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Geometry of spaces of compact operators

Åsvald Lima and Vegard Lima

Abstract. We introduce the notion of compactly locally reflexive Banach spaces and show

that a Banach space X is compactly locally reflexive if and only if K(Y, X∗∗)⊆K(Y, X)∗∗ for all

reflexive Banach spaces Y . We show that X∗ has the approximation property if and only if X has

the approximation property and is compactly locally reflexive. The weak metric approximation

property was recently introduced by Lima and Oja. We study two natural weak compact versions

of this property. If X is compactly locally reflexive then these two properties coincide. We also

show how these properties are related to the compact approximation property and the compact

approximation property with conjugate operators for dual spaces.

1. Introduction

Let X and Y be Banach spaces. We denote by L(Y,X) the Banach space of all
bounded linear operators from Y to X , and F(Y,X), K(Y,X), and W(Y,X) denote
the subspaces of finite-rank, compact, and weakly compact operators respectively.

Recall that a Banach space X is said to have the approximation property (AP)
if there exists a net (Sα)⊂F(X,X) such that Sα!IX uniformly on compact sets
in X . If (Sα) can be chosen with supα ‖Sα‖≤1, then X is said to have the metric
AP (MAP). The weaker properties compact AP (CAP) and metric CAP (MCAP)
are defined similarly but with the net (Sα)⊂K(X,X). The dual space X∗ has the
CAP with conjugate operators (CAPconj) if there is a net (Sα)⊂K(X,X) such that
S∗

α!IX∗ uniformly on compact sets in X∗.
Let us also recall that a linear subspace E of a Banach space F is an ideal in

F if E⊥ is the kernel of a norm-one projection on F ∗. The notion of an ideal was
introduced and studied by Godefroy, Kalton, and Saphar in [6].

A linear operator ϕ : E∗!F ∗ is called a Hahn–Banach extension operator if
(ϕe∗)(e)=e∗(e) and ‖ϕe∗‖=‖e∗‖ for all e∈E and e∗∈E∗. Let us denote the set
of all Hahn–Banach extension operators ϕ : E∗!F ∗ by HB(E,F ). It is well known
(and straightforward to verify) that HB(E,F ) �=∅ if and only if E is an ideal in F .
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There is also a local characterization of ideals which predates the term ideal (see
Fakhoury [4], or e.g. Kalton [13] or Lima [14]).

If Y is a separable subspace of a Banach space X , then by a result of Sims and
Yost [31] there exists a separable subspace Z of X such that Y ⊆Z and HB(Z,X) �=∅.
Such a subspace Z will be called a separable ideal in X .

Approximation properties involving compact operators behave differently in
certain respects from those involving only finite-rank operators. A Banach space X
has the AP if and only if F(Y,X) is an ideal in W(Y,X) for every Banach space Y ,
see [16] and [15]. In [15] there is also an example of a Banach space X without the
CAP such that K(Y,X) is trivially an ideal in W(Y,X) for every Y . Something
can be done for the CAP however. X has the CAP if and only if for every Banach
space Y and T∈W(Y,X) there is a net (Sα)⊂K(X,X) with supα ‖SαT ‖≤‖T ‖ such
that Sα!IX in the strong operator topology [25, Theorem 2.3]. In this paper we
will study these “local”, the sense that the operators are factorized, and “global”,
non-factorized, aspects of compact operators.

Related to the “local” characterization of the CAP is the weak version of the
MAP introduced by Lima and Oja in [20]. A Banach space X has the weak metric
approximation property (weak MAP) if for every Banach space Y and every operator
T∈W(X,Y ) there exists a net (Sα)⊂F(X,X) with supα ‖TSα‖≤‖T ‖ such that
Sα!IX uniformly on compact sets in X . Just like the AP the weak MAP can be
characterized “globally”; Lima [23] showed that X has the weak MAP if and only
if F(Y,X) is an ideal in W(Y,X∗∗) for every Banach space Y .

In [20, Theorem 3.2] Lima and Oja showed that a Banach space X has the
weak MAP if and only if the trace mapping V : Y ∗

̂⊗πX!F(X,Y )∗ is isometric
for every reflexive Banach space Y . Recall also Grothendieck’s result that X has
the MAP if and only if the trace mapping V : Y ̂⊗πX!F(X,Y ∗)∗ is isometric for
every Banach space Y [8, Chapter 1, § 5, p. 179] (see also [30, Theorem 4.14]
and [21, Corollary 2.10]). We study the related properties for compact operators in
Sections 2 and 3. In Section 2 we consider the space of compact operators with range
X or its bidual X∗∗, and in Section 3 we let X be the domain space of the compact
operators. The main types of questions we consider are the following: When is the
trace mapping into the dual of the space of compact operators isometric? When can
compact or weakly compact operators into X∗∗ be “well” approximated by compact
operators into X? When is the space of compact operators an ideal in a larger space
of compact or weakly compact operators?

In Section 2 we introduce the notion of compactly locally reflexive Banach
spaces. In Proposition 2.2 we give a list of equivalent formulations of this property.
We give examples of spaces which are not compactly locally reflexive. In Prop-
osition 2.5 we prove that a dual space X∗ has the AP if and only if X has the AP
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and X is compactly locally reflexive, so we have a plentiful supply of spaces which
are compactly locally reflexive.

In Sections 4 and 5 we introduce and study the weak MCAP and its (not
just formally, see Remark 5.1) weaker cousin the very weak MCAP. Characteriza-
tions of these properties similar to what can be found for the weak MAP in [20]
and [23] are proved. In particular, we show how these properties are related to the
existence of certain approximable Hahn–Banach extension operators in HB(X,X∗∗)
(see Theorems 4.3 and 5.3). These characterizations are similar to the one given by
Grothendieck for the AP.

We also relate our new approximation properties to the classical ones. In
Theorem 4.9 we prove that X∗ has the CAPconj property if and only if X has
the weak MCAP in every equivalent renorming and in Theorem 5.6 we show that
X∗ has the CAP if and only if X has the very weak MCAP in every equivalent
renorming.

We conclude the paper with a section on open problems where we also try to
give an overview over the connection between the results in the previous sections.

One of our main tools will be the isometric version of the famous Davis–Figiel–
Johnson–Pe�lczyński factorization lemma [2] due to Lima, Nygaard, and Oja [15].
In this paper, it will be called the factorization lemma. If K is a closed absolutely
convex subset of the unit ball BX of a Banach space X , we shall write

[Z, J ] = DFJP(K),

where Z is the Banach space constructed from K in the factorization lemma and
J : Z!X is the norm-one identity embedding of Z into X (see [15, Lemma 1.1]).

We will also repeatedly be using the following results (FS) by Feder and
Saphar [5, Theorem 1] and (GS) by Godefroy and Saphar [7, Proposition 1.1] which
we cite for easy reference.

Theorem 1.1. Let X and Y be Banach spaces and assume that Y ∗∗ or X∗

has the Radon–Nikodým property.
(FS) The trace mapping V : X∗

̂⊗πY
∗∗!K(Y,X)∗, defined by 〈V (u), T 〉=

tr(T ∗∗u) where u∈X∗
̂⊗πY

∗∗ and T∈K(Y,X), is a quotient map. Moreover, for
all φ∈K(Y,X)∗, there exists u∈X∗

̂⊗πY
∗∗ such that φ=V (u) and ‖φ‖=‖u‖π.

(GS) K(Y,X)∗∗ is isometrically isomorphic to the weak∗-closure of the space
Z={T ∗∗:T∈K(Y,X)} in (X∗

̂⊗πY
∗∗)∗=L(Y ∗∗, X∗∗).

Let us fix some notation. In a normed linear space X , we denote the closed
unit ball by BX . If A is a subset of X , A denotes the closure of A, span(A) denotes
the linear span of A, and conv(A) is the convex hull of A. The identity operator on
X is denoted IX and the natural embedding of X into its bidual X∗∗ is denoted kX .

We only consider Banach spaces over the real scalar field.
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2. K(Y, X) as a subspace of K(Y, X∗∗) and W(Y, X∗∗)

In [21, Proposition 2.9], Lima and Oja proved the following result.

Proposition 2.1. Let X and Y be Banach spaces. Then there exists a Hahn–
Banach extension operator Φ: F(Y,X)∗!F(Y,X∗∗)∗ such that W=Φ�V , where
V : X∗

̂⊗πY
∗∗!F(Y,X)∗ and W : X∗

̂⊗πY
∗∗!F(Y,X∗∗)∗ are the trace mappings.

In particular, ‖Wu‖=‖V u‖ for all u∈X∗
̂⊗πY

∗∗.

This result, or more precisely a version of its corollary [21, Corollary 2.11], was
used as a starting point by Oja and Põldvere for a new proof of the “principle of local
reflexivity” (see [29, Lemma 1.1]). Considering compact operators instead of finite-
rank operators in Proposition 2.1 the statement we get is not true in general. In the
next proposition we characterize this property. We shall say that a Banach space X
is compactly locally reflexive (CLR) if it satisfies the statements in Proposition 2.2.

Proposition 2.2. Let X be a Banach space. The following statements are
equivalent :

(a) For every Banach space Y , there is a Hahn–Banach extension operator
Φ: K(Y,X)∗!K(Y,X∗∗)∗ such that W=Φ�V , where V : X∗

̂⊗πY
∗∗!K(Y,X)∗ and

W : X∗
̂⊗πY

∗∗!K(Y,X∗∗)∗ are the trace mappings. In particular, ‖Wu‖=‖V u‖
for all u∈X∗

̂⊗πY
∗∗.

(b) For every reflexive Banach space Y , ‖Wu‖=‖V u‖ for all u∈X∗
̂⊗πY , where

V : X∗
̂⊗πY!K(Y,X)∗ and W : X∗

̂⊗πY!K(Y,X∗∗)∗ are the trace mappings.
(c) For every reflexive Banach space Y , kerV =kerW , where V : X∗

̂⊗πY!
K(Y,X)∗ and W : X∗

̂⊗πY!K(Y,X∗∗)∗ are the trace mappings.
(d) For every Banach space Y and every T∈K(Y,X∗∗), there is a net (Sα)⊂

K(Y,X) with supα ‖Sα‖≤‖T ‖ such that S∗
α!T ∗|X∗ in the strong operator topology.

