

For x > 0, in order for $Z_{k-x,N-2n+t+x,e_1+x,x}$ to be non-empty we need $Z_{k,N-2n+t,e_1,0}$ to be non-empty. From Section 2.3 we know that the injectivity of the extended Gauss map would be contradicted by the non-emptiness of $Z_{k-x,N-2n+t+x,e_1+x,x}$ if and only if $n \le (e_1+x)+x+(k-x)+2=x+k+e_1+2$. On the other hand $m \le N-(n+2)$ implies that $2n-t-x \ge n+2$, hence $x \le n-t-2$. Thus, in case we obtain a contradiction to the injectivity of the extended Gauss map we obtain $n \le n-t-2+k+e_1+2$, hence $k \ge t-e_1$.

It is enough to prove that $\psi(k) > 0$ if $k \ge t - e_1$. One computes $\psi(t-e_1) = e_1(n-t+e_1)+4$. Since $t \le n-2$ one finds that $\psi(t-e_1) \ge 4$. On the other hand, from $e_1 \le t-1$ it also follows that $t-e_1 \ge (t-3-e_1)/2$, hence $\psi(k) \ge \psi(t-e_1)$ for $k \ge t-e_1$ and so $\psi(k) > 0$.

This finishes the proof of the injectivity of the extended Gauss map for $N-m \ge n+2$. \Box

References

- 1. ALZATI, A. and OTTAVIANI, G., The theorem of Mather on generic projections in the setting of algebraic geometry, *Manuscripta Math.* **74** (1992), 391–412.
- COPPENS, M. and DE VOLDER, C., The existence of embeddings for which the Gauss map is an embedding, Ann. Mat. Pura Appl. 181 (2002), 453–462.

- 3. HARRIS, J., Algebraic Geometry, Grad. Texts in Math. 133, Springer, New York, 1992.
- HARTSHORNE, R., Algebraic Geometry, Grad. Texts in Math. 52, Springer, New York, 1977.
- HIRSCHOWITZ, A., Rank techniques and jump stratifications, in Vector Bundles on Algebraic Varieties (Bombay, 1984), Tata Inst. Fund. Res. Stud. Math. 11, pp. 159–205, Tata Inst. Fund. Res., Bombay, 1987.
- 6. MATHER, J. N., Generic projections, Ann. of Math. 98 (1973), 226-245.
- ZAK, F. L., Tangents and Secants of Algebraic Varieties, Transl. Math. Monogr. 127, Amer. Math. Soc., Providence, RI, 1993.

Marc Coppens Katholieke Hogeschool Kempen Departement Industrieel Ingenieur en Biotechniek Kleinhoefstraat 4 BE-2440 Geel Belgium marc.coppens@khk.be

Received December 13, 2005 published online October 12, 2007