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Carleson measures for the generalized
Bergman spaces via a T(1)-type theorem

Edgar Tchoundja

Abstract. In this paper, we give a new characterization of Carleson measures for the

generalized Bergman spaces. We show first that this problem is equivalent to a T(1)-type problem.

Using an idea of Verdera (see [V]), we introduce a sort of curvature in the unit ball adapted to our

kernel. We establish a good λ inequality which then yields the solution of this T(1)-type problem.

1. Introduction

Let n be a positive integer and let

C
n =C×...×C

denote the n-dimensional complex Euclidean space.
For z=(z1, ..., zn) and w=(w1, ..., wn) in Cn, we write

z ·w = 〈z, w〉= z1w1+...+znwn

and

|z|=
√
|z1|2+...+|zn|2.

The open unit ball in Cn is the set

D= {z∈Cn : |z|< 1}.

We use H(D) to denote the space of all holomorphic functions in D. Let
S=∂D be the boundary of D. For α∈R, α>−n−1, we define the generalized

Research supported by the International Science Program (ISP), University of Uppsala.



378 Edgar Tchoundja

Bergman spaces A2
α, see [ZZ], to consist of all holomorphic functions f in the unit

ball D with the property that

‖f‖2
α =

∑

m∈Nn

|c(m)|2 Γ(n+1+α)m!
Γ(n+1+|m|+α)

<∞,

where f(z)=
∑

m∈Nn c(m)zm is the Taylor expansion of f .
For β∈R, we define the fractional radial derivative of order β by

(I+R)βf(z) :=
∑

m∈Nn

(1+|m|)βc(m)zm.

One then easily observes, by means of Taylor expansion and Stirling’s formula, that

‖f‖2
α
∼=

∫

D

|(I+R)mf(z)|2(1−|z|2)2m+α dλ(z),(1)

where 2m+α>−1. One also observes that the finiteness of the right-hand side
of (1) is independent of the choice of m. If we let 2σ=α+n+1 then we see by (1)
that A2

α=Bσ
2 , where Bσ

2 is the analytic Besov–Sobolev spaces defined in [ARS].
Thus this scale of spaces includes the Drury–Arveson Hardy space A2

−n [D], the
usual Hardy space H2(D)=A2

−1 and the weighted Bergman spaces when α>−1.
An interesting question about these spaces is to find their Carleson measures,

that is characterize positive measures µ on D such that
∫

D

|f |2 dµ≤C(µ)‖f‖2
α, f ∈A2

α.(2)

(A measure µ which satisfies (2) is called a Carleson measure for A2
α or simply an

A2
α Carleson measure, µ∈CM(A2

α).)
Viewing the space A2

α as defined by the relation (1), we see that the literature
is now rich with solutions of this question for various values of α. The first case
of interest was the case α=−1 (the usual Hardy space). In [C], Carleson gave the
characterization when n=1 and later in 1967, Hörmander [H] gave a solution for
n>1. Stegenga [St] (when n=1), Cima and Wogen [CW] (when n>1) characterized
Carleson measures for α>−1.

For p>0 and β∈R, the Hardy–Sobolev space Hp
β(D) is the set

{
f ∈Hol(D) : ‖f‖p

β = sup
r<1

∫

S

|(I+R)βf(rξ)|p dσ(ξ)<∞
}

.

One can see, by means of Taylor expansion for example, that A2
α=H2

β(D) with β=
(−α−1)/2. For α∈(−n−1,−n), Cohn and Verbitsky [CV] gave a capacitary char-
acterization of Carleson measures and recently Arcozzi, Rochberg and Sawyer [ARS]
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gave a different proof for a different (non-capacitary) characterization. It has been
known, [AC] and [CO], that the capacitary condition is sufficient but not necessary
for µ∈CM(A2

α) when α≥−n. For the special case of the Drury–Arveson Hardy
space (α=−n), [ARS] completely characterized their Carleson measures using cer-
tain tree conditions.

In this note, we present a sequence of conditions equivalent to µ∈CM(A2−n),
some implicit in [ARS], some new, and a completely different proof. Contrary
to [ARS], the proof presented here works the same way in the whole range α∈
(−n−1,−n].

To obtain our characterization, we show first that this problem is equivalent to
a kind of T(1)-type problem associated with a Calderón–Zygmund type kernel and
then we solve the T(1)-type problem which occurs. Recall that for a topological
space X with a pseudodistance d, a kernel K(x, y) is called an n-Calderón–Zygmund
kernel (or simply a Calderón–Zygmund kernel) with respect to the pseudodistance d

if
(a) there exists C1>0 such that

|K(x, y)| ≤ C1

d(x, y)n
,

and
(b) there exists 0<δ≤1 such that

|K(x, y)−K(x′, y)|+|K(y, x)−K(y, x′)| ≤C2
d(x, x′)δ

d(x, y)n+δ

if d(x, x′)≤C3d(x, y), x, x′, y∈X .
Given a Calderón–Zygmund kernel K, we can define (at least formally) a Cal-

derón–Zygmund operator associated with this kernel by

Tf(x)=
∫

X

K(x, y)f(y) dµ(y).

One important question in the Calderón–Zygmund theory is to find a criterion
for boundedness of a Calderón–Zygmund operator in L2(µ).

Many authors studied this problem. When X=Rm, µ=dx (the usual Lebesgue
measure) and d is the Euclidean distance, a famous criterion was obtained by Journé
and David [DJ] who also introduced the terminology T(1)-theorem. This criterion
states that a Calderón–Zygmund operator is bounded in L2(dµ) if and only if it is
weakly bounded (in some sense), and the operator and its adjoint send the func-
tion 1 into BMO. This result was extended to spaces of homogeneous type in an
unpublished work by R. Coifman. Later it was an interesting question to extend
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this T(1)-theorem to the case where the space is not of homogeneous type. (This
essentially means that the measure µ does not satisfy the doubling condition). Sev-
eral authors such as Tolsa, Nazarov, Treil, Volberg and Verdera [T1], [T2], [NTV]
and [V] treated this situation in the setting of Rm with the Euclidean distance.
One good example of a Calderón–Zygmund operator is the Cauchy integral opera-
tor. We say that the Cauchy integral operator is bounded in L2(dµ) whenever, for
some positive constant C, one has for every ε>0,

∫

Rm

|Cε(fµ)|2 dµ≤C

∫

Rm

|f |2 dµ, f ∈L2(dµ),

where

Cε(fµ)(z)=
∫

|ζ−z|>ε

f(ζ)
ζ−z

dµ(ζ), z ∈C.

