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Lipschitz continuity of the Green function
in Denjoy domains

Tom Carroll and Stephen J. Gardiner

Abstract. In this paper a Wiener-type characterization is presented of those boundary

points of a Denjoy domain where the Green function is Lipschitz continuous. This property is

linked with the splitting of a Euclidean boundary point into two minimal Martin boundary points.

1. Introduction

Let x=(x′, xn) denote a typical point of Euclidean space R
n=R

n−1×R, n≥2,
and let L denote the hyperplane R

n−1×{0}. By a Denjoy domain we mean a domain
of the form Ω=R

n\E, where E is a proper closed subset of L. We will assume that
0∈E. If n=2, then we will further require that E be non-polar, to ensure that Ω
possesses a Green function GΩ.

Let PE denote the cone of positive harmonic functions u on Ω that are bounded
outside every neighbourhood of 0, and vanish continuously at every regular point
of the boundary of Ω in R

n∪{∞} apart from 0. It is known (see [1] or [4]) that
either all functions in PE are proportional, or PE is generated by two linearly in-
dependent minimal harmonic functions. (We recall that a positive harmonic func-
tion u on Ω is called minimal if any harmonic function v on Ω satisfying 0<v≤u

is proportional to u.) These two cases will be denoted by writing dimPE=1 and
dimPE=2, respectively. They correspond to the situations in which Ω has one or
two minimal Martin boundary points, respectively, associated with the Euclidean
boundary point 0.

Let 0<α<1, and let Qx′ denote the open cube with centre (x′, 0) and side
length α|x′|, where all faces are parallel to the coordinate hyperplanes. Further,
let βE(x′) denote the harmonic measure of ∂Qx′ for the open set Qx′ \E, evaluated
at (x′, 0). If (x′, 0)∈E, then βE(x′) is interpreted as 0. If E is ‘large’ near 0 then,
intuitively, the potential theory of Ω near 0 should mirror that of two halfspaces
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bounded by a common hyperplane L. On the other hand, if E is ‘small’, then
there is a single Martin kernel function associated with 0. The size of the set E is
reflected in the size of the harmonic measure βE(x′), which is small if E is large
near (x′, 0). Benedicks [4] obtained the following criterion involving βE(x′) for
distinguishing between these two cases. It was originally formulated for harmonic
functions with pole at infinity rather than at the origin and for domains that are
regular away from the pole, but the statement below follows using inversion and an
approximation argument (cf. [5, p. 599]).

Theorem A. For a Denjoy domain Ω=R
n\E with 0∈E the following state-

ments are equivalent:
(a) dimPE=2;
(b)

∫
{|x′|≤1}

βE(x′)
|x′|n−1

dx′ <∞.

The purpose of this paper is to show that the harmonic measure condition (b)
above can be reformulated as a Wiener-type criterion involving capacity, and that
this condition also characterizes Lipschitz continuity of the Green function for Ω
at the boundary point 0. To be more precise, let x0∈Ω. Then we will say that
GΩ(x0, · ) is Lipschitz continuous at 0 if there exists a constant C>0 such that
GΩ(x0, x)≤C|x| on some neighbourhood of 0, where GΩ(x0, · ) is defined to be 0
on E. Harnack’s inequalities show that this definition is independent of the choice
of x0.

Let C(A) denote the Newtonian (or logarithmic, if n=2) capacity of a (Borel)
set A. Also, let γ∈(

0, 1
3

)
and D(r)={(x′, 0):|x′|≤r} and, for any k=0, 1, ..., let

Dk=D(2−k) and

Ek = (E∩Dk)∪D(γ2−k)∪Dk\D((1−γ)2−k).

Theorem 1. For a Denjoy domain Ω=R
n\E with 0∈E, and for any x0∈Ω,

the following statements are equivalent :
(a) dimPE=2;
(b)

{ ∑∞
k=0 2k(n−2)[C(Dk)−C(Ek)]<∞, n≥3,∑∞
k=0 2k[C(Dk)−C(Ek)]<∞, n=2;

(c) GΩ(x0, · ) is Lipschitz continuous at 0.