(e) For every reflexive Banach space Y and every T∈K(Y,X∗∗), there is a net
(Sα)⊂K(Y,X) with supα ‖Sα‖≤‖T ‖ such that S∗

α!T ∗|X∗ in the strong operator
topology.

(f) K(Y,X∗∗)⊆K(Y,X)∗∗ for every reflexive Banach space Y .
(g) K(Y, ̂X) is an ideal in K(Y, ̂X∗∗) for every Banach space Y and every

equivalent renorming ̂X of X.

Proof. We will need the following additional statement:
(a′) For every reflexive Banach space Y , there is a Hahn–Banach extension

operator Φ: K(Y,X)∗!K(Y,X∗∗)∗ such that W=Φ�V , where V : X∗
̂⊗πY

∗∗!
K(Y,X)∗ and W : X∗

̂⊗πY
∗∗!K(Y,X∗∗)∗ are the trace mappings.

(a)⇒(b)⇒(c) and (d)⇒(e) are trivial.
(c)⇒(b) follows by applying the theorem of Feder and Saphar cited in (FS) in

Theorem 1.1.
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(b)⇒(a′). From (FS) in Theorem 1.1 it follows that Φ=W �V −1 : K(Y,X)∗!
K(Y,X∗∗)∗ is a Hahn–Banach extension operator.

(a)⇒(d) and (a′)⇒(e) follow by using Goldstine’s theorem.
(e)⇒(f) follows from the result by Godefroy and Saphar cited in (GS) in The-

orem 1.1.
(f)⇒(g). Note that a Banach space is always an ideal in its bidual space. Since

(f) is true for all equivalent renormings of X , (g) follows from (f) for Y reflexive. To
show that this implies (g) for all Banach spaces Y , we use the local characterization
of ideals and the factorization lemma. (See Theorem 3.1 in [15] for details.)

(g)⇒(a). This follows from [22, Theorem 4.4]. �

Remark 2.1. From Proposition 2.2 (g) it is immediate that if X is CLR then
every equivalent renorming of X is CLR.

We do not know whether or not all ideals in X are CLR whenever X is, but
let us prove the converse.

Corollary 2.3. Let X be a Banach space. If every separable ideal in X is
CLR, then X is CLR.

Proof. Let Y be a reflexive Banach space. Let u=
∑∞

n=1 x
∗
n⊗yn∈X∗

̂⊗πY such
that u∈kerV and T∈K(Y,X∗∗). By Proposition 2.2 (c) it is enough to show that
〈u, T 〉=0.

By [9, Lemma III.4.3] there is a separable ideal Z⊆X with ψ∈HB(Z,X) such
that {x∗n}∞n=1⊂ψ(Z∗). Find z∗n∈Z∗ such that x∗n=ψ(z∗n) for all n and define v=
∑∞

n=1 z
∗
n⊗yn. Then u=(ψ⊗IY )(v). Let iZ : Z!X be the natural embedding. We

have i∗Zψ(z∗)=z∗ for all z∗∈Z∗. Assume that S∈K(Y, Z). Then iZS∈K(Y,X) and

0 = 〈u, iZS〉= 〈(ψ⊗IY )(v), iZS〉= 〈v, S〉
and thus, by assumption,

0 = 〈v, ψ∗T 〉= 〈u, T 〉
as desired. �

Corollary 2.4. Let X be a Banach space. Assume that X has the AP and is
CLR. Then every ideal in X is CLR.

Proof. Let Z⊆X be an ideal with ψ∈HB(Z,X) and let Y be a reflexive Banach
space.

Assume that v∈Z∗
̂⊗πY is such that 〈v, S〉=0 for all S∈K(Y, Z). Let u=

(ψ⊗IY )(v)∈X∗
̂⊗πY and T∈K(Y,X). Since X has the AP we may assume that

T=y∗⊗x. We get 〈u, T 〉=〈v, ψ∗T 〉, where ψ∗T∈F(Y, Z∗∗). Proposition 2.1 tells
us that 〈v, ψ∗T 〉=0 and so, by assumption, 〈u, S〉=0 for all S∈K(Y,X∗∗). Let
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T∈K(Y, Z∗∗). Then

0 = 〈u, i∗∗Z T 〉= 〈v, T 〉,
so that Z is CLR by Proposition 2.2 (c). �

Remark 2.2. Assume that a Banach space X is CLR and that Z is an ideal
in X . Using trace duality and the local characterization of ideals we can show that
Z is CLR if and only if K(Y, Z) is an ideal in K(Y,X) for every reflexive Banach
space Y .

By using [26, Theorem 1.e.4 (v)], [22, Theorem 4.5], Corollary 2.4 and the fact
that a Banach space X has the AP if and only if every separable ideal in X has the
AP we get the following result.

Proposition 2.5. Let X be a Banach space. The following statements are
equivalent :

(a) X∗ has the AP.
(b) X has the AP and is CLR.
(c) Every separable ideal in X has the AP and is CLR.

From [18, Theorem 4.6] it follows that if X∗ has the CAPconj, then X is CLR.
This was used in the proof of the following result which is from [25, Theorem 3.8].
The MCAP part of the proposition is similar to Corollary 3.6 in [21].

Proposition 2.6. Let X be a Banach space. The following statements are
equivalent :

(a) X∗ has the CAPconj (resp. MCAPconj).
(b) X∗ has the CAP (resp. MCAP) and X is CLR.
(c) X∗ has the CAP (resp. MCAP) and K(X, ̂X) is an ideal in K(X, ̂X∗∗) for

every equivalent renorming ̂X of X.

Remark 2.3. There are a number of spaces which are not CLR. These include
the Casazza–Jarchow space [1, Theorem 1] (cf. Example 1.2 in [18]), the Johnson–
Schechtman space [12, Corollary JS], and the space �2 ̂⊗π�2. In fact, any Banach
space with the AP such that the dual does not have the AP is not CLR by Prop-
osition 2.5.

Consider X=�2̂⊗π�2. If X was CLR then, by Proposition 2.5, X∗=L(�2, �2)
would have the AP contradicting Szankowski [32]. From Example 3.9 in [22] we see
that there exists a ϕ∈HB(X,X∗∗), with ϕ �=kX∗ , such that for every reflexive Banach
space Y and every T∈K(Y,X∗∗) there is a net (Sα)⊂K(Y,X) with supα ‖Sα‖≤‖T ‖
such that Sα!T ∗ϕ in the strong operator topology.
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In the two following propositions we consider Proposition 2.2 in light of these
Hahn–Banach extension operators. In the first, which is a continuation of Prop-
osition 2.2, we allow renorming of the space but in the second proposition we do
not.

Proposition 2.7. Let X be a Banach space. The following statements are
equivalent :

(a) X is CLR.
(b) For every ϕ∈HB(X,X∗∗) and every reflexive Banach space Y , we have

{ϕ∗T :T ∈K(Y,X∗∗)}⊂K(Y,X)∗∗.

(c) For every ϕ∈HB(X,X∗∗) and every Banach space Y , there exists an iso-
metric embedding U : K(Y,X∗∗)!K(Y,X)∗∗ such that 〈u, U(T )〉=〈u, ϕ∗T 〉 for all
T∈K(Y,X∗∗) and u∈X∗

̂⊗πY
∗∗.

(d) For every Banach space Y , there exists an isometric embedding

U : K(Y,X∗∗)−!K(Y,X)∗∗

such that 〈u, U(T )〉=〈u, T 〉 for all T∈K(Y,X∗∗) and u∈X∗
̂⊗πY

∗∗.

Proof. (c)⇒(d) is trivial with ϕ=kX∗ .
(a)⇒(b) and (d)⇒(a) are straightforward using Proposition 2.2 (f).
(b)⇒(c). Let ϕ∈HB(X,X∗∗) and let Y be a Banach space. Let H⊂K(Y,X∗∗)

be a finite-dimensional subspace. Using the factorization lemma, see [15], we
find a reflexive Banach space Z “sitting inside” X∗∗ and a compact operator
J∈K(Z,X∗∗) with ‖J‖≤1 such that every T∈H has a factorization

Y
̂T−−!Z

J−−!X∗∗,

with T=J �
̂T and ‖T ‖=‖̂T‖. By assumption ϕ∗J∈K(Z,X)∗∗. Thus we can find

a net (Jα)⊂K(Z,X) such that supα ‖Jα‖≤1 and Jα!ϕ∗J weak∗ in K(Z,X)∗∗.
Define linear operators Uα : H!K(Y,X) by Uα(T )=Jα�

̂T . Then we get a net
(Uα)⊂L(H,K(Y,X)) with supα ‖Uα‖≤1. Going to a subnet, we may assume that
UH =ω*-limα Uα exists in L(H,K(Y,X))∗∗=L(H,K(Y,X)∗∗).

Let T∈H and u=
∑∞

n=1 x
∗
n⊗y∗∗n ∈X∗

̂⊗πY
∗∗. Then u⊗T∈K(Y,X)∗ ̂⊗πH=

L(H,K(Y,X))∗. We get

〈u, UH(T )〉=〈u⊗T, UH〉= lim
α
〈u⊗T, Uα〉= lim

α
〈u, Uα(T )〉

= lim
α

∞
∑

n=1

(J∗
αx

∗
n)( ̂T ∗∗y∗∗n ) = 〈u, ϕ∗T 〉.

Now we use the Lindenstrauss compactness argument to complete the proof. �
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When we do not include renorming we get the following result, which can be
seen as an extension of Theorem 2.3 in [19].