Their result is that the Cauchy integral operator is bounded in L2(dµ) if and
only if

(i) µ(D)≤Cr(D) for each disc D with radius r(D);
(ii)

∫
D |Cε(χDµ)|2 dµ≤Cµ(D) for each disc D and ε>0.

We now return to the problem (2). We consider the kernel Kα defined by

Kα(z, w)= Re
(

1
(1−z ·w)n+1+α

)
.

For a positive Borel measure µ in D, we consider the operator Tα associated
with this kernel defined by

Tαf(z)=
∫

D

f(w)Kα(z, w) dµ(w), z ∈D.

We will prove that if on D we consider as in [B] the pseudodistance d defined
by

d(z, w)=
∣
∣|z|−|w|∣∣+

∣∣
∣
∣1−

z

|z| ·
w

|w|
∣∣
∣
∣,

the kernel Kα is an (n+1+α)-Calderón–Zygmund kernel in the unit ball D with
respect to the pseudodistance d. Let B=B(z, r)={w∈D:d(z, w)<r} be a “pseu-
doball” or simply a ball of center z and radius r. We are now ready to state our
result.
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Theorem 1.1. (Main theorem) Suppose that α∈(−n−1,−n] and let µ be
a positive Borel measure in D. Then the following conditions are equivalent :

(a) µ is a Carleson measure for A2
α;

(b) Tα is bounded in L2(µ);
(c) There exists a constant C such that

µ(B(z, r))≤Crn+1+α,(i)
∫

B

|Tα(χB)|2 dµ≤Cµ(B)(ii)

for each ball B=B(z, r) which touches the boundary of D.

This theorem is a T(1)-type theorem with respect to the Calderón–Zygmund
operator Tα ((b)⇔(c)) and it shows the relation of this T(1)-type problem with
Carleson measures for A2

α ((a)⇔(b)). Observe that the equivalency (a)⇔(b) is
proved in [ARS, Lemma 24] in a general situation of Hilbert spaces of functions.
Thus to prove Theorem 1.1, we will essentially prove the hard part (b)⇔(c). To
prove the hard part, we will adapt to the unit ball the idea used by J. Verdera [V]
to give an alternative proof of the T(1)-theorem for the Cauchy integral operator.

Let us mention that an analogue of condition (ii) here appears implicitly
in [ARS]. Namely

∫

B

Tα(χB) dµ≤Cµ(B)(3)

for each ball B=B(z, r) which touches the boundary of D. Since (3) implies (ii),
our condition is much stronger. Moreover, by the Calderón–Zygmund theory, we
know that the condition (b) is equivalent to the boundedness of Tα in Lp(µ) with
1<p<∞. Thus in condition (ii), we could replace 2 by p for any p∈(1,∞).

This paper is organized as follows. In Section 2 we gather some preliminaries
including a key covering lemma, terminology and background. Section 3 is devoted
to the study of the generalized Bergman spaces A2

α and the proof of (a)⇔(b).
Section 4 contains the proof of the hard part of the main theorem. Section 5 deals
with some extensions, comments and opens questions.

2. Preliminary results

In this section we collect a few results which will be useful to our purpose.
These concern results on general homogeneous spaces and results for the special
case of the unit ball D.
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2.1. Definition and properties of a space of homogeneous type

Definition 2.1. A pseudodistance on a set X is a map ρ from X×X to R+ such
that

(1) ρ(x, y)=0 if and only if x=y;
(2) ρ(x, y)=ρ(y, x);
(3) there exists a positive constant K≥1 such that, for all x, y, z∈X ,

ρ(x, y)≤K(ρ(x, z)+ρ(z, y)) (the quasitriangular inequality).

For x∈X and r>0, the set B(x, r)={y∈X :ρ(x, y)<r} is called a pseudoball or
simply a ball of center x and radius r.

Definition 2.2. A space of homogeneous type is a topological space X with
a pseudodistance ρ and a positive Borel measure µ on X such that

(1) the balls B(x, r) form a basis of open neighborhoods of x;
(2) (doubling property) there exists a constant A>0 such that, for all x∈X

and r>0, we have

0 < µ(B(x, 2r))≤Aµ(B(x, r))<∞.

(X, ρ, µ) is called a space of homogeneous type or simply a homogeneous space.
We will often abusively call X a homogeneous space instead of (X, ρ, µ).

Homogeneous spaces have been treated by several authors such as Coifman and
Weiss [CWe], and Stein [S]. We refer to them for further details.

We will use the following lemma to prove a key type of covering lemma,
Lemma 2.4 below. It will be crucial in our argument later.

Lemma 2.3. There exists a constant C1 such that if B(x1, r1) and B(x2, r2)
are two non-disjoint balls and if r1≤r2 then

B(x1, r1)⊂B(x2, C1r2).

Proof. Let y∈B(x1, r1)∩B(x2, r2). We have for x∈B(x1, r1),

ρ(x, x2)≤K(ρ(x, y)+ρ(y, x2))

≤K(K(ρ(x, x1)+ρ(x1, y))+ρ(y, x2))< K(2Kr1+r2)< K(2K+1)r2.

We obtain the desired result if we set C1=K(2K+1). �

Lemma 2.4. Let (X, d, µ) be a homogeneous space. There exists positive
constants K1, K2 and K3 with K3>K2>K(C1+1)K1 such that for an open set
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O of X (O�X), there exists a collection of balls Bk :=B(xk, ρk) so that, if B∗
k=

B(xk, K1ρk), B∗∗
k =B(xk, K2ρk) and B∗∗∗

k =B(xk, K3ρk), then
(a) the balls Bk are pairwise disjoint;
(b) O=

⋃
k B∗

k ;
(c) O=

⋃
k B∗∗

k ;
(d) for each k, B∗∗∗

k ∩Oc �=∅;
(e) a point x∈O belongs to at most M balls B∗∗

k (bounded overlap property).
Moreover, the constant M depends only on the constants K1, K2, A and K.

Proof. Let O be an open set of X (O�X). Let ε=1/16K2C2
1 (1+C1), where

C1 is the constant defined in Lemma 2.3. Consider the covering of O by the balls
B(x, εδ(x)), where δ(x)=d(x, Oc), x∈O.

We have d(x, Oc)>0 since Oc is a closed set. We now select a maximal disjoint
subcollection of {B(x, εδ(x))}x∈O; for this subcollection B1, B2, ..., Bk, ... with Bk :=
B(xk, εδ(xk))=B(xk, ρk), we shall prove assertions (a)–(e) above. We set

K1 =
1

4K2(C1+1)ε
, K2 =

1
2εK

and K3 =
2
ε
.