Lipschitz continuity of the Green function in Denjoy domains 273

The equivalence of (b) and (c) above extends a recent result of Carleson and
Totik [5, Theorem 1.11] for the plane to all dimensions. Our approach is quite
different from theirs.

When n≥3 it is natural to investigate the spine-like sets associated with the
capacity condition Theorem 1(b). These are characterised below. Let g : (0, 1)!
(0,∞) be increasing, and let

Wg =
{
x∈ (0, 1)×R

n−2×{0} :
√

x2
2+...+x2

n−1 < g(x1)
}

.

Corollary 1. Let n≥3 and Ω=R
n\E, where E=L\Wg, and let x0∈Ω. The

following statements are equivalent:
(a) dimPE=2;
(b)

∫ 1

0

g(t)n−1

tn
dt <∞;

(c) GΩ(x0, · ) is Lipschitz continuous at 0.

One would not expect to be able to characterize Lipschitz continuity of the
Green function in purely measure theoretic terms. Nevertheless, we give below
a sharp sufficient condition of this nature. Let ln denote n-dimensional measure.

Corollary 2. Let n≥2, let Ω=R
n\E be a Denjoy domain with 0∈E, and let

x0∈Ω. If
∑∞

k=0 2nk[ln−1(Dk\Ek)]n/(n−1)<∞, then GΩ(x0, · ) is Lipschitz continu-
ous at 0.

Corollary 2 will be established by a capacitary estimate (Lemma 2 of Section 4)
that may be of independent interest. When combined with Theorem 1 it yields
a simpler proof of the main result of [8]. The sharpness of Corollary 2 is illustrated
below. Let B(x, r) denote the open ball in R

n of centre x and radius r.

Example. Let Ω=(Rn\L)∪(
⋃∞

k=0 B(x(k), rk)), where x(k)∈L∩∂B(0, 2−k) and
rk<2−k, and let x0∈Ω. Then GΩ(x0, · ) is Lipschitz continuous at 0 if and only if∑∞

k=0 2nkrn
k <∞.

Corollary 3. Let F be a closed subset of [0,∞) containing 0, let Ω=R
n\E,

where E={x∈L:|x|∈F} and n≥3, and let x0∈Ω. If
∑∞

k=0 22k(l1([0, 2−k]\F ))2<∞,
then GΩ(x0, · ) is Lipschitz continuous at 0.

The proof of Theorem 1 may be found in the next section. It relies on The-
orem A and the notion of minimal thinness, an account of which may be found
in [3, Chapter 9]. Chevallier [6] was the first to use minimal thinness in the study of
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Denjoy domains, but we will exploit the connection in a different way. Corollaries 1
and 2 and the example will then be established in Sections 3 and 4. Corollary 3
can be proved in a manner analogous to the argument in Section 4, so we omit the
details.

2. Proof of Theorem 1

2.1. The equivalence of conditions (a) and (b) in Theorem 1 will be established
by showing that (b) is equivalent to the corresponding condition in Theorem A. In
this section we consider the case where n≥3.

Let

Ak = {x′ : 2−k ≤ 3|x′| ≤ 21−k} and A∗
k = {x′ : γ2−k ≤ |x′| ≤ (1−γ)2−k}.