Proposition 2.8. Let X be a Banach space. The following statements are
equivalent :

(a) K(Y,X) is an ideal in K(Y,X∗∗) for every reflexive Banach space Y .
(b) There exists ϕ∈HB(X,X∗∗) such that

{ϕ∗T :T ∈K(Y,X∗∗)}⊂K(Y,X)∗∗

for every reflexive Banach space Y .
(c) There exists ϕ∈HB(X,X∗∗) such that for every Banach space Y , there exists

an isometric embedding U : K(Y,X∗∗)!K(Y,X)∗∗ such that 〈u, U(T )〉=〈u, ϕ∗T 〉
for all T∈K(Y,X∗∗) and u∈X∗

̂⊗πY
∗∗.

Remark 2.4. Proposition 2.8 remains true if we replace K(Y,X∗∗) by W(Y,X∗∗)
everywhere. But note that (a) in Proposition 2.8 does not imply that K(Y,X) is
an ideal in W(Y,X∗∗) for every Banach space Y . To see this just take X reflexive
without the CAP and confer Theorem 1.1 in [24].

Proof. (a)⇒(b). Let Y be reflexive. From [17] it follows that there exists
ϕ∈HB(X,X∗∗) such that for every reflexive Banach space Y , there exists a Hahn–
Banach extension operator

Φ: K(Y,X)∗ −!K(Y,X∗∗)∗

with Φ(x∗⊗y)=(ϕx∗)⊗y for all y∈Y and x∗∈X∗. Assume that u=
∑∞

n=1 x
∗
n⊗yn∈

X∗
̂⊗πY and that u=0 on K(Y,X). Then Φ(u)=0 on K(Y,X∗∗). Thus for every

T∈K(Y,X∗∗),

0 = (Φ(u))(T ) =
∞
∑

n=1

x∗n(ϕ∗Tyn) = 〈u, ϕ∗T 〉.

From this it follows that {ϕ∗T :T∈K(Y,X∗∗)}⊂K(Y,X)
w∗

=K(Y,X)∗∗.
(b)⇒(c) is contained in the proof of (b)⇒(c) in Proposition 2.7.
(c)⇒(b). This follows from the characterization of K(Y,X)∗∗ given by Godefroy

and Saphar (see Theorem 1.1). �

Now we want to look at K(Y,X) as a subspace of W(Y,X∗∗). (d) in the
next proposition should be compared with (g) in Proposition 2.2. Also note that
when replacing K(Y, ̂X) with F(Y, ̂X) in Proposition 2.9 (d) and Proposition 2.2
(g) we get two statements which both are equivalent to the AP for X∗ (see [22,
Theorem 4.5]).
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Proposition 2.9. Let X be a Banach space. The following statements are
equivalent :

(a) The trace mapping V : X∗
̂⊗πY!K(Y,X)∗ is isometric for every reflexive

Banach space Y .
(b) The trace mapping V : X∗

̂⊗πY!K(Y,X)∗ is one-to-one for every reflexive
Banach space Y .

(c) For every reflexive Banach space Y , we have K(Y,X)∗∗=W(Y,X∗∗).
(d) K(Y, ̂X) is an ideal in W(Y, ̂X∗∗) for every Banach space Y and every

equivalent renorming ̂X of X.
(e) For every Banach space Y and every T∈W(Y,X∗∗), there is a net (Sα)⊂

K(Y,X) with supα ‖Sα‖≤‖T ‖ such that S∗
α!T ∗|X∗ in the strong operator topology.

(f) For every Banach space Y , there is an isometric embedding U : W(Y,X∗∗)!
K(Y,X)∗∗ with V ∗(U(T ))=T for T∈W(Y,X∗∗), where V : X∗

̂⊗πY
∗∗!K(Y,X)∗.

Proof. (a)⇒(c) and (b)⇒(a). These implications follow from (GS) and (FS)
in Theorem 1.1, respectively.

(d)⇒(b) and (d)⇒(e) follow from [22, Theorem 4.4].
(c)⇒(d). Equality in (c) is preserved when renorming X . To pass from reflex-

ive to general Y we use the local characterization of ideals and the factorization
lemma.

(e)⇒(f). Let FZ denote the set of finite-dimensional subspaces of a Banach
space Z. Let Y be a Banach space. Define an index set I=FW(Y,X∗∗)×FX∗ ̂⊗πY ∗∗×
(0,∞). I becomes a directed set with the order (H,G, ε)≤( ̂H, ̂G, ε̂) if H⊂ ̂H, G⊂ ̂G,
and ε̂≤ε. Let U be an ultrafilter on I refining the order filter on I.

Let i=(H,G, ε)∈I. By the factorization lemma (cf. Theorem 2.3 in [15]) there
exist a reflexive Banach space Z, a J∈W(Z,X∗∗) with norm one, and an isometric
embedding Φ: H!W(Y, Z) such that we have a factorization

Y
Φ( · )−−−!Z

J−−!X∗∗, T = J � Φ(T ) for all T ∈H.

Choose an ε-net {ui}k
i=1 for the unit sphere of G. Choose representations ui=

∑∞
n=1 x

∗
i,n⊗y∗∗i,n for i=1, ..., k. We may assume that ‖y∗∗i,n‖=1 for all i and n. There

is an N such that
∑

n>N ‖x∗i,n‖<ε/3 for i=1, ..., k.
By (e), we can find JH∈K(Z,X) with ‖JH‖≤1 such that

‖J∗
Hx

∗
i,n−J∗x∗i,n‖<ε/3N

for i=1, ..., k and n=1, ..., N . Define operators UH : H!K(Y,X) by UH(T )=
JH �Φ(T ). Clearly, ‖UH‖≤1 and |〈V (ui), UH(T )〉−〈V (ui), T 〉|<ε‖T ‖ for i=1, ..., k.
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Thus we get

|〈V (u), UH(T )〉−〈V (u), T 〉|< 3ε‖u‖ ‖T ‖
for all T∈H and u∈G.

We obtain an isometric embedding U : W(Y,X∗∗)!K(Y,X)∗∗ by letting
U=(UH)U �JW(Y,X∗∗), where JW(Y,X∗∗) is an isometric embedding of W(Y,X∗∗)
into the ultraproduct (

∏

I H)U of finite-dimensional subspaces of W(Y,X∗∗) (cf.
e.g. [10] or [3, Theorem 8.10]).

(f)⇒(a). Let Y be reflexive and let u∈X∗
̂⊗πY . Choose T∈W(Y,X∗∗) with

‖T ‖=1 such that ‖u‖π=〈u, T 〉. Then U(T )∈K(Y,X)∗∗, ‖U(T )‖≤1 and ‖u‖π=
〈V u, U(T )〉. This shows that the trace mapping is isometric. �

3. K(X, Y ) as a subspace of W(X, Y )

In this section we shall look at the space K(X,Y ) as a subspace of W(X,Y ),
in particular when Y is reflexive. Note that when Y is reflexive, then W(X,Y )=
(Y ∗

̂⊗πX)∗. We will also use Godefroy and Saphar’s identification of K(X,Y )∗∗

cited in (GS) in Theorem 1.1.
In Theorem 3.2 in [20] Lima and Oja showed that Proposition 3.1 (a) is equiva-

lent to the weak MAP if we replace K(X,Y )∗ with F(X,Y )∗. This should be com-
pared to Proposition 5.8 below where we relate Proposition 3.1 to the compact ap-
proximation properties we will introduce in Sections 4 and 5. See also Theorem 5.3
and Corollary 5.4 for “local” versions of the next proposition.

Proposition 3.1. Let X be a Banach space. The following statements are
equivalent :

(a) The trace mapping V : Y ∗
̂⊗πX!K(X,Y )∗ is isometric for every reflexive

Banach space Y .
(b) The trace mapping V : Y ∗

̂⊗πZ!K(Z, Y )∗ is isometric for every separable
ideal Z in X and every reflexive Banach space Y .

(c) For every Banach space Y , there exists an isometric embedding

U : W(X,Y )−!K(X,Y )∗∗

such that V ∗
�U=IW(X,Y ), where V is the trace mapping.

(d) There exists ϕ∈HB(X,X∗∗) such that for every reflexive Banach space Y ,

{T ∗∗ϕ∗|X∗∗ :T ∈W(X,Y )}⊂K(X,Y )∗∗ ⊆W(X∗∗, Y ).

(e) There exists ϕ∈HB(X,X∗∗) such that for every Banach space Y and every
T∈W(X,Y ), there exists S∈K(X,Y )∗∗ with ‖S‖≤‖T ‖ and 〈T ∗∗ϕ∗|X∗∗ , u〉=〈S, u〉
for every u∈Y ∗

̂⊗πX
∗∗.
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(f) For every Banach space Y and every T∈W(X,Y ), there exists a net (Sα)⊂
K(X,Y ) with supα ‖Sα‖≤‖T ‖ such that Sα!T in the strong operator topology.

Proof. (a)⇒(b). Let Z be a separable ideal in X . For every reflexive Banach
space Y we have that Y ∗

̂⊗πZ is a subspace of Y ∗
̂⊗πX (cf. e.g. [27, Theorem 3.1]).

Let u∈Y ∗
̂⊗πZ and ε>0. Choose S∈K(X,Y ) with ‖S‖=1 and tr(Su)>1−ε. Then

S|Z∈K(Z, Y ) and tr(S|Zu)>1−ε and we have (b).
(b)⇒(a). Let u∈Y ∗

̂⊗πX . There is a separable ideal Z in X so that u∈Y ∗
̂⊗πZ,

a subspace of Y ∗
̂⊗πX . Let ϕ∈HB(Z,X) and ε>0. Choose S∈K(Z, Y ) with ‖S‖=1

and tr(Su)>1−ε. Letting T=S∗∗
�ϕ∗|X∈K(X,Y ) we see that tr(Tu)>1−ε and

(a) follows.
(a)⇒(f). Let Y be a Banach space and let T∈W(X,Y ). By factorizing T

through a reflexive Banach space (using the factorization lemma), we may assume
that Y is reflexive. Since V is isometric, there exists S∈K(X,Y )∗∗ with ‖S‖=‖T ‖
such that V ∗(S)=T . Let (Sα) be a net in K(X,Y ) with supα ‖Sα‖≤‖S‖ such that
Sα!S weak∗. Then Sα!T in the weak operator topology. By taking a new net
from conv(Sα), we may assume that Sα!T in the strong operator topology.