Observe that our choice makes these constants satisfy our hypothesis. Note
that (a) and (d) hold automatically by our choice of Bk. It is also clear that

B∗
k = B

(
xk,

δ(xk)
4K2(C1+1)

)
⊂B

(
xk,

δ(xk)
2K

)
= B∗∗

k ⊂O.

What remains to be shown is that O⊂⋃
k B∗

k (in this case (b) and (c) will be valid)
and that (e) is true.

Let us prove that O⊂⋃
k B∗

k.
Let x∈O; by the maximality of the collection Bk,

B(xk, εδ(xk))∩B(x, εδ(x)) �=∅ for some k.

We claim that δ(xk)≥δ(x)/4C1. If not, since ε<1/2C1<1, we have

B(xk, 2δ(xk))∩B

(
x,

δ(x)
2C1

)
�=∅.

Since 2δ(xk)<δ(x)/2C1, by Lemma 2.3, B(xk, 2δ(xk))⊂B(x, δ(x)/2), which gives
a contradiction since B(xk, 2δ(xk)) meets Oc, while B(x, δ(x)/2)⊂O. Using the
fact that 4C1εδ(xk)≥εδ(x), Lemma 2.3 gives that

x∈B(x, εδ(x))⊂B(xk , 4εC2
1δ(xk))= B∗

k.

This proves (b) and (c).
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We proceed to prove (e).
Assume that x∈⋂M

k=1 B∗∗
k =

⋂M
k=1 B(xk, K2ρk). We have that

d(xk, Oc)≤K(d(x, Oc)+d(x, xk))≤K(d(x, Oc)+K2ρk);

this implies that d(x, Oc)≥(d(xk, Oc)−KK2ρk)/K. But

KK2ρk = KK2εd(xk, Oc)=
d(xk, Oc)

2

and thus d(x, Oc)≥d(xk, Oc)/2K=ρk/2Kε. Hence ρk≤2Kεd(x, Oc).
On the other hand,

d(x, Oc)≤K(d(xk, Oc)+d(x, xk))≤K
(
K2ρk+

ρk

ε

)
= K(K2+ε−1)ρk.

So if x∈B∗∗
k , the radius ρk satisfies

d(x, Oc)
K(K2+ε−1)

≤ ρk ≤ 2Kεd(x, Oc).

From this, we have that

B(xk, ρk)⊂B(x, C2d(x, Oc)),

where C2=2K2(K2+1)ε. We also have, for each k,

B(x, C2d(x, Oc))⊂B(xk, C3ρk),

where C3=K(C2K(K2+ε−1)+K2). Thus
⋃

k

B(xk, ρk)⊂B(x, C2d(x, Oc))

and

B(x, C2d(x, Oc))⊂B(xk, C3ρk) for each k.

Therefore, by the doubling property and the disjointness of Bk, we have that

M∑

k=1

µ(B(xk, ρk))≤µ(B(x, C2d(x, Oc)))≤µ(B(xk, C3ρk))≤Cµ(B(xk, ρk)).

Thus M≤C and we are done. �
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One key result in the real variable theory is that, by means of the Besicovitch
covering lemma, the usual central Hardy–Littlewood maximal function is bounded
in Lp(Rm, dµ), 1<p<∞, where the measure µ is not assumed to be doubling.
Since the Besicovitch covering lemma is no longer true in general homogeneous
spaces [KR], we will obtain the same Lp estimates for a certain “contractive” central
Hardy–Littlewood maximal function to be defined later, via the following lemma,

Lemma 2.5. (ε-Besicovitch) Let (X, d, µ) be a homogeneous space. Let E

be a bounded set, fix a positive number M and denote by F the family of balls
B(a, r) with center a∈E and radius r≤M . Then there exists a countable subfamily
{B(ak, rk)}∞k=1 of F with the following properties :

(i) E⊂⋃∞
k=1 B(ak, rk);

(ii) for all 0<ε<1, the family Fε={B(ak, (1−ε)rk)}∞k=1 has bounded overlap,
namely

∞∑

k=1

χB(ak,(1−ε)rk)(x)≤C log
1
ε
,

where C depends only on constants of X and χA denotes the characteristic function
of the set A.

Proof. See [FGL, Lemma 3.1]. �

We now turn our attention to the special domain of interest, the unit ball

D= {z∈Cn : |z|< 1}.

In [B] a map d on D×D is defined by

d(z, w)=

⎧
⎨

⎩

∣
∣|z|−|w|∣∣+

∣
∣
∣∣1−

z

|z| ·
w

|w|
∣
∣
∣∣, if z, w∈D∗,

|z|+|w|, otherwise,

where D∗=D\{0}.

2.2. Properties of the pseudodistance d

Lemma 2.6. The following assertions hold :
(i) d is a pseudodistance on D;
(ii) d is invariant under rotations in U(n).
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Proof. Assertion (i) follows essentially from the fact that the map (ξ, ζ) 
!
|1−ξζ|1/2 is a distance in ∂D (see [R, Proposition 5.1.2]). Assertion (ii) follows
from the fact that the inner product z ·w is invariant under rotations in U(n). �

Remark 2.7. The pseudodistance d at the boundary becomes the Korányi dis-
tance (see [R]). Hence, it is not equivalent to the usual “pseudohyberbolic” distance
on D.

The pseudoballs associated with this pseudodistance satisfy this important
observation.

Lemma 2.8. The pseudoball B(z, r)={w∈D:d(z, w)<r} touches the bound-
ary of D if and only if r>1−|z|.

Proof. Fix a pseudoball B(z, r). Let ε=r−(1−|z|). Since we are interested in
points which touch the boundary, we have to find conditions on points w∈B(z, r)
such that |w|>|z|. For such w, we have d(z, w)=|w|−|z|+|1−(z/|z|)·(w/|w|)|. So

d(z, w)< r ⇐⇒
∣
∣∣
∣1−

z

|z| ·
w

|w|
∣
∣∣
∣ < ε+1−|z|−|w|+|z|= ε+1−|w|.(4)

From this we have our result. In fact, (4) shows that B(z, r) touches the boundary
of D if and only if ε>0. �

These pseudoballs have close relations with the so called Korányi balls. Pre-
cisely, for ξ∈∂D=S and δ>0, the Korányi ball of center ξ and radius δ is the
set

Qδ(ξ) := Q(ξ, δ)= {z∈D : |1−z ·ξ|< δ}.

We have the following simple proposition.

Proposition 2.9. There exist positive constants a1 and a2 such that, for every
pseudoball B(z, r) which touches the boundary of D,

Q

(
z

|z| , r
)
⊂B(z, a1r) and B(z, r)⊂Q

(
z

|z| , a2r

)
.