Given γ∈(
0, 1

3

)
, we choose

α = min
{

1−3γ√
n−1

,
2γ

(1−γ)
√

n−1

}

in the definition of the cubes Qx′ . This choice ensures that Qx′∩L⊂A∗
k×{0} when-

ever x′∈Ak, and Qx′∩L⊂Dk whenever x′∈A∗
k, whence

Qx′∩E = Qx′∩Ek whenever x′ ∈Ak,(2.1)

and

Qx′∩E ⊆Qx′∩Ek whenever x′ ∈A∗
k.(2.2)

Also, if K is any compact set in R
n, we denote by vK the capacitary (Newtonian)

potential of K, and by µK the associated Riesz measure.
The function 1−vEk

is subharmonic and bounded above by 1 on R
n, and

vanishes quasi-everywhere (that is, apart from a polar set) on Ek. If x′∈A∗
k, we

thus have 1−vEk
=0 quasi-everywhere on Qx′∩E, by (2.2), and clearly 1−vEk

≤1
on ∂Qx′, in particular. It follows from the maximum principle, applied on Qx′\E,
that

1−vEk
(x′, 0)≤ βE(x′), x′ ∈A∗

k.(2.3)

Now dµD0(x′, xn)=f(|x′|) dx′ dδ0, where δ0 is the Dirac measure at 0 in R and
f : [0, 1)!(0,∞) is continuous. (This can be shown using Green’s theorem and
the fact that the function x′ 
!limt!0+(1−vD0(x′, t))/t is positive and continuous
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on {x′ :|x′|<1}, by [3, Lemma 8.5.1].) Letting c1=max[0,1−γ] f , we can thus use
dilation to see that

dµDk
≤ 2kc1 dx′ dδ0 on D((1−γ)2−k).(2.4)

This, together with (2.3), yields
∫

A∗
k

βE(x′)
|x′|n−1

dx′ ≥ 1
2kc1

∫
A∗

k×{0}

βE(x′)
|x′|n−1

dµDk
(x)

≥ 1
2kc1

∫
A∗

k×{0}

1−vEk
(x)

|x′|n−1
dµDk

(x)

≥ c22k(n−2)

∫
A∗

k×{0}
(1−vEk

(x)) dµDk
(x),

where c2=c−1
1 (1−γ)1−n. Since Ek⊇Dk\(A∗

k×{0}), it follows that 1−vEk
=0 on

Dk\(A∗
k×{0}), and so

∫
A∗

k

βE(x′)
|x′|n−1

dx′ ≥ c22k(n−2)

∫
Dk

(
1−

∫
Ek

dµEk
(y)

|x−y|n−2

)
dµDk

(x)

= c22k(n−2)

(
C(Dk)−

∫
Ek

∫
Dk

dµDk
(x)

|x−y|n−2
dµEk

(y)
)

= c22k(n−2)

(
C(Dk)−

∫
Ek

vDk
(y) dµEk

(y)
)

.

Now, vDk
=1 on Dk and Ek⊆Dk, so

∫
Ek

vDk
(y) dµEk

(y)= C(Ek)

and hence ∫
A∗

k

βE(x′)
|x′|n−1

dx′ ≥ c22k(n−2)[C(Dk)−C(Ek)].

Although the sets A∗
k are not disjoint, any point x′∈R

n−1 can belong to at most
a fixed finite number (depending on γ) of these sets. Thus it is now clear that
Theorem A(b) implies Theorem 1(b).

For the converse we recall the following elementary fact [4, Lemma 7].

Lemma A. Let β∗
E(x′) denote the harmonic measure of the set

Tx′ = ∂Qx′∩
{

y : |yn|= α|x′|
2

}
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for Qx′ \E evaluated at (x′, 0). Then

β∗
E(x′)≤ βE(x′)≤nβ∗

E(x′), x′ ∈R
n−1.

We can use Lemma A, and then (2.1) and the maximum principle on Qx′\E,
to see that, for x′∈Ak,

βE(x′)≤nβ∗
E(x′)≤n

1−vEk
(x′, 0)

minTx′ (1−vEk
)
≤n

1−vEk
(x′, 0)

minTx′ (1−vDk
)
≤ c3(1−vEk

(x′, 0)),

where, by a dilation argument, c3 depends only on n and α. Letting c4=min[0,2/3] f ,
we can argue as previously to see that∫

Ak

βE(x′)
|x′|n−1

dx′ ≤ 3n−1
(c3

c4

)
2k(n−2)

∫
Dk

(1−vEk
(x)) dµDk

(x)

= 3n−1
(c3

c4

)
2k(n−2)[C(Dk)−C(Ek)].