(f)⇒(c) is similar to the proof of (e)⇒(f) in Proposition 2.9 but we use Corol-
lary 2.4 from [15] instead of Theorem 2.3 from [15].

(c)⇒(a). We have V ∗ : K(X,Y )∗∗!W(X,Y ). Hence, if u∈Y ∗
̂⊗πX , we find

T∈W(X,Y ) with ‖T ‖=1 such that ‖u‖π=tr(Tu). Then U(T )∈K(X,Y )∗∗ and
‖u‖π=〈U(T ), V (u)〉. From this we get (a).

(c)⇒(d). Consider the collection of weakly compact subsets of the dual unit
ball. Let

K = {K⊂BX∗ :K is absolutely convex and weakly compact}
and let FX∗ denote the set of finite-dimensional subspaces of X∗. Define an index
set I=FX∗×K. I becomes a directed set with the order (F,K)≤( ̂F , ̂K) if F⊂ ̂F

and K⊂ ̂K. Let U be an ultrafilter on I which refines the order filter on I.
For K∈K we let [Z, J ]=DFJP(K). Then Z is reflexive and J∈W(Z,X∗)

has norm one. Since J∗|X∈W(X,Z∗) we use (c) to find an isometric embed-
ding U : W(X,Z∗)!K(X,Z∗)∗∗ such that V ∗U=IW(X,Z∗), where V : Z ̂⊗πX!
K(X,Z∗)∗ is the trace mapping.

If x∗=Jz for some z∈Z, then

〈U(J∗|X ), z⊗x〉= 〈J∗|X(x), z〉= J(z)(x) = x∗(x)(3.1)

for all x∈X . Note that ‖U(J∗|X )‖≤1 and, by (GS) in Theorem 1.1, U(J∗|X )∈
K(X,Z∗)∗∗⊆W(X∗∗, Z∗). Thus U(J∗|X )∗∈W(Z,X∗∗∗). Note that if F⊂X∗ is
a finite-dimensional subspace such that BF ⊂K, then for every x∗=Jz∈F we have
‖z‖=‖x∗‖.
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X∗ is isometrically isomorphic to a subspace of the ultraproduct (
∏

I F )U of
its finite-dimensional subspaces (cf. e.g. [3, Theorem 8.8]). For i=(F,K)∈I, let
Ui=U(J∗|X )∗ if BF ⊂K and Ui=0 otherwise. We get a linear map from the ultra-
product into X∗∗∗. Combine this with the isometric embedding and we get a map
ϕ : X∗!X∗∗∗ (cf. e.g. [3, Theorem 8.10]). We see that ϕ is linear with norm less
than one. By (3.1), ϕ is a Hahn–Banach extension operator.

Let Y be a reflexive Banach space and let T∈W(X,Y ). We may assume
that ‖T ‖=1. We need to show that T ∗∗ϕ∗|X∗∗∈K(X,Y )∗∗⊆W(X∗∗, Y ). Let u∈
Y ∗

̂⊗πX
∗∗ be such that u=0 on K(X,Y ).

Choose a representation u=
∑∞

n=1 y
∗
n⊗x∗∗n . We may assume that ‖y∗n‖=1 for

all n. Factorize T ∗=J �
̂T ∗ through Z and for n=1, 2, ... let zn=̂T ∗y∗n. Let ε>0 and

choose N such that
∑∞

n=N+1 ‖x∗∗n ‖<ε/3. Choose K∈K such that T ∗(BY ∗)⊂K and

|ϕ(x∗n)(x∗∗n )−U(J∗|X )∗zn(x∗∗n )|<ε/3N,
where x∗n=T ∗y∗n=Jzn∈K for n=1, ..., N and [Z, J ]=DFJP(K).

Let v=̂T ∗u. Then v=0 on K(X,Z∗). Since U(J∗|X )∈K(X,Z∗)∗∗ we have

0 = 〈v, U(J∗|X )〉=
∞
∑

n=1

(U(J∗|X )∗zn)(x∗∗n )

and so
∣

∣

∣

∣

∞
∑

n=1

(ϕT ∗y∗n)(x∗∗n )
∣

∣

∣

∣

=
∣

∣

∣

∣

∞
∑

n=1

(ϕT ∗y∗n)(x∗∗n )−
∞
∑

n=1

(U(J∗|X )∗zn)(x∗∗n )
∣

∣

∣

∣

≤
N

∑

n=1

|(ϕT ∗y∗n−U(J∗|X )∗zn)(x∗∗n )|

+
∞
∑

n=N+1

‖ϕT ∗y∗n−U(J∗|X )∗zn‖‖x∗∗n ‖

<ε/3+2ε/3

= ε.

Since ε was arbitrary this shows that 〈u, T ∗∗ϕ∗|X∗∗〉=0 so that T ∗∗ϕ∗|X∗∗∈
K(X,Y )∗∗.

(d)⇒(e). Let Y be a Banach space and let T∈W(X,Y ) with ‖T ‖=1. Let
K=T ∗(BY ∗)⊂BX∗ , and let [Z, J ]=DFJP(K). We have J∗|X∈W(X,Z∗). By (d),
there exists ϕ∈HB(X,X∗∗) such that J∗ϕ∗|X∗∗∈K(X,Z∗)∗∗,

X∗∗ ϕ∗|X∗∗−−−−!X∗∗ J∗−−!Z∗ (̂T∗)∗−−−!Y.
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Let (Sα)⊂K(X,Z∗) be such that Sα!J∗ϕ∗|X∗∗ weak∗ and supα ‖Sα‖≤1, and de-
fine Tα=(̂T ∗)∗�Sα∈K(X,Y ). Then supα ‖Tα‖≤‖T ‖. Going to a subnet, we may
assume that Tα!S∈K(X,Y )∗∗ weak∗. From this (e) follows.

(e)⇒(f). This follows from Goldstine’s theorem and by using that ϕ∗x=x for
all x∈X . �

The next result shows what we get if we allow renorming of X in Prop-
osition 3.1.

Proposition 3.2. Let X be a Banach space. The following statements are
equivalent :

(a) The trace mapping V : Y ∗
̂⊗π

̂X!K( ̂X,Y )∗ is isometric for every reflexive
Banach space Y and every equivalent renorming ̂X of X.

(b) W(X,Y )⊆K(X,Y )∗∗ for every reflexive Banach space Y .
(c) K(X,Y ) is an ideal in W(X,Y ) for every Banach space Y .
(d) For every Banach space Y , there exists an isometric embedding U :

W(X,Y )!K(X,Y )∗∗ such that 〈u, T 〉=〈u, U(T )〉 for all u∈Y ∗
̂⊗πX

∗∗.
(e) For every Banach space Y and every operator T∈W(X,Y ), there exists

a net (Sα)⊂K(X,Y ) with supα ‖Sα‖≤‖T ‖ such that S∗
α!T ∗ in the strong operator

topology.

Proof. (a)⇒(b). From (a)⇒(d) in Proposition 3.1 we get that for all equivalent
renormings XF of X there exists ϕF ∈HB(XF , X

∗∗
F ) such that

{T ∗∗ϕ∗
F |X∗∗ :T ∈W(X,Y )}= {T ∗∗ϕ∗

F |X∗∗
F

:T ∈W(XF , Y )}
⊂K(XF , Y )∗∗ =K(X,Y )∗∗.

For a finite-dimensional subspace F⊂X∗ let XF be an equivalent renorming of X
which is 1+1/dimF close to the original norm and such that the norm on X∗

F is
locally uniformly rotund on F (cf. [24, Lemma 2.4]). For the above corresponding
ϕF ∈HB(XF , X

∗∗
F ) we have ϕF (x∗)=x∗ for all x∗∈F .

By going to a subnet we may assume that ϕ=ω*-limϕF for some operator ϕ∈
L(X∗, X∗∗∗). Clearly we must have ϕ=kX∗ . If T∈W(X,Y ) and u∈Y ∗

̂⊗πX
∗∗ then

(T ∗⊗I)(u)∈X∗
̂⊗πX

∗∗, hence T ∗∗ϕ∗
F |X∗∗!T ∗∗ in the weak∗ topology in W(X∗∗, Y )

which is enough by the above set inclusion.
(b)⇒(a) is contained in (d)⇒(a) in Proposition 3.1, with the natural embedding

as the extension operator, since (b) remains true when we renorm X .
(b)⇒(c) is trivial when Y is reflexive. The general case follows by using the

factorization lemma and local characterization of ideals (see Theorem 3.1 in [15] for
details).
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(c)⇒(e) is contained in [15, Corollary 4.3].
(e)⇒(b). Let Y be reflexive and let T∈W(X,Y ). Let (Sα)⊂K(X,Y ) be

a net as in (e). For every u=
∑∞

n=1 y
∗
n⊗x∗∗n ∈Y ∗

̂⊗πX
∗∗, we get 〈u, T 〉=limα〈u, Sα〉.

Hence T∈K(Y,X)
w∗

=K(X,Y )∗∗⊆W(X∗∗, Y ).
(d)⇒(b). Let Y be reflexive and let the embedding U be as in (d). Assume

that u=
∑∞

n=1 y
∗
n⊗x∗∗n ∈Y ∗

̂⊗πX
∗∗ is 0 on K(X,Y ). Then u=0 on K(X,Y )∗∗. For

every T∈W(X,Y ), we have U(T )∈K(X,Y )∗∗ and

〈u, T 〉= 〈u, U(T )〉= 0.

This shows that W(X,Y )⊆K(X,Y )
w∗

=K(X,Y )∗∗.
(a)⇒(d). As in (a)⇒(b), by renorming X , we can assume that the extension

operator in Proposition 3.1 (e) satisfies ϕ=kX∗ . Thus (a) implies the following
statement:

(d′) For every Banach space Y and every operator T∈W(X,Y ), there exists
S∈K(X,Y )∗∗ with ‖S‖≤‖T ‖ such that 〈u, T 〉=〈u, S〉 for all u∈Y ∗

̂⊗πX
∗∗.