For α>−1, let dλα(z)=(1−|z|2)α dλ(z), where dλ(z) is the usual Lebesgue
measure of Cn∼R2n. We then have the following result.

Lemma 2.10. For each fixed α>−1, the triplet (D, d, dλα) is a homogeneous
space.
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Proof. Since d is already a pseudodistance on D, we need only prove that dλα

is a doubling measure. One can prove that for 0<R<3, ζ=(r, 0, ..., 0), 0<r<1,

λα(B(ζ, R))∼= Rn+1 max(R, 1−r)α.(5)

This ends the proof of the lemma. �

Remark 2.11. This lemma shows that we can apply Lemmas 2.4 and 2.5 in
(D, d, dλα).

We will make use of the following properties of d, whose proof is immediate.

Lemma 2.12. For every z∈D and r0, 0<r0<1, if we let z0=(r0, 0, ..., 0) we
have that

(1) |1−z1 ·r0|≥ 1
3d(z, z0);

(2) |z1−r0|≤d(z, z0);
(3)

∑n
k=2 |zk|2≤2d(z, z0);

(4) |1−z ·z0|≤1−r2
0+d(z, z0).

For α>−n−1 fixed, set k=n+1+α. We consider the kernel Kα given by

Kα(z, w)= Re
(

1
(1−z ·w)k

)
.

The next result shows some important properties of this kernel.

Proposition 2.13. (1) There exists a constant C3 such that for all z, w∈D,

|Kα(z, w)| ≤ C3

d(z, w)k
.

(2) There exist two constants C1, C2 such that for all z, w, ζ∈D satisfying

d(z, ζ)> C1d(w, ζ),

we have

|Kα(z, w)−Kα(z, ζ)| ≤C2
d(w, ζ)1/2

d(z, ζ)k+1/2
.

Before proving this, let us observe that this proposition shows that the kernel
Kα is a k-Calderón–Zygmund kernel with respect to the pseudodistance d. We will
give the proof of this proposition for the kernel Hα(z, w)=1/(1−z ·w)k instead. The
case Kα is then a consequence.
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Proof. Assertion (1) follows from (1) of Lemma 2.12 and the invariance under
rotation. Indeed for z, w∈D, if ∆ is the rotation such that ∆(w)=(|w|, 0, ..., 0) then
we have

d(z, w)= d(∆(z), ∆(w))≤ 3|1−∆(z)∆(w)| ≤ 3|1−z ·w|.(6)

So d(z, w)k≤3k|1−z ·w|k. Take C3=3k.
Let us prove (2). By the invariance under rotation, we can suppose that ζ=

(r0, 0, ..., 0). We use the identity

Hα(z, w)−Hα(z, ζ)=
∫ 1

0

kz ·(w−ζ)
(1−z ·w−tz(ζ−w))k+1

dt

to obtain that

|Hα(z, w)−Hα(z, ζ)| ≤
∫ 1

0

k|z ·(w−ζ)|
|1−z ·w−tz(ζ−w)|k+1

dt.(7)

We have that

|z ·(w−ζ)| ≤ |z1 ·(w1−r0)|+
( n∑

k=2

|zk|2
)1/2( n∑

k=2

|wk|2
)1/2

≤ |w1−r0|+
( n∑

k=2

|zk|2
)1/2( n∑

k=2

|wk|2
)1/2

.

So by Lemma 2.12 and (6), we have that

|z ·(w−ζ)| ≤ 2d(w, ζ)1/2(d(w, ζ)1/2+d(z, ζ)1/2)

≤ 4√
C1

d(w, ζ)1/2d(z, ζ)1/2 ≤ C√
C1

d(w, ζ)1/2|1−z ·ζ|1/2.(8)

This shows that for C1 large enough, we have |z ·(w−ζ)|≤ 1
2 |1−z ·ζ|. On the other

hand, observe that

|1−z ·w−tz(ζ−w)|= |1−z ·η|,
where η=(1−t)w+tζ. Since

|(1−z ·ζ)−(1−z ·η)|= |z ·(η−ζ)|
and

|(1−z ·ζ)−(1−z ·η)|= (1−t)|z ·(w−ζ)| ≤ |z ·(w−ζ)|,
we conclude that for large C1, |1−z ·η|> 1

2 |1−z ·ζ|.
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Therefore, from (7), (8) and (6), we have that

|Hα(z, w)−Hα(z, ζ)| ≤ 2k+1k
C√
C1

|1−z ·ζ|1/2d(w, ζ)1/2

|1−z ·ζ|k+1
≤C2

d(w, ζ)1/2

d(z, ζ)k+1/2
. �

3. The generalized Bergman spaces A2
α

In this section, we define the space A2
α. We give some properties of this space.

Finally we show that the Carleson measures problem for these space is equivalent
to the T(1)-type problem associated with the Calderón–Zygmund kernel Kα.

Definition 3.1. Let α∈R, α>−n−1. We denote by A2
α the space of all holo-

morphic functions f in the unit ball D with the property that

‖f‖2
α =

∑

m∈Nn

|c(m)|2 Γ(n+1+α)m!
Γ(n+1+|m|+α)

<∞,

where f(z)=
∑

m∈Nn c(m)zm is the Taylor expansion of f .

Theorem 3.2. The space A2
α is equipped with an inner product such that the

associated reproducing kernel is given by

Bα(z, w)=
1

(1−z ·w)n+1+α
.

Proof. For f(z)=
∑

m∈Nn c(m)zm and g(z)=
∑

m∈Nn d(m)zm, define the prod-
uct by

〈f, g〉α =
∑

m∈Nn

c(m)d(m)
Γ(n+1+α)m!

Γ(n+1+|m|+α)
.

This clearly defines an inner product in A2
α. Let f∈A2

α with f(z)=
∑

m∈Nn c(m)zm.
Since

Bα(z, w)=
∑

m∈Nn

Γ(n+1+|m|+α)
Γ(n+1+α)m!

zmwm,

we have for w∈D,

〈f, Bα( · , w)〉α =
∑

m∈Nn

c(m)
Γ(n+1+|m|+α)
Γ(n+1+α)m!

wm Γ(n+1+α)m!
Γ(n+1+|m|+α)

=
∑

m∈Nn

c(m)wm = f(w).

We are done. �
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Remark 3.3. The space A2
α is a Hilbert space with the Hilbert norm ‖ · ‖α.

The following proposition gives a norm of a certain element in A2
α. The proof

is a straightforward computation.