Since
⋃∞

k=0(Ak×{0})=D
(

2
3

)\{0}, Theorem 1(b) implies Theorem A(b).

2.2. In order to show the equivalence of conditions (a) and (b) in Theorem 1 when
the dimension is 2, we recall that the Robin constant r(K), of a non-polar compact
set K, is related to logarithmic capacity by the equation C(K)=e−r(K), whence

C(Dk)−C(Ek)= C(Dk)(1−er(Dk)−r(Ek)).

Since C(Dk)=2−k−1, it is easy to see that the two-dimensional case of the capacity
condition Theorem 1(b) can be reformulated as

∞∑
k=0

[r(Ek)−r(Dk)] <∞.

Let gK denote the Green function for R
2\K with pole at infinity, and let νK denote

the equilibrium measure for K. Then

gK(x)= r(K)+
∫

K

log |x−y|dνK(y), x∈R
2\K,(2.5)

and ∫
K

log |x−y|dνK(y)=−r(K) quasi-everywhere on K.(2.6)

Defining

c5 = sup
|x|≤2

g
D0\A∗

0
(x),
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we can use dilation, (2.2) and the maximum principle on Qx′\E to see that

c−1
5 gEk

(x′, 0)≤ βE(x′), x′ ∈A∗
k.

Also, there is a positive constant c6, depending only on γ, such that

dνDk
≤ 2kc6 dx′ dδ0 on D((1−γ)2−k).

Hence∫
A∗

k

βE(x′)
|x′| dx′ ≥ 1

(1−γ)c5c6

∫
Dk

gEk
(x) dνDk

(x)=
1

(1−γ)c5c6
[r(Ek)−r(Dk)],

using (2.5), (2.6) and the fact that νK is a probability measure. (We were able to
pass from an integral over A∗

k to one over Dk because gEk
=0 on Dk\(A∗

k×{0}).)
It is now clear that Theorem A(b) implies Theorem 1(b). The converse is proved
by similar reasoning.

2.3. The equivalence of conditions (a) and (c) in Theorem 1 involves arguments
based on minimal thinness. The following lemma will prove useful. Let b(x′, r)
denote the open ball in R

n−1 of centre x′ and radius r.

Lemma B. There is a positive constant C, depending only on �∈(0, 1) and n,
with the following property: if u is nonnegative and subharmonic on b(y′, r)×(−r, r)
and harmonic off L, then

u(x)≤C
[
u
(
y′,

r

2

)
+u

(
y′,− r

2

)]
when x∈ b(y′,�r)×

(
− r

2
,
r

2

)
.(2.7)

Lemma B holds because (following the argument of [4, p. 54]) Harnack’s in-
equalities yield the existence of a constant C′>0, depending on � and n, such that

u(x)≤ C′rn−1

xn−1
n

[
u
(
y′,

r

2

)
+u

(
y′,− r

2

)]
when x∈ b

(
y′,

1+�
2

r

)
×

(
− r

2
,
r

2

)
,

whence (2.7) holds in view of Domar [7, Theorem 2] and the subharmonicity of u.
Let h(x)=xn|x|−n when x∈R

n\{0}, and let If denote the Poisson integral in
the halfspace H={(x′, xn):xn>0} of a nonnegative measurable function f on L. In
what follows, any function in PE is deemed to have the value 0 on E\{0}.