We cannot be sure that the map T �!S in (d′) is linear, so let us prove that we
may assume it is.

Let H⊂W(X,Y ) be a finite-dimensional subspace. We now use the factor-
ization lemma to produce a reflexive Banach space Z and a norm-one operator
J∈W(X,Z) such that for every T∈H there is an operator TH∈W(Z, Y ) with
‖T ‖=‖TH‖ such that T=THJ ,

X
J−−!Z

TH−−!Y.

By (d′) there exists JH∈K(X,Z)∗∗ such that ‖JH‖≤1 and 〈u, J〉=〈u, JH〉 for all
u∈Z∗

̂⊗πX
∗∗.

Let (Jα)⊂K(X,Z) be a net such that supα ‖Jα‖≤1 and Jα!JH weak∗. Since
H has finite dimension, we may assume that ω*-limα THJα exists in K(X,Y )∗∗ for
every T∈H . Let us define a map UH : H!K(X,Y )∗∗ by UH(T )=ω*-limα THJα.
Clearly UH is a linear operator and ‖UH‖≤1.

If u=
∑∞

n=1 y
∗
n⊗x∗∗n ∈Y ∗

̂⊗πX
∗∗, and T∈H , we define v=

∑∞
n=1(T ∗

Hy
∗
n)⊗x∗∗n ∈

Z∗
̂⊗πX

∗∗. Then we get

〈u, T 〉= 〈v, J〉= lim
α
〈v, Jα〉= lim

α
〈u, THJα〉= 〈u, UH(T )〉.

Now it only remains to use Lindenstrauss’ compactness argument to prove the
existence of the operator U : W(X,Y )!K(X,Y )∗∗. �
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For comparison with what happens when dealing with finite-rank operators
instead of compact operators we state the following result where only (c) seems to
be new. The other parts can be found in [15, Theorem 3.4], [20, Theorems 3.2, 3.6
and 4.2] and [22, Theorem 4.5] (see also [23, Section 3]). In particular, we see that
for finite-rank operators Propositions 2.9 and 3.2 are equivalent.

Theorem 3.3. Let X be a Banach space. The following statements are equiva-
lent :

(a) ̂X has the weak MAP for every equivalent renorming ̂X of X.
(b) X∗ has the AP.
(c) W(X,Y )⊆F(X,Y )∗∗ for every reflexive Banach space Y .
(d) F(X,Y ) is an ideal in W(X,Y ) for every Banach space Y .
(e) F(Y, ̂X) is an ideal in W(Y, ̂X∗∗) for every Banach space Y and every

equivalent renorming ̂X of X.
(f) The trace mapping V : Y ∗

̂⊗π
̂X!F( ̂X,Y )∗ is isometric for every reflexive

Banach space Y and every equivalent renorming ̂X of X.
(g) The trace mapping V : X∗

̂⊗πY!F(Y,X)∗ is isometric for every reflexive
Banach space Y .

4. Weak MCAP

In this section we will study a natural compact companion to the weak MAP
introduced and studied by Lima and Oja in [20].

Definition 4.1. A Banach space X has the weak metric compact approximation
property (weak MCAP) if for every Banach space Y and every operator T∈W(X,Y )
there exists a net (Sα)⊂K(X,X) with supα ‖TSα‖≤‖T ‖ such that Sα!IX uni-
formly on compact sets in X .

Theorem 2.4 in [20] translates into the following theorem for the weak MCAP.

Theorem 4.1. Let X be a Banach space. The following statements are equiva-
lent :

(a) X has the weak MCAP.
(b) For every separable reflexive Banach space Y and operator T∈K(X,Y )

there exists a net (Sα)⊂K(X,X) with supα ‖TSα‖≤‖T ‖ such that Sα!IX in the
strong operator topology.

(c) For every separable reflexive Banach space Y and operator T∈K(X,Y )
there exists a net (Sα)⊂K(X,X) with supα ‖TSα‖≤‖T ‖ such that TSα!T in the
strong operator topology.
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(d) For every Banach space Y , every operator T∈W(X,Y ) with ‖T ‖=1, and
all sequences {xn}∞n=1⊂X and {y∗n}∞n=1⊂Y ∗ with

∑∞
n=1 ‖xn‖ ‖y∗n‖<∞ we have

∣

∣

∣

∣

∞
∑

n=1

y∗n(Txn)
∣

∣

∣

∣

≤ sup
‖T S‖≤1

S∈K(X,X)

∣

∣

∣

∣

∞
∑

n=1

y∗n(TSxn)
∣

∣

∣

∣

.

Proof. The proof is similar to the proof of Theorem 2.4 in [20]. �

Recall from the introduction that a separable subspace Y of a Banach space
X such that HB(Y,X) �=∅ is called a separable ideal.

It is well-known, and not difficult to show, that a Banach space X has the
(M)AP if and only if every separable ideal in X has the (M)AP (cf. [13, The-
orem 5.1], [14, Corollary 2] and [27, Proposition 2.1]). The corresponding result for
the weak MAP is also true. In fact, one can show this by arguing as in Theorem 5.3
below. For the weak MCAP we have the following result.

Proposition 4.2. Let X be a Banach space such that every separable ideal in
X has the weak MCAP. Then X itself has the weak MCAP.

Proof. Let Y be a Banach space, let T∈W(X,Y ), and let {xn}∞n=1⊂X and
{y∗n}∞n=1⊂Y ∗ be sequences with

∑∞
n=1 ‖xn‖ ‖y∗n‖<∞.

Let Z⊆X be a separable ideal such that {xn}∞n=1⊂Z and let ϕ∈HB(Z,X).
Then TZ =T |Z∈W(Z, Y ). Moreover if S∈K(Z,Z) with ‖TZS‖≤‖T ‖ then iZ �S∗∗

�

ϕ∗|X∈K(X,X) and ‖T iZS∗∗ϕ∗|X‖≤‖TZS‖≤‖T ‖. Since Z has the weak MCAP
we use (d) from Theorem 4.1 and get

∣

∣

∣

∣

∞
∑

n=1

y∗n(Txn)
∣

∣

∣

∣

=
∣

∣

∣

∣

∞
∑

n=1

y∗n(TZxn)
∣

∣

∣

∣

≤ sup
‖TZS‖≤‖TZ‖
S∈K(Z,Z)

∣

∣

∣

∣

∞
∑

n=1

y∗n(TZSxn)
∣

∣

∣

∣

≤ sup
‖T S‖≤‖T‖
S∈K(X,X)

∣

∣

∣

∣

∞
∑

n=1

y∗n(TSxn)
∣

∣

∣

∣

.

Using (d) in Theorem 4.1 again we see that X has the weak MCAP. �

Similarly it is not difficult to show that X has the CAP (resp. MCAP) if every
separable ideal in X has the CAP (resp. MCAP). If X is CLR the converse is true
for the CAP, MCAP, and weak MCAP. The converse is open in general.

Next we have several equivalent formulations of the weak MCAP similar to
the characterizations of the weak MAP in Theorem 2.6 and Proposition 3.1 in [23].
Characterizing the weak MCAP in terms of ideals of operators is not as simple
as for the weak MAP. A similar contrast can be found between characterizing the
AP [15] and the CAP [25].



Geometry of spaces of compact operators 129

Theorem 4.3. Let X be a Banach space. The following statements are equiva-
lent :

(a) X has the weak MCAP.
(b) There exists ϕ∈HB(X,X∗∗) such that

ϕ∗|X∗∗ ∈K(X,X)
w∗

in (X∗
̂⊗πX

∗∗)∗=L(X∗∗, X∗∗).
(c) For every Banach space Y and every operator T∈W(Y,X∗∗),

E = {S∗∗T :S ∈K(X,X)}
is an ideal in F=span(E, {T }).

(d) For every separable reflexive Banach space Y and operator T∈K(Y,X∗∗),

E = {S∗∗T :S ∈K(X,X)}
is an ideal in F=span(E, {T }).

(e) There exists ϕ∈HB(X,X∗∗) such that for every reflexive Banach space Y
and every T∈W(Y,X∗∗) we have ϕ∗T∈E∗∗, where E={S∗∗T :S∈K(X,X)}.

(f) There exists ϕ∈HB(X,X∗∗) such that for every separable reflexive Banach
space Y and every T∈K(Y,X∗∗) we have ϕ∗T∈E∗∗, where E={S∗∗T :S∈K(X,X)}.

(g) There exists ϕ∈HB(X,X∗∗) such that for all sequences {x∗n}∞n=1⊂X∗ and
{x∗∗n }∞n=1⊂X∗∗ with

∑∞
n=1 ‖x∗n‖ ‖x∗∗n ‖<∞ and

∑∞
n=1 x

∗∗
n (S∗x∗n)=0, for all S∈

K(X,X), we have
∑∞

n=1 x
∗∗
n (ϕx∗n)=0.

Proof. (c)⇒(d), (e)⇒(f), and (g)⇒(b) are trivial.
(a)⇒(b) is similar to the proof of Proposition 2.5 in [23].
(b)⇒(a) is similar to the proof of Proposition 2.3 in [23].
(b)⇒(c). Assume first that Y is reflexive and that T∈W(Y,X∗∗). By assump-

tion there exists a ϕ∈HB(X,X∗∗) in the weak∗ closure of K(X,X) in L(X∗∗, X∗∗).
Choose a net (Sα)⊂K(X,X) such that ω*-limα Sα=ϕ∗|X∗∗ . In particular Sα!IX
uniformly on compact sets in X .

Define E={S∗∗T :S∈K(X,X)}. Let v∈E∗ and ε>0. As E⊆K(Y,X), by (FS)
in Theorem 1.1, v has a representation v=

∑∞
n=1 x

∗
n⊗yn with

∑∞
n=1 ‖x∗n‖ ‖yn‖<

‖v‖+ε. Define a Hahn–Banach extension operator Φ: E∗!span(E, {T })∗ by Φ(v)=
∑∞

n=1 ϕx
∗
n⊗yn. Since

|Φ(v)(T )−tr(S∗∗
α Tv)|=

∣

∣

∣

∣

∞
∑

n=1

〈x∗n, (ϕ∗|X∗∗−S∗∗
α )Tyn〉

∣

∣

∣

∣

! 0,

Φ is well defined.
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For general Y we use the factorization lemma and the local characterization of
ideals. (See the proof of Theorem 2.2 in [25] for details.)