Proposition 3.4. Let w∈D and set f(z)=1/(1−z ·w)s. If 2s>n+1+α then
f∈A2

α. Moreover,

‖f‖2
α
∼= 1

(1−|w|2)2s−n−1−α
.

We recall that we want to characterize positive Borel measures µ on D such
that

∫

D

|f |2 dµ≤C(µ)‖f‖2
α, f ∈A2

α.(9)

As we have mentioned in the introduction the solution of this question is well
known for α≥−1. The result from these cases is the following theorem.

Theorem 3.5. (Carleson, Hörmander, Stegenga, Cima and Wogen) Let α≥−1
and let µ be a positive Borel measure on D. The following conditions are equivalent :

(a) There exists a positive constant C such that

µ(Qδ(ξ))≤Cδn+1+α(10)

for all ξ∈S and all δ>0;
(b) The measure µ is an A2

α Carleson measure.

The actual range α∈(−n−1,−1) is more difficult. A characterization of Car-
leson measures in terms of capacity when α∈(−n−1,−n) is an old result of Cohn
and Verbitsky [CV]. Recently Arcozzi, Rochberg and Sawyer [ARS] obtained an-
other characterization for all α in (−n−1,−n]. Our approach gives a new character-
ization of Carleson measures for this case. It seems likely that our characterization
could be extended to the remaining range α∈(−n,−1). However, we have not yet
succeeded to do this.

We must observe that for α>−n−1, condition (10) remains a necessary condi-
tion for Carleson measures for A2

α. This can be seen by using Proposition 3.4, (9)
and the following result [ZZ, Theorem 45].

Theorem 3.6. Let α∈R be such that n+1+α>0 and let µ be a positive Borel
measure on D. Then the following conditions are equivalent :
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(a) There exists a positive constant C such that

µ(Qδ(ξ))≤Cδn+1+α

for all ξ∈S and all δ>0;
(b) For each s>0 there exists a positive constant C such that

sup
z∈D

∫

D

(1−|z|2)s dµ(w)
|1−z ·w|n+1+α+s

≤C <∞;(11)

(c) For some s>0 there exists a positive constant C such that the inequality
in (11) holds.

The equivalence (a)⇔(b) of Theorem 1.1, as we have mentioned in the intro-
duction, is a consequence of [ARS, Lemma 24]. We state it below as a proposition.
Recall that the Calderón–Zygmund operator Tα is given by

Tαf(z)=
∫

D

f(w)Kα(z, w) dµ(w), z ∈D,

where the kernel Kα is defined by

Kα(z, w)= Re
(

1
(1−z ·w)n+1+α

)
.

Proposition 3.7. (see [ARS]) Suppose that n+1+α>0 and let µ be a positive
Borel measure on D. Then the following conditions are equivalent :

(a) The measure µ is an A2
α Carleson measure;

(b) The operator Tα is bounded in L2(µ).

4. Proof of the equivalence (b)⇔(c) in Theorem 1.1

This section is devoted to the proof of the T(1)-type theorem, that is the
characterization of positive Borel measures µ on D such that the operator Tα is
bounded in L2(µ). To get the equivalence (b)⇔(c) in Theorem 1.1, it suffices to
prove the following theorem.

Theorem 4.1. Let k=n+1+α and let µ be a positive Borel measure on D.
Then the following conditions are equivalent :

(1) The operator Tα is bounded in L2(µ);
(2) The operator Tα is bounded in Lp(µ) for some p>2;
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(3) (i) There exists a constant C>0 such that

µ(B(z, r))≤Crk(12)

for all pseudoballs B(z, r) which touch the boundary, and
(ii) there exists a constant C>0 such that

∫

B

(∫

B

Re
(

1
(1−z ·w)k

)
dµ(w)

)2

dµ(z)≤Cµ(B)

for all pseudoballs B which touch the boundary.

4.1. Proof of the implication (1)⇒(3) in Theorem 4.1

Assertion (i) follows from the discussion after Theorem 3.5 and the fact that
the sets B(z, r) and Qr(z/|z|) are comparable when B(z, r) touches the boundary
(in the sense of Proposition 2.9), we also make use of Proposition 3.7. Assertion (ii)
is obtained by testing the boundedness on the characteristic function f =χB.

4.2. Related maximal functions

Definition 4.2. We say that a measure µ satisfies the growth condition when µ

satisfies inequality (12).

We proceed now to prove that (i) and (ii) are sufficient for the boundedness
of Tα for some p>2, that is the proof of the implication (3)⇒(2). We focus our
attention on the special case α=−n. We then set T =T−n and K=K−n.

As we have mentioned in the introduction, we follow the same idea as in [V].
Indeed, we first introduce a sort of curvature which plays the role of the Menger
curvature. This curvature is adapted to our domain and has a close relation with our
operator. Next, we proceed to construct for every ball which touches the boundary,
a subset in this ball satisfying some properties (see Lemma 4.9 below). This is the
first crucial step of our proof. Finally, the next crucial step is to prove an appropriate
good λ inequality without resorting to a doubling property on µ. Lemma 2.4 is used
in those steps.

We suppose that a measure µ satisfies the growth condition. In our estimates
we use two variants of the central Hardy–Littlewood maximal operator acting on
a complex Radon measure ν, namely,

Mν(z)= sup
r>1−|z|

|ν|(B(z, r))
r

,
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and for a positive constant ρ≥1,

Mρ
µν(z)= sup

r>1−|z|

|ν|(B(z, r))
µ(B(z, ρr))

, z ∈ supp µ,

where B(z, r) is the pseudoball centered at z of radius r which touches the boundary
and suppµ is the closed support of µ.

Proposition 4.3. Let µ be a positive Borel measure which satisfies the growth
condition. For every ρ>1, there exists a positive constant C(ρ) such that for any
f∈Lp(µ),

∫

D

Mρ
µ(fµ)p dµ≤C

∫

D

|f |p dµ, 1 < p <∞.(13)

Proof. Fix ρ>1. Let Eρ
λ={z∈D:Mρ

µ(fµ)(z)>λ}. Observe first that, for each
z∈Eρ

λ, there exists a pseudoball B(z, rz) such that

µ(B(z, ρrz))≤ 1
λ

∫

B(z,rz)

|f | dµ.(14)

Consider the family F={B(z, ρrz)}z∈Eρ
λ
. Applying Lemma 2.5 to this fam-

ily with ε=1−1/ρ, we obtain a subfamily {B(zk, ρrk)}∞k=1 of F such that Eρ
λ⊂⋃∞

k=1 B(zk, ρrk), and the family {B(zk, rk)}∞k=1 has bounded overlaps. Therefore,
from (14) and this bounded overlap property, we have

µ(Eρ
λ)≤

∞∑

k=1

µ(B(zk, ρrk))≤ 1
λ

∞∑

k=1

∫

B(zk,rk)

|f | dµ≤ C(ρ)
λ

∫

D

|f | dµ.