Let x0=(0′, 1) and suppose, firstly, that Theorem 1(a) holds. It is easy to
observe from [4, Theorem 3] that this is equivalent to saying that there is a function
u in PE with a representation of the form

u(x)=

{
ah(x)+Iu(x), xn>0,

−bh(x)+Iu(x′,−xn), xn<0,
(2.8)
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where a, b∈[0,∞) are not both zero. Hence the function

u+ =
u+bh

a+b
,

which has the representation

u+(x)= h+(x)+Iu+(x′, |xn|), xn �= 0,

belongs to PE , where h+=max{h, 0}. Let u−(x)=u+(x′,−xn). Since PE is finite-
dimensional, there must be a minimal harmonic minorant of u+ (respectively, u−)
of the form (2.8) with a>0=b (respectively, b>0=a). Since dimPE =2, it follows
that u+ and u− are themselves minimal.

For any positive superharmonic function w on Ω and any set A⊂Ω, we define

RA
w = inf{s : s is positive and superharmonic on Ω and s≥w on A}.

Let J=Ω∩{(x′, xn):xn≤0}. Then RJ
u+

(x)=Iu+(x′, |xn|) when xn �=0, and so we
have u+−RJ

u+
=h>0 on H . It follows that J is minimally thin with respect to the

minimal harmonic function u+ on Ω. We claim that any sequence of points in H

that converges to the Martin boundary point of Ω associated with u+ must converge
to 0 in the Euclidean topology. For, otherwise, there would be a sequence {x(k)}∞k=0

in H such that

lim inf
k!∞

|x(k)|> 0 and
GΩ(x, x(k))
GΩ(x0, x(k))

! u+(x)
u+(x0)

as k!∞,

whence u+ would be bounded near 0, by Lemma B, and we would arrive at the
contradictory conclusion that u+≡0.

Hence, by [3, Theorem 9.5.2],

lim sup
x!0
x∈H

GH(x0, x)
GΩ(x0, x)

> 0,(2.9)

and so, by [3, Theorem 9.3.3(ii)], GΩ(x0, x)/GH(x0, x) has a finite minimal fine
limit at 0 with respect to H . In fact, since GH(x0, x)/xn has a finite limit as x!0
in H , we see that GΩ(x0, x)/xn has a finite minimal fine limit at 0 with respect
to H , and hence an equal nontangential limit at 0 (see [3, Theorem 9.7.4]). This
argument can also be applied using u− in place of u+, so we can now use Lemma B
to deduce that Theorem 1(c) holds.

Conversely, suppose that condition (c) holds. By [1, Théorème 2], there is
a minimal harmonic function u0 on Ω such that

GΩ( · , (0′, t))
GΩ(x0, (0′, t))

!u0, as t # 0, on Ω.(2.10)
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Let 0<ε<1 and Vε=Ω\B(0, ε), and let λU
x denote harmonic measure for an open

set U and a point x∈U . By Lemma B and Harnack’s inequalities there is a positive
constant C(Ω, ε) such that

GΩ(x, (0′, t))≤C(Ω, ε)GΩ(x0, (0′, t)), x∈Ω∩∂B(0, ε), 0 < t <
ε

2
.(2.11)

Since

GΩ(x, (0′, t))=
∫

Ω∩∂B(0,ε)

GΩ( · , (0′, t)) dλVε
x , x∈Vε, 0 < t < ε,

we can use (2.10) and dominated convergence (see (2.11)) to deduce that

u0(x)=
∫

Ω∩∂B(0,ε)

u0 dλVε
x ≤C(Ω, ε)λVε

x (Ω∩∂B(0, ε)), x∈Vε.

It follows that u0∈PE . Since

lim sup
t#0

GH(x0, (0′, t))
GΩ(x0, (0′, t))

> 0,

by hypothesis, we can apply [3, Theorem 9.5.2] again to see that J is minimally
thin with respect to u0 in Ω. Thus Iu0 =RJ

u0
�=u0 on H , and so we can appeal to

the observation concerning (2.8) to conclude that dimPE =2, as required.

3. Proof of Corollary 1 and an estimate for harmonic measure

We define the union of cones

KA =
⋃

(z′,0)∈A

{(x′, xn) : xn > |x′−z′|}, A⊂L.