(c)⇒(e). Let Y be reflexive and T∈W(Y,X∗∗) with ‖T ‖=1. Put E={S∗∗T :
S∈K(X,X)}. We will use Godefroy and Saphar’s identification of K(Y,X)∗∗ as the
weak∗ closure of K(Y,X) in W(Y,X∗∗) cited in Theorem 1.1. In particular we have

E∗∗ = E
w∗

⊆K(Y,X)∗∗ ⊆ (X∗
̂⊗πY )∗ =W(Y,X∗∗).

Let K=T (BY )⊂BX∗∗ . Next we use the factorization lemma on the weakly
compact set K, [Z, J ]=DFJP(K). Z is reflexive and we get a factorization T=J �

̂T .
By (c), EZ ={S∗∗J :S∈K(X,X)} is an ideal in FZ =span(EZ , {J}). Let Φ∈

HB(EZ ,FZ) be the extension operator. By Theorem 2.3 in [17] there is a ϕ∈
HB(X,X∗∗) such that

〈x∗⊗z,Φ∗(J )〉= Φ(x∗⊗z)(J ) = (ϕx∗⊗z)(J ) = 〈x∗⊗z, ϕ∗J〉

for all x∗∈X∗ and z∈Z. (Note that F(Z,X)⊆EZ.)
Let u∈X∗

̂⊗πY and choose a representation u=
∑∞

n=1 x
∗
n⊗yn. If u=0 on E

then

0 =
∞
∑

n=1

x∗n(S∗∗Tyn) =
∞
∑

n=1

x∗n(S∗∗J ̂Tyn) = 〈̂Tu, S∗∗J〉

for all S∈K(X,X), so that ̂Tu=0 on EZ , where ̂Tu∈X∗
̂⊗πZ is given by ̂Tu=

∑∞
n=1 x

∗
n⊗ ̂Tyn. Since Φ∗(J )∈E∗∗

Z we get

0 = 〈̂Tu,Φ∗(J )〉= 〈 ̂Tu, ϕ∗J〉=
∞
∑

n=1

x∗n(ϕ∗J ̂Tyn) =
∞
∑

n=1

x∗n(ϕ∗Tyn)

so that u=0 on ϕ∗T . Thus ϕ∗T∈E∗∗.
(d)⇒(f). This is similar to the proof of (c)⇒(e).
(f)⇒(g). Let {x∗n}∞n=1⊂X∗ and {x∗∗n }∞n=1⊂X∗∗ with

∑∞
n=1 ‖x∗n‖ ‖x∗∗n ‖<∞ and

∑∞
n=1 x

∗∗
n (S∗x∗n)=0 for all S∈K(X,X). We may assume that 1≥‖x∗∗n ‖!0. LetK=

conv{±x∗∗n }∞n=1 and [Z, J ]=DFJP(K). Then J∈K(Z,X∗∗) and Z is separable and
reflexive. Choose zn∈BZ such that J(zn)=x∗∗n for all n. Then v=

∑∞
n=1 x

∗
n⊗zn∈E∗,

where E is defined as in (f), and

tr(Sv) =
∞
∑

n=1

x∗n(S∗∗Jzn) =
∞
∑

n=1

x∗n(S∗∗x∗∗n ) = 0
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for all S∈K(X,X) so that by (f) there exists a ϕ∈HB(X,X∗∗) with

0 = tr(ϕ∗Jv) =
∞
∑

n=1

x∗n(ϕ∗Jzn) =
∞
∑

n=1

x∗∗n (ϕx∗n)

as desired. �

From Theorem 4.3 (b) and [25] the following corollary is immediate.

Corollary 4.4. Let X be a Banach space. If X has the weak MCAP then X

has the CAP.

Corollary 4.5. Let X be a Banach space. If X∗ has the CAPconj then X has
the weak MCAP.

Proof. The CAPconj for X∗ implies (d) in Theorem 4.3 by using Lemma 3.5
in [25]. �

Recall that a Banach space X is said to have the unique extension property if
the only operator T∈L(X∗∗, X∗∗) such that ‖T ‖≤1 and T |X =IX is T=IX∗∗ . This
is equivalent to HB(X,X∗∗) consisting of a single element: the canonical embedding
kX∗ : X∗!X∗∗∗.

Corollary 4.6. Let X be a Banach space with the unique extension property.
If X has the weak MCAP then X∗ has the CAPconj.

Proof. The extension operator in Theorem 4.3 (g) is the natural inclusion. �

Remark 4.1. Godefroy and Saphar proved in [7, Theorem 2.2] that X∗ has
the MCAPconj whenever X has the MCAP and the unique extension property.
See [23, Theorem 2.9] for a similar result for the weak MAP and also Corollary 5.5
below.

In the presence of the Radon–Nikodým property for the first or second dual
the weak MCAP is no longer weak. The same is also true for the weak MAP as
proved by Oja in [28].

Theorem 4.7. Let X be a Banach space such that either X∗ or X∗∗ has the
Radon–Nikodým property. If X has the weak MCAP then X has the MCAP.

Proof. Let ϕ∈HB(X,X∗∗) be as in Theorem 4.3 (b). From (GS) in Theorem 1.1
we have ϕ∗|X∗∗∈K(X,X)∗∗ and thus by Goldstine’s theorem and (FS) in The-
orem 1.1 there is a net (Sα)⊆K(X,X) with supα ‖Sα‖≤1 such that Sα!ϕ∗|X∗∗ in
the weak∗ topology in L(X∗∗, X∗∗), and in particular Sα!IX uniformly on compact
sets in X . �
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As the CAP comes in two flavors for dual spaces we could expect the same to
be the case for the weak MCAP. We are tempted to state the following definition.

“Definition”. The dual X∗ of a Banach space X has the weak metric compact
approximation property with conjugate operators (weak MCAPconj) if for every
Banach space Y and every operator T∈W(X∗, Y ) there exists a net (Sα)⊂K(X,X)
with supα ‖TS∗

α‖≤‖T ‖ such that S∗
α!IX∗ uniformly on compact sets in X∗.

However, arguing as in Theorem 4.1 we see that the “weak MCAPconj” is
equivalent to the following statement:

For every Banach space Y and every T∈W(Y,X∗∗) there exists a net
(Sα)⊂K(X,X) such that supα ‖S∗∗

α T ‖≤‖T ‖ and S∗
α!IX∗ in the strong

operator topology.

This statement is equivalent to the CAPconj as shown in [25, Theorem 3.6].
We saw in Section 2 that compact local reflexivity provided a link between CAP

and CAPconj for dual spaces. The same proposition also gives us a link between
the weak MCAP and “weak MCAPconj” (CAPconj) for dual spaces. Indeed, if the
dual of a Banach space has the weak MCAP then in particular it has the CAP.
Proposition 2.6 gives us the following result.

Proposition 4.8. Let X be a Banach space. If X∗ has the weak MCAP and
X is CLR then X∗ has the CAPconj.

We conclude this section with a theorem similar to Theorem 4.2 in [20].

Theorem 4.9. Let X be a Banach space. The following statements are equiva-
lent :

(a) X has the weak MCAP in every equivalent norm.
(b) X∗ has the CAPconj.

Proof. (a)⇒(b). This is essentially proved in Remark 3.1 in [25], but we include
a short proof here for completeness. Let {x∗n}∞n=1⊂X∗ and {x∗∗n }∞n=1⊂X∗∗ with
∑∞

n=1 ‖x∗n‖ ‖x∗∗n ‖<∞ and
∑∞

n=1 x
∗∗
n (S∗x∗n)=0 for all S∈K(X,X). We may assume

that ‖x∗n‖=1 for all n.
Let Fm=span{x∗n}m

n=1. There exists a renorming Xm of X such that X∗
m

is locally uniformly rotund on Fm and is arbitrarily close to the original norm
(cf. [24, Lemma 2.4]). By Theorem 4.3 (g) there exists ϕm∈HB(Xm, X

∗∗
m ) such that

∑∞
n=1 x

∗∗
n (ϕmx

∗
n)=0. But ϕmx

∗
n=x∗n for n=1, ...,m, since the norm on Fm is locally

uniformly rotund, and thus
∑∞

n=1 x
∗∗
n (x∗n)=0.

(b)⇒(a). If X∗ has the CAPconj then ̂X∗ has the CAPconj for every equivalent
renorming ̂X of X .



Geometry of spaces of compact operators 133

Let Y be a separable reflexive space and let T∈K( ̂X,Y ). We use Theorem 3.4
in [25] to find a net (Sα)⊂K( ̂X, ̂X) with supα ‖TSα‖≤‖T ‖ such that S∗

αT
∗!T ∗

in the strong operator topology. Theorem 4.1 (c) shows that ̂X has the weak
MCAP. �

Remark 4.2. The CAP does not imply the weak MCAP. Indeed, let X be
the Casazza–Jarchow space [1, Theorem 1]. Then X has the AP and the dual is
separable, but X does not have the MCAP. Hence X has the CAP but cannot have
the weak MCAP, by Theorem 4.7.

Remark 4.3. In [11, Theorem 4] Johnson proved that if a Banach space has
the MAP in every equivalent norm then X∗ has the MAP. From [24, Theorems 1.1
and 1.2] we see that if X has the MCAP in every equivalent norm then X∗ has
the MCAPconj, and in [20, Theorem 4.2] Lima and Oja proved that if X has the
weak MAP in every equivalent norm then X∗ has the AP (AP and weak MAP are
equivalent for dual spaces). Theorem 4.9 above is the corresponding result for the
weak MCAP. See also Theorem 5.6 below.