Hence, Mρ
µ is of weak type (1, 1). We obtain the desired result from the obvious

L∞ estimate and the Marcinkiewicz interpolation theorem. �

Remark 4.4. Observe that for some constant C(ρ)>0, we have

Mν(z)≤C(ρ)Mρ
µν(z), z ∈ supp µ,(15)

so (13) remains true if we replace Mρ
µ by M .

The weak estimate is valid if one replaces fµ by any finite measure ν.

Lemma 4.5. Let µ be a positive Borel measure which satisfies the growth
condition. Given β>0, there exists a constant C such that for z0, R>1−|z0| and
a positive measurable function f,

Rβ

∫

d(z0,w)>R

f(w) dµ(w)
d(z0, w)1+β

≤CM(fµ)(z)
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for all z∈B(z0, R). In particular, we have

µβ(B(z0, R))
∫

d(z0,w)>R

dµ(w)
|1−z0w|1+β

≤C.

Proof. Fix β>0, z0, R>1−|z0| and a positive measurable function f . Let
z∈B(z0, R). We have

∫

d(z0,w)>R

f(w) dµ(w)
d(z0, w)1+β

≤
∞∑

k=0

∫

2kR<d(z0,w)≤2k+1R

f(w) dµ(w)
d(z0, w)1+β

≤
∞∑

k=0

1
(2kR)1+β

∫

d(z0,w)<2k+1R

f(w) dµ(w)

≤
∞∑

k=0

1
(2kR)1+β

∫

d(z,w)<2K2k+1R

f(w) dµ(w)

≤CM(fµ)(z)
∞∑

k=0

2kR

(2kR)1+β

≤CR−βM(fµ)(z).

By using (6), the second claim of the lemma follows from the fact that

µβ(B(z0, R))≤CRβ,
1

|1−z0w|1+β
≤ C

d(z0, w)1+β
, and

M(fµ)(z0)≤ 1 for f ≡ 1. �

For a Radon measure ν set, for z∈D,

T ∗ν(z)=
∫

D

d|ν|(w)
|1−z ·w| .

Lemma 4.6. Let Ω be an open pseudoball which touches the boundary and let
µ be a positive Borel measure on D satisfying the growth condition.

If we set ν=χΩcµ, then
∫

Ω

T ∗(fν)2 dµ≤C

∫

D

|f |2 dν, f ∈L2(ν).

Proof. It is enough to prove that for some η>0, there exists ρ>1, γ>0 and
C>0 such that

µ({z ∈Ω : T ∗(fν)(z)> (1+η)t})≤Cµ({z∈Ω : Mρ
µ(fν)(z)> γt}).(16)
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Indeed if (16) is true, then, by (13),
∫

Ω

T ∗(fν)2 dµ =
∫ ∞

0

µ({z ∈Ω : T ∗(fν)(z)> t})2t dt

= (1+η)2
∫ ∞

0

µ({z ∈Ω : T ∗(fν)(z)> (1+η)t})2t dt

≤C

∫ ∞

0

µ({z ∈Ω : Mρ
µ(fν)(z)> γt})2t dt

≤C

∫

Ω

Mρ
µ(fν)2(z) dµ(z)

≤C

∫

D

|f |2 dν.

To prove (16), we applied Lemma 2.4 to the open set

Et = {z∈Ω : T ∗(fν)(z)> t}.
We will obtain (16) once we prove that for each j,

µ({z ∈B∗
j : T ∗(fν)(z)> (1+η)t and Mρ

µ(fν)(z)≤ γt})= 0,(17)

where B∗
j is a term in the first decomposition of the open set Et with respect to

Lemma 2.4.
In fact we will have

µ({z ∈Ω : T ∗(fν)(z)> (1+η)t})
≤

∑

j

µ({z∈B∗
j : T ∗(fν)(z)> (1+η)t})

≤
∑

j

µ({z∈B∗
j : T ∗(fν)(z)> (1+η)t and Mρ

µ(fν)(z)≤ γt})

+
∑

j

µ({z ∈B∗
j : Mρ

µ(fν)(z)> γt})

≤
∑

j

µ({z∈B∗
j : Mρ

µ(fν)(z)> γt})

≤Cµ({z ∈Ω : Mρ
µ(fν)(z)> γt}),

by the bounded overlap property.
So it remains to prove (17).
Set B=B(zB, K1�)=B∗

j and B′=B(zB, K2�)=B∗∗
j .

Suppose without loss of generality that there exists ξ0∈B such that

Mρ
µ(fν)(ξ0)≤ γt.(18)
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Let z0 be a point in Ec
t ∩B(zB, K3�). Let B be a ball centered at z0 whose

radius is equal to R=max (2(1−|z0|), C�), where C is a constant greater than or
equal to K3 to be made precise later. Then B touches the boundary of D.

Let f1=fχB and f2=f−f1=fχB
c . There exists a constant A1 such that

T ∗(fν)(z)≤T ∗(f1ν)(z)+(1+A1γ)t, z ∈B.(19)

To prove (19), let z∈B. Then

T ∗(f2ν)(z)=
∫

B
c

|f(w)| dν(w)
|1−z ·w|

≤
∫

B
c

|f(w)| dν(w)
|1−z0w| +

∫

B
c
|f(w)|

∣
∣
∣
∣

1
1−z ·w− 1

1−z0w

∣
∣
∣
∣ dν(w)

≤T ∗(fν)(z0)+
∫

B
c
|f(w)|

∣∣
∣
∣

1
1−z ·w− 1

1−z0w

∣∣
∣
∣ dν(w)

≤ t+C2

∫

B
c
|f(w)| d(z, z0)1/2

d(w, z0)3/2
dν(w)

provided that C is chosen large enough so that we can use (2) of Proposition 2.13.
Hence by Lemma 4.5 and (18), we have that

T ∗(f2ν)(z)≤ (1+A1γ)t,

as d(z, z0)≤R and ξ0∈B(z0, R) provided C is large enough. This proves (19).
Set B̃=B(ξ0, C1K1�) and observe that B⊂B̃⊂B′⊂Et.
Now, if C�≥2(1−|z0|), there exists a constant A2>0 such that for z∈B,

T ∗(f1ν)(z)≤T ∗(fνχB̃)(z)+A2γt.(20)

To prove (20), we have that

T ∗(f1ν)(z)≤T ∗(fνχB̃)(z)+
∫

B\B̃

|f(w)| dν(w)
|1−z ·w| = T ∗(fνχB̃)(z)+I,

where I=
∫

B\B̃(|f(w)|/|1−z ·w|) dν(w).