If x=(x′, xn)∈H\KA, then the (n−1)-dimensional ball B((x′, 0), xn)∩L does not
meet A. It follows that there is a constant C(n)∈(0, 1) such that, for any Borel
subset A of L,

λH
x (A)≤C(n), x∈H\KA.(3.1)

More generally, if δ∈(0, 1), there is a constant C(n, δ)∈(0, 1) such that

λH
x (A)≤C(n, δ) if |B((x′, 0), xn)∩A|< δ|B((x′, 0), xn)|.(3.2)

Let n≥3 and

W (β, ρ)=
{
x∈B(0, β)∩L :

√
x2

2+...+x2
n−1 < ρ

}
, 0 < ρ≤ β < 1.
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This is a core of radius ρ cut through an (n−1)-dimensional ball of radius β. We
form a region ω by joining two half-balls of radius 1 along the core W (1−γ, ρ): the
result, if ρ is small, is the unit ball with most of the hyperplane L removed except
for a narrow opening W (1−γ, ρ). Formally,

ω = (B(0, 1)\L)∪W (1−γ, ρ).

We now estimate the harmonic measure of the unit sphere ∂B(0, 1) for ω on the
core W (1−γ, ρ).

Lemma 1. There is a positive constant C(n, γ), such that

λω
x (∂B(0, 1))≤C(n, γ)ρ, x∈W (1−γ, ρ), 0 < ρ≤ 1−γ.

Proof. There is no loss of generality in supposing that ρ<2−5/2γ, so that
we have 1−γ+23/2ρ<1−γ/2. We denote the half-ball B(0, 1)∩H by V , and let
h=λω

x(∂B(0, 1)). Then

h(x)= λV
x (H∩∂B(0, 1))+

∫
W (1−γ,ρ)

h dλV
x , x∈V.(3.3)

We let m=supW (1−γ,ρ) h and define the region

U = {(x′, xn) : (x′, |xn|)∈KW (1−γ,ρ) and |xn|< 2ρ}∪W (1−γ, ρ),

which contains a union of double-sided truncated cones with vertices on W (1−γ, ρ).
We will estimate h on the boundary of U in terms of m. By the symmetry of h and
of U , it suffices to consider x∈H∩∂U , in which case we can use (3.3) and estimate
separately each of the two terms on the right-hand side.

In view of (3.1) and (3.2) there is a constant C1∈(0, 1), depending only on n,
such that

λH
x (W (1−γ, ρ))≤C1, x∈H∩∂U.

Hence
∫

W (1−γ,ρ)

h dλV
x ≤

∫
W (1−γ,ρ)

h dλH
x ≤C1m, x∈H∩∂U.

Since there is a positive constant C2, depending only on n and γ, such that

λV
x (H∩∂B(0, 1))≤C2xn, x∈H∩B

(
0, 1−γ

2

)
,
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and since U⊂B(0, 1−γ/2) by our assumption concerning ρ, we deduce from (3.3)
that

h(x)≤ 2C2ρ+C1m, x∈H∩∂U.

As mentioned earlier, this last estimate holds on the whole boundary of U so that,
by the maximum principle applied to h on U ,

m≤ 2C2ρ+C1m.

This completes the proof of the lemma, since we now have the desired estimate
m≤2C2(1−C1)−1ρ. �

Now let Ω be as in the statement of Corollary 1, and suppose that condition (b)
of that result holds. Further, let hk denote the harmonic measure of ∂B(0, 2−k) for
the domain

ωk = (B(0, 2−k)\L)∪W ((1−γ)2−k, min{(1−γ)2−k, g(2−k)}).
By Lemma 1 and dilation we see that

hk ≤C(n, γ)2kg(2−k) on ωk∩L.(3.4)

Since 1−vEk
≤hk on ωk by the maximum principle, we see that

C(Dk)−C(Ek) =
∫

Dk

1 dµDk
−

∫
Ek

vDk
dµEk

=
∫

Dk

(1−vEk
) dµDk

≤
∫

ωk∩L

hk dµDk
≤C32kg(2−k)n−1,

using (3.4) and (2.4), where C3 depends only on n and γ. Since, by hypothesis,∑∞
k=0[2

kg(2−k)]n−1<∞, we now see that Theorem 1(b) holds, and so GΩ(x0, · ) is
Lipschitz continuous at 0.