5. Very weak MCAP

We saw in Section 4 how the weak MCAP was connected to the CAPconj for
the dual. When the dual X∗ of a Banach spaceX has the CAP but not the CAPconj
then we cannot replace the approximating operators in K(X∗, X∗) with conjugates
of operators in K(X,X). The space K(X∗, X∗) is isometrically isomorphic to the
space K(X,X∗∗). It is the latter viewpoint we take when introducing the following
approximation property which we will later connect to the CAP for the dual.

Definition 5.1. A Banach space X has the very weak metric compact approxi-
mation property (very weak MCAP) if for every Banach space Y and every operator
T∈W(X,Y ) there exists a net (Sα)⊂K(X,X∗∗) with supα ‖T ∗∗Sα‖≤‖T ‖ such that
limα tr(Sαu)=tr(IXu) for every u∈X∗

̂⊗πX .

In the above definition we do not use uniform convergence on compact sets simply
because K(X,X∗∗) is not a subspace of L(X,X). In this case it is more natural to
regard K(X,X∗∗) as a subspace of (X∗

̂⊗πX)∗=L(X,X∗∗).
First we prove a theorem similar to Theorem 4.1 which shows that it is enough

to consider reflexive spaces and compact operators only in the definition of the very
weak MCAP.

Theorem 5.1. Let X be a Banach space. The following statements are equiva-
lent :
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(a) X has the very weak MCAP.
(b) For every reflexive Banach space Y and every operator T∈W(X,Y ) there

exists a net (Sα)⊂K(X,X∗∗) with supα ‖T ∗∗Sα‖≤‖T ‖ such that T ∗∗Sα!T in the
strong operator topology.

(c) For every reflexive Banach space Y and every operator T∈K(X,Y ) there
exists a net (Sα)⊂K(X,X∗∗) with supα ‖T ∗∗Sα‖≤‖T ‖ such that T ∗∗Sα!T in the
strong operator topology.

(d) For every Banach space Y , every operator T∈W(X,Y ) with ‖T ‖=1, and
all sequences {xn}∞n=1⊂X and {y∗n}∞n=1⊂Y ∗ with

∑∞
n=1 ‖xn‖ ‖y∗n‖<∞ we have

∣

∣

∣

∣

∞
∑

n=1

y∗n(Txn)
∣

∣

∣

∣

≤ sup
‖T∗∗S‖≤1

S∈K(X,X∗∗)

∣

∣

∣

∣

∞
∑

n=1

y∗n(T ∗∗Sxn)
∣

∣

∣

∣

.

Proof. (a)⇒(b)⇒(c) is trivial.
(c)⇒(a). Let Y be a reflexive space and let T∈W(X,Y ). Let a1, ..., am∈X

and let ε>0. Define

C = {T ∗∗S :S ∈K(X,X∗∗) and ‖T ∗∗Sai−Tai‖<ε for i= 1, ...,m}

and argue as in the proof of (a′)⇒(a) in Theorem 2.4 in [20].
(a)⇒(d). Let Y be a Banach space and let T∈W(X,Y ) with ‖T ‖=1. Choose

(Sα)⊆K(X,X∗∗) with supα ‖T ∗∗S‖≤‖T ‖ and limα tr(Sαu)=tr(IXu) for all u∈
X∗

̂⊗πX . For v∈Y ∗
̂⊗πX we have T ∗v∈X∗

̂⊗πX and thus

〈v, T ∗∗Sα〉= 〈T ∗v, Sα〉 α−−! 〈T ∗v, IX〉= 〈v, T 〉

and (d) follows.
(d)⇒(b). Let Y be a Banach space and let T∈W(X,Y ). (d) says that

T ∈{T ∗∗S :S ∈K(X,X∗∗) and ‖T ∗∗S‖≤ ‖T ‖}τ
,

where τ is the topology of uniform convergence on compact sets in X (see [26]
for the representation of the dual of (L(X,Y ), τ)). Thus we can find a net (Sα)⊂
K(X,X∗∗) with supα ‖T ∗∗Sα‖≤‖T ‖ such that T ∗∗Sα!T in the τ -topology. But
then T ∗∗Sα!T in the weak operator topology and by taking convex combinations,
if necessary, we may assume that we have convergence in the strong operator top-
ology. �

From [25, Theorem 3.2], the factorization lemma and Feder and Saphar’s char-
acterization of K(X,Y )∗, see the (FS) part of Theorem 1.1, we get the following
theorem.
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Theorem 5.2. Let X be a Banach space. Then X∗ has the CAP if and only if
for every Banach space Y and every T∈K(X,Y ) there exists a net (Sα)⊂K(X,X∗∗)
such that T ∗∗Sα!T in norm.

From Theorems 5.2 and 5.1 we see that X has the very weak MCAP whenever
X∗ has the CAP. With X=Y , the approximating net in the above theorem can be
thought of as a “right approximate identity”. But note that we have to go out of the
Banach algebra K(X,X) to find this net. (See e.g. [1] for references on approximate
identities.)

The next theorem is similar to Theorem 4.3 and give characterizations of the
very weak MCAP involving Hahn–Banach extension operators. Note that in the
case of the very weak MCAP we are in fact able to show that a Banach space has
this property if and only if every separable ideal in the space has this property. In
the case of the weak MCAP we have only been able to prove one implication (see
Proposition 4.2). As we will see in the proof below, the problem is that we end up
with operators into the bidual instead of into the space itself.

Theorem 5.3. Let X be a Banach space. The following statements are equiva-
lent :

(a) X has the very weak MCAP.
(b) There exists ϕ∈HB(X,X∗∗) such that

ϕ∗|X∗∗ ∈K(X,X∗∗)
w∗

in (X∗
̂⊗πX

∗∗)∗=L(X∗∗, X∗∗).
(c) There exists ϕ∈HB(X,X∗∗) such that for every reflexive Banach space Y

and every T∈W(X,Y ) we have T ∗∗ϕ∗ |X∗∗∈E∗∗, where

E = {T ∗∗S :S ∈K(X,X∗∗)}

and E∗∗=E
w∗

⊆K(X,Y )∗∗=K(X,Y )
w∗

⊆W(X∗∗, Y ).
(d) There exists ϕ∈HB(X,X∗∗) such that for every reflexive Banach space Y

and every T∈K(X,Y ) there exists a net (Sα)⊂K(X,X∗∗) with supα ‖T ∗∗Sα‖≤‖T ‖
such that ω*-limα S

∗
αT

∗y∗=ϕT ∗y∗ in X∗∗∗ for all y∗∈Y ∗.
(e) There exists ϕ∈HB(X,X∗∗) such that for every reflexive Banach space Y

and operator T∈K(X,Y ) there exists a net (Sα)⊂K(X,X∗∗) with supα ‖T ∗∗Sα‖≤
‖T ‖ such that T ∗∗S∗∗

α !T ∗∗ϕ∗ in the strong operator topology.
(f) Every separable ideal in X has the very weak MCAP.
(g) There exists ϕ∈HB(X,X∗∗) such that for all sequences {x∗n}∞n=1⊂X∗ and

{x∗∗n }∞n=1⊂X∗∗ with
∑∞

n=1 ‖x∗n‖ ‖x∗∗n ‖<∞ and
∑∞

n=1 x
∗∗
n (S∗x∗n)=0, for all S∈

K(X,X∗∗), we have
∑∞

n=1 x
∗∗
n (ϕx∗n)=0.
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Proof. (d)⇒(e) and (g)⇒(b) are trivial.
(a)⇒(b) is similar to the proof of Proposition 2.5 in [23].
(b)⇒(a) is similar to the proof of Proposition 2.3 in [23].
(b)⇒(c). Let Y be a reflexive Banach space and let T∈W(X,Y ). There is

a ϕ∈HB(X,X∗∗) and a net (Sα)⊂K(X,X∗∗) such that Sα!αϕ
∗|X∗∗ in the weak∗

topology. Let v∈Y ∗
̂⊗πX

∗∗ and consider T ∗v∈X∗
̂⊗πX

∗∗. Then we have

〈T ∗∗Sα, v〉= 〈Sα, T
∗v〉! 〈ϕ∗|X∗∗ , T ∗v〉= 〈T ∗∗ϕ∗|X∗∗ , v〉

as desired.
(c)⇒(d) follows from Goldstine’s theorem.
(e)⇒(a) follows from Theorem 5.1 (c) and the fact that ϕ∗x=x for all x∈X .
(e)⇒(f). Let Z⊆X be a separable ideal and let ψ∈HB(Z,X). Let Y be a reflex-

ive Banach space and let T∈K(Z, Y ). Then T ∗∗ψ∗|X∈K(X,Y ) and by assumption
there is a net (Sα)⊂K(X,X∗∗) with supα ‖T ∗∗ψ∗Sα‖≤‖T ∗∗ψ∗|X‖≤‖T ‖ such that
limα T

∗∗ψ∗S∗∗
α x∗∗=T ∗∗ψ∗ϕ∗x∗∗ for all x∗∗∈X∗∗.

Let Tα=ψ∗Sα|Z∈K(Z,Z∗∗). From the above we get supα ‖T ∗∗Tα‖≤‖T ‖ and
limα T

∗∗T ∗∗
α z∗∗=T ∗∗ψ∗ϕ∗z∗∗ for all z∗∗∈Z∗∗. Since also ψ∗ϕ∗|Z∗∗∈HB(Z,Z∗∗) we

see that Z satisfies (e) itself and by what we have already proved Z has the very
weak MCAP.

(f)⇒(g). Consider the collection of all separable ideals in X ,

Z = {Z :Z is a separable subspace of X and there exists ψ ∈HB(Z,X)}.
Let U be an ultrafilter refining the order filter on Z. Let Z∈Z. Let iZ : Z!X
be the natural inclusion and let ϕZ∈HB(Z,X). By assumption there exists
a ψZ∈HB(Z,Z∗∗) such that (ψZ )∗|Z∗∗∈K(Z,Z∗∗)

w∗
in L(Z∗∗, Z∗∗).