By (6), 1/|1−z ·w|≤C/d(z, w), and on the other hand, for w∈B\B̃,

C1K1�≤ d(ξ0, w)≤K(d(zB, ξ0)+d(zB, w))< K(K1�+K(d(zB, z)+d(z, w))).

Thus

K2d(z, w)> C1K1�−KK1�(K+1)= K1K
2�.
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Therefore

I ≤CM(fν)(ξ0)≤A2γt.

This proves (20). Since B̃⊂Ω, we have that T ∗(fνχB̃)(z)=0.
For the case C�<2(1−|z0|), we have for z∈B and w∈B,

|1−z ·w|> 1−|z|> C′(1−|z0|).

The second inequality in the previous line follows from the fact that

|z|−|z0| ≤ d(z, z0)≤K(K3+K1)� <
2K(K3+K1)

C
(1−|z0|)<

1
2
(1−|z0|),

provided C is sufficiently large. Hence

T ∗(fνχB)(z)≤ C

1−|z0|
∫

B

|f | dν ≤CMρ
µ(fν)(ξ0)≤C′′γt.

So we finally conclude that there exists a constant A>0 such that

T ∗(fν)(z)≤ (1+Aγ)t, z ∈B.

From this we have that

µ({z ∈B : T ∗(fν)(z)> (1+η)t and Mρ
µ(fν)(z)≤ γt})

≤µ({z∈B : (1+Aγ)t > (1+η)t and Mρ
µ(fν)(z)≤ γt});

so if we choose 0<γ≤η/2A, we obtain (17). This ends the proof of the lemma. �

4.3. Curvature in the unit ball

Definition 4.7. Given three points z1, z2, z3∈D, we define their curvature
c(z1, z2, z3) by

c2(z1, z2, z3)=
∑

σ

K(zσ(2), zσ(1))K(zσ(3), zσ(1)),

where the sum is taken over the six permutations of 1, 2 and 3.

For a positive Borel measure ν the quantity

c2(ν)=
∫∫∫

C3n

c2(z1, z2, z3) dν(z1) dν(z2) dν(z3)
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is called the total curvature of ν. One important fact about this curvature is that
c2(z1, z2, z3)>0. Indeed for z and w in D

K(z, w)=
Re(1−z ·w)
|1−z ·w|2 =

1−Re(z ·w)
|1−z ·w|2 > 0

since Re(z ·w)<1.
The next lemma gives a relation between this curvature and our operator T .

Lemma 4.8. Let νj, j=1, 2, 3, be three Borel measures. Then
∑

σ

∫

D

T (νσ(1))T (νσ(2)) dνσ(3) =
∫∫∫

D3
c2(z1, z2, z3) dν1(z1) dν2(z2) dν3(z3).

Proof. We have
∫

D

T (νσ(1))T (νσ(2)) dνσ(3)

=
∫∫∫

D3
K(zσ(3), zσ(1))K(zσ(3), zσ(2)) dνσ(1)(zσ(1)) dνσ(2)(zσ(2)) dνσ(3)(zσ(3)).

Since for each σ,

dνσ(1)(zσ(1)) dνσ(2)(zσ(2)) dνσ(3)(zσ(3))= dν1(z1) dν2(z2) dν3(z3),

summing over the six permutations we obtain
∑

σ

∫

D

T (νσ(1))T (νσ(2)) dνσ(3) =
∫∫∫

D3
c2(z1, z2, z3) dν1(z1) dν2(z2) dν3(z3). �

We apply Lemma 4.8 to ν1=ν2=fµ with f (a real function) in L2(µ) and
ν3=χBµ with B a fixed pseudoball which touches the boundary. We then have

(21) 2
∫

B

|T (fµ)|2 dµ+4
∫

D

T (fµ)T (χBµ)f dµ

=
∫∫∫

D3
c2(z, w, ζ)f(z)f(w)χB(ζ) dµ(z) dµ(w) dµ(ζ).

In particular, if we replace f by χB in the integral, one gets that

6
∫

B

|T (fµ)|2 dµ =
∫∫∫

B3
c2(z, w, ζ) dµ(z) dµ(w) dµ(ζ),

and thus
∫∫∫

B3
c2(z, w, ζ) dµ(z) dµ(w) dµ(ζ)≤Cµ(B),(22)

provided µ satisfies condition (3)(ii) in Theorem 4.1 (the case k=1).
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We are now ready to produce a subset inside a given pseudoball B which
touches the boundary. As in [V], set

c2
B(z)=

∫∫

B2
c2(z, w, ζ) dµ(w) dµ(ζ), z ∈B.

By Chebyshev’s inequality, condition (3)(ii) in Theorem 4.1 and (22) we have that

(23) µ({z ∈B : cB(z)> t or |T (χBµ)(z)|> t})

≤ 1
t2

(∫

B

c2
B(z) dµ(z)+

∫

B

|T (χBµ)(z)|2 dµ(z)
)

≤C
µ(B)

t2
.

From this we have the following lemma.

Lemma 4.9. Given 0<θ<1, there exists a set E⊂B such that

c2
B(z)≤ C

θ
and |T (χBµ)(z)|2 ≤ C

θ
, z ∈E,

and

µ(B\E)≤ θµ(B).

Proof. Fix 0<θ<1. If µ(B)=0, there is nothing to do. If µ(B) �=0, set

E =
{

z ∈B : c2
B(z)≤ C

θ
and |T (χBµ)(z)|2 ≤ C

θ

}
.

It is then easy to verify that this set satisfies our requirements. �

We set k(z, w)=
∫
B c2(z, w, ζ) dµ(ζ) so that
∫

E

k(z, w) dµ(w)= c2
B(z)≤ C

θ
, z ∈E.(24)

Since k(z, w)=k(w, z) we obtain the following lemma.

Lemma 4.10. There exists a constant C=C(θ) which does not depend on B

such that
∫∫∫

E2×D

c2(z, w, ζ)f(z)f(w)χB(ζ) dµ(z) dµ(w) dµ(ζ)≤C

∫

E

f2 dµ,

where f∈L2(E)=L2(E, µ), with f real.
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Proof. The result follows from Schur’s test since
∫

E

k(z, w) dµ(w)≤ C

θ
, z ∈E. �

Therefore from (21), Lemma 4.9 and Lemma 4.10, for any f∈L2(E, µ), we get
that

∫

B

|T (fµ)|2 dµ≤C

(∫

B

|T (fµ)|2 dµ

)1/2(∫

E

f2 dµ

)1/2

+C

∫

E

f2 dµ

and consequently
∫

B

|T (fµ)|2 dµ≤C

∫

E

f2 dµ, f ∈L2(E).