We already know that (c) implies (a), by Theorem 1, so it remains to check that
(a) implies (b). As in Section 2.3, it follows from condition (a) that the function
x 
!xn|x|−n has a positive harmonic majorant u in Ω. By Harnack’s inequalities,
we see that u≥C42nkg(2−k−1) on

{
x∈Dk\Dk+1 :

√
x2

2+...+x2
n−1 < 1

2g(2−k−1)
}

,

where C4 depends only on n. Since the function

(x′, 0) 
−! lim inf
y!(x′,0)

y∈Ω

u(y)



282 Tom Carroll and Stephen J. Gardiner

is locally integrable on L, we see that
∑∞

k=0[2
kg(2−k)]n−1<∞, whence Corol-

lary 1(b) holds.

4. Proof of Corollary 2 and an estimate for capacity

4.1. Corollary 2 will follow immediately from Theorem 1 using a dilation argument
once we have established the lemma below. An alternative argument that leads to
the two-dimensional case of this lemma is outlined on p. 566 of [5].

Lemma 2. Let n≥2, let W be a relatively open subset of D(1−γ) and let
E=D(1)\W . There is a positive constant C(n, γ) such that

C(D(1))−C(E)≤C(n, γ)ln−1(W )n/(n−1).

Proof. To see this, we choose ρ such that ln−1(D(ρ))=2ln−1(W ). Thus ρ=
C(n)ln−1(W )1/(n−1). We may assume, without loss of generality, that ρ<2−3/2γ.
Let

U = {(x′, xn) : (x′, |xn|)∈KW and |xn|< ρ}∪W,

and let h denote the harmonic measure of the set ∂B(0, 1) for the domain ω=
(B(0, 1)\L)∪W . In view of (3.1) and (3.2) there is a constant C5∈(0, 1), depending
only on n and γ, such that λH

x (W )≤C5 when x∈H∩∂U . Arguing as in the proof
of Lemma 1, we deduce that

h(x)≤C6ρ+C5 sup
W

h, x∈H∩U,

where C6 depends only on n and γ, and hence supW h≤C6(1−C5)−1ρ.
If n≥3 then, since 1−vE≤h on B(0, 1)\E, we see as before that

C(D(1))−C(E)≤
∫

W

h dµD(1)

≤C(n, γ)ln−1(W )1/(n−1)µD(1)(W )≤C(n, γ)ln−1(W )1+1/(n−1),

by (2.4).
If n=2, we use an analogous argument based on equilibrium measures along

the lines of that in Section 2.2. Using the notation of that section, we note that the
Robin constants of two compact sets K1 and K2, with K1⊂K2, satisfy

r(K1)−r(K2)=
∫

K2\K1

gK1 dνK2 .
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Thus, since gE≤C7h in D(1), we see that

r(E)−r(D(1))=
∫

W

gE dνD(1) ≤C8l1(W )νD(1)(W )≤C9(l1(W ))2,

where C7, C8 and C9 depend at most on γ. �

4.2. The “if” assertion in the example follows easily from Lemma 2. The “only if”
assertion follows from Theorem 1 and Harnack’s inequality, arguing as in the final
paragraph of Section 3.

Note. (Added in August 2007.) V. V. Andrievskii, in the preprint [2], has found
a different capacitary/metric covering condition on L\E that characterizes the case
where dimPE=2 when n=2, and has also related this condition to the boundary
behaviour of the Green function. His methods are based on conformal mappings
and estimation of the modules of families of curves.
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