Using weak∗ compactness we can define ϕ : X∗!X∗∗∗ by taking limits along U ,

ϕ(x∗) =ω*-lim
U

(ϕ∗∗
Z �ψZ � i∗Z)(x∗),

and get a well-defined linear operator with ‖ϕ‖≤1. This ϕ is a Hahn–Banach
extension operator. Indeed, let x∗∈X∗ and x∈X , then

〈ϕx∗, x〉= lim
U
〈(ϕ∗∗

Z ψZ i
∗
Z)(x∗), x〉= lim

U
〈ψZ i

∗
Zx

∗, ϕ∗
Zx〉= lim

U
〈ψZ i

∗
Zx

∗, x〉= x∗(x)

since we have x∈Z when Z is large enough.
Let {x∗n}∞n=1⊂X∗ and {x∗∗n }∞n=1⊂X∗∗ with

∑∞
n=1 ‖x∗n‖ ‖x∗∗n ‖<∞ such that

∑∞
n=1 x

∗∗
n (S∗x∗n)=0 for all S∈K(X,X∗∗).

Let T∈K(Z,Z∗∗). Then i∗∗Z �T ∗∗
�ϕ∗

Z |X∈K(X,X∗∗) and so

0 =
∞
∑

n=1

x∗∗n (ϕZT
∗i∗Zx

∗
n) =

〈 ∞
∑

n=1

(i∗Zx
∗
n)⊗(ϕ∗

Zx
∗∗
n ), T

〉

.
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Since
∑∞

n=1(i∗Zx
∗
n)⊗(ϕ∗

Zx
∗∗
n )∈Z∗

̂⊗πZ
∗∗ and (ψZ )∗|Z∗∗∈K(Z,Z∗∗)

w∗
we have

0 =
〈 ∞

∑

n=1

(i∗Zx
∗
n)⊗(ϕ∗

Zx
∗∗
n ), ψZ

〉

=
∞
∑

n=1

(ϕ∗∗
Z ψZ i

∗
Zx

∗
n)(x∗∗n ).

This holds for all Z∈Z and thus
∑∞

n=1 x
∗∗
n (ϕx∗n)=0 as desired. �

We will need the following corollary to relate the weak MCAP and the very
weak MCAP in Proposition 5.7.

Corollary 5.4. Let X be a Banach space. The following statements are
equivalent :

(a) X has the weak MCAP.
(b) There exists ϕ∈HB(X,X∗∗) such that for every reflexive Banach space Y

and every T∈W(X,Y ) we have T ∗∗ϕ∗|X∗∗∈E∗∗, where

E = {TS :S ∈K(X,X)}

and E∗∗=E
w∗

⊆K(X,Y )∗∗=K(X,Y )
w∗

⊆W(X∗∗, Y ).

Proof. The proof of (a)⇒(b) is similar to the proof of (b)⇒(c) in Theorem 5.3.
(b)⇒(a). Proceed as in Theorem 5.3 to show a statement similar to The-

orem 5.3 (e) but with the net (Sα)⊂K(X,X). From this and Theorem 4.1 (c) it
follows that X has the weak MCAP. �

Remark 5.1. Using trace duality and the factorization lemma we can show that
a Banach space X has the CAP if and only if for every reflexive Banach space Y
and every T∈K(X,Y ) we have

T ∈{TS :S ∈K(X,X)}w∗
(5.1)

in (Y ∗
̂⊗πX)∗=W(X,Y ).

Let X be the Casazza–Jarchow space [1, Theorem 1]. X has the CAP but
not the MCAP although X∗ has the MCAP. From Theorem 5.3 (b) it is clear
that X has the very weak MCAP (consider the weak∗ limit of a bounded approxi-
mating net on X∗) so, by Theorem 5.1 (d), for every reflexive Banach space Y and
operator T∈K(X,Y ) there is a net (Sα)⊂K(X,X∗∗) with supα ‖T ∗∗Sα‖≤‖T ‖ such
that ω*-limα T

∗∗Sα=T . By (5.1) there is also a net (Tβ)⊂K(X,X) such that
ω*-limβ TTβ=T .

But there is a renorming X1 of X such that X1 does not have the weak MCAP.
Thus we cannot obtain the norm bound on the net (TTβ).
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We are now ready to relate the very weak MCAP to the CAP for the dual as
promised in the introduction of this section.

Corollary 5.5. Let X be a Banach space with the unique extension property.
If X has the very weak MCAP then X∗ has the CAP.

Proof. The extension operator in Theorem 5.3 is the identity. �

Theorem 5.6. Let X be a Banach space. The following statements are equiva-
lent :

(a) X has the very weak MCAP in every equivalent norm.
(b) X∗ has the CAP.

Proof. To prove (a)⇒(b) we argue as in the proof of (a)⇒(b) from Theorem 4.9.
(b)⇒(a). See the remarks following Theorem 5.2 and note that ̂X∗ has the

CAP for every equivalent renorming ̂X of X . �

From Theorem 5.3 (b) we see why there is no “very weak MAP”. Using the
principle of local reflexivity we can show that the weak∗ closures of F(X,X) and
F(X,X∗∗) in L(X∗∗, X∗∗) are the same.

The following proposition is the best we can do connecting the weak MCAP
and the very weak MCAP.

Theorem 5.7. Let X be a Banach space and let V : X∗
̂⊗πX

∗∗!K(X,X)∗

and W : X∗
̂⊗πX

∗∗!K(X,X∗∗)∗ be the trace mappings. The following statements
are equivalent :

(a) X has the weak MCAP.
(b) X has the very weak MCAP and there exists ϕ∈HB(X,X∗∗) such that

(IX∗⊗ϕ∗|X∗∗)(kerV )⊂kerW .
In particular, if X has the very weak MCAP and X is CLR then X has the

weak MCAP.

Proof. (a)⇒(b). If X has the weak MCAP then it has the very weak MCAP.
Let S∈K(X,X∗∗) with ‖S‖=1. Let further K=S∗|X∗ (BX∗)⊂BX∗ and [Z, J ]=

DFJP(K). Factorize S∗=J �S1 through Z. Now we have a reflexive space Z and an
operator J∗ |X∈K(X,Z∗). By Corollary 5.4 there exists ϕ∈HB(X,X∗∗) such that
J∗ϕ∗ |X∗∗∈E∗∗, where E={J∗ |XS :S∈K(X,X)}. Assume that u∈kerV . Use S1 to
map u to S1u∈Z ̂⊗πX

∗∗,

0 = 〈S1u, J
∗ϕ∗|X∗∗〉= 〈(IX∗⊗ϕ∗|X∗∗)(u), S〉.

(b)⇒(a). Let ϕ∈HB(X,X∗∗) be as given in (b). If u=
∑∞

n=1 x
∗
n⊗x∗∗n ∈kerV

then
∑∞

n=1 x
∗
n⊗ϕ∗(x∗∗n )∈kerW . By Theorem 5.3 (g) there exists a ψ∈HB(X,X∗∗)
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such that
∑∞

n=1 ϕ
∗(x∗∗n )ψ(x∗n)=0. Now ψ∗ϕ∗ has norm one and acts as the iden-

tity when restricted to X so it is a Hahn–Banach extension operator for which
Theorem 4.3 (g) holds. �

Proposition 5.8. Let X be a Banach space. The statements below are related
as follows : (a)⇒(b)⇒(c).

(a) X has the weak MCAP.
(b) X has the very weak MCAP.
(c) The trace mapping V : Y ∗

̂⊗πX!K(X,Y )∗ is isometric for every reflexive
Banach space Y .

Proof. (a)⇒(b) is trivial and (b)⇒(c) follows from the identity (Y ∗
̂⊗πX)∗=

W(X,Y ) and (b) in Theorem 5.1. �

Remark 5.2. Using Theorem 5.6 we see that the Banach space in Remark 4.2
is also an example of a space without weak MCAP which has the very weak MCAP
(since the dual has the MCAP).

We do not know whether or not the implication (b)⇒(c) in Proposition 5.8 can
be reversed.

As was the case for the weak MCAP there is no conjugate version of the very
weak MCAP for dual spaces. The natural definition of a conjugate version of the
very weak MCAP for the dual of a Banach space X is obviously just the definition
of weak MCAP for X∗.

6. Questions and comments

Throughout this section we will assume that X and Y are Banach spaces.
Summarizing the previous sections we have the following implications.

X∗ CAPconj =⇒ X weak MCAP
⇓ ⇓

X∗ CAP =⇒ X very weak MCAP
⇓ ⇓

K(X,Y )
ideal⊆ W(X,Y ) for all Y =⇒ V : Y ∗

̂⊗πX!K(X,Y )∗ is isometric
for all reflexive Y.
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Also considering equivalent renormings ̂X of X we have

X∗ CAPconj ⇐⇒ ̂X weak MCAP for all ̂X

⇓ ⇓
X∗ CAP ⇐⇒ ̂X very weak MCAP for all ̂X

⇓ ⇓
K(X,Y )

ideal⊆ W(X,Y ) for all Y ⇐⇒ Y ∗
̂⊗π

̂X
V!K( ̂X,Y )∗ is isometric

for all ̂X and all reflexive Y.

We close this paper by collecting some open problems concerning compact
approximation properties.

In Section 4 we observed that the “weak MCAPconj” is equivalent to the
CAPconj for dual spaces.

Question 6.1. Is the weak MCAP for X∗ equivalent to the CAP for X∗?

We saw in Section 5 that if X is CLR then X has the weak MCAP, and in
particular the CAP, whenever it has the very weak MCAP.

Question 6.2. If X has the very weak MCAP does it have the CAP?

Finally a question related to Proposition 4.2. We know that e.g. c0 contains
a subspace without the CAP, but can we choose this subspace to be an ideal in c0?
More generally we ask the following question.

Question 6.3. Does there exist X with CAP (or weak MCAP or MCAP) and
a separable ideal Z in X which does not share this property?
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21. Lima, Å. and Oja, E., Metric approximation properties and trace mappings, Math.
Nachr. 280 (2007), 571–580.

22. Lima, V., Approximation properties for dual spaces, Math. Scand. 93 (2003), 297–312.
23. Lima, V., The weak metric approximation property and ideals of operators, J. Math.

Anal. Appl. 334 (2007), 593–603.
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