By duality this implies that
∫

E

|T (gµ)|2 dµ≤C

∫

B

g2 dµ, g∈L2(B).

So by Chebyshev’s inequality

µ({z ∈E : |T (gµ)(z)|> t})≤ C

t2

∫

B

g2 dµ, g ∈L2(B).(25)

Now, for every h∈L2(D, µ), Lemma 4.6 and (25) give

µ({z ∈E : |T (hµ)(z)|> t})≤µ

({
z ∈E : |T (hχBµ)(z)|> t

2

})
(26)

+µ

({
z ∈E : |T (hχBcµ)(z)|> t

2

})

≤ C

t2

∫

B

h2 dµ+
C

t2

∫

B

|T (hχBcµ)(z)|2 dµ

≤ C

t2

∫

B

h2 dµ+
C

t2

∫

Bc

h2 dµ

≤ C

t2

∫

D

h2 dµ.

4.4. A good λ inequality

In this subsection we will establish the next crucial argument in the proof of
the implication (3)⇒(2) of Theorem 4.1. The result is the following theorem.
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Theorem 4.11. Let µ be a positive Borel measure on D with satisfies (i)
and (ii) of Theorem 4.1. Then, for each η>0 there exists γ=γ(η)>0 small enough
so that

µ({z ∈D : |T (fµ)(z)|> (1+η)t and Mρ
µ(f2µ)1/2(z)≤ γt})

≤ 1
2µ({z ∈D : |T (fµ)(z)|> t}).

Proof. Let Ω={z∈D:|T (fµ)(z)|>t}. The set Ω is open. By Lemma 2.4 applied
to this set, the theorem will follow if we can prove the following lemma.

Lemma 4.12. Let η>0 and 0<α<1. There exists γ=γ(η, α)>0 such that

µ({z ∈B∗
j : |T (fµ)(z)|> (1+η)t and Mρ

µ(f2µ)1/2(z)≤ γt})≤αµ(B∗∗
j ),(27)

where B∗
j and B∗∗

j are the first and the second decompositions of the open set Ω,
respectively, with respect to Lemma 2.4.

Indeed, if the lemma is true, then

µ({z ∈D : |T (fµ)(z)|> (1+η)t and Mρ
µ(f2µ)1/2(z)≤ γt})

= µ({z∈Ω : |T (fµ)(z)|> (1+η)t and Mρ
µ(f2µ)1/2(z)≤ γt})

≤
∑

j

µ({z ∈B∗
j : |T (fµ)(z)|> (1+η)t and Mρ

µ(f2µ)1/2(z)≤ γt})

≤α
∑

j

µ(B∗∗
j )

≤αMµ(Ω),

by the bounded overlap property.
We then have to choose α so that αM = 1

2 to obtain the result. �

Proof of Lemma 4.12. Set B=B(zB, K1�)=B∗
j and B′=B(zB, K2�)=B∗∗

j . We
follow with a little change, the proof of the Lemma 4.6.

Suppose without loss of generality that there exists ξ0∈B such that

Mρ
µ(f2µ)1/2(ξ0)≤ γt.

Let z0 be a point in Ωc∩B(zB, K3�). Let B be a ball centered at z0 whose radius
is equal to max (2(1−|z0|), C�), where C is a constant greater than or equal to K3

to be made precise later. Then B touches the boundary of D.
Let f1=fχB and f2=f−f1=fχB

c . As in the proof of (19) there exists a con-
stant A1 such that

|T (fµ)(z)| ≤ |T (f1µ)(z)|+(1+A1γ)t, z ∈B.(28)
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On the other hand, if we set B̃=B(ξ0, C1K1�), we observe that

B ⊂ ρB̃ ⊂B′⊂Ω

for some ρ>1.
Now, if C�≥2(1−|z0|), there exists a constant A2>0 such that for z∈B,

|T (f1µ)(z)| ≤ |T (fµχB̃)(z)|+A2γt.(29)

We obtain (29) as in the proof of (20).
From (28), we have that

µ({z ∈B : |T (fµ)(z)|> (1+η)t and Mρ
µ(f2µ)1/2(z)≤ γt})

≤µ({z ∈B : |T (f1µ)(z)|> (η−A1γ)t and Mρ
µ(f2µ)1/2(z)≤ γt}).

If C�<2(1−|z0|), then as in the proof of the Lemma 4.6 we have that

|T (fµχB)(z)| ≤C′′γt

so that for γ small enough

{z ∈B : |T (f1µ)(z)|> (η−A1γ)t and Mρ
µ(f2µ)1/2(z)≤ γt}=∅.

Thus (27) is satisfied in this case. If C�≥2(1−|z0|), then from (29), we have that

µ({z ∈B : |T (fµ)(z)|> (1+η)t and Mρ
µ(f2µ)1/2(z)≤ γt})

≤µ({z ∈B : |T (f1µ)(z)|> (η−(A1+A2)γ)t and Mρ
µ(f2µ)1/2(z)≤ γt}).

If we choose γ small enough (0<γ≤η/2(A1+A2) will do), we finally have that

(30) µ({z ∈B : |T (fµ)(z)|> (1+η)t and Mρ
µ(f2µ)1/2(z)≤ γt})

≤µ

({
z ∈B : |T (fµχB̃)(z)|> η

2
t and Mρ

µ(f2µ)1/2(z)≤ γt

})
.

We distinguish two cases.
If B does not touch the boundary then we easily obtain that

|T (fµχB̃)(z)| ≤C∗Mf(ξ0)≤Cγt,

such that for γ small enough (0<γ≤η/4C), (27) is satisfied.
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Finally, suppose that B touches the boundary. Let E be a subset associated
with the ball B and the number θ as in Lemma 4.9 . From (30) and (26) we have
that

µ({z ∈B : |T (fµ)(z)|> (1+η)t and Mρ
µ(f2µ)1/2(z)≤ γt})

≤µ

({
z ∈B : |T (fµχB̃)(z)|> η

2
t and Mρ

µ(f2µ)1/2(z)≤ γt

})

≤µ(B\E)+µ

({
z ∈E : |T (fµχB̃)(z)|> η

2
t

})

≤ θµ(B)+
C

η2t2

∫

B̃

|f |2 dµ

≤ θµ(B)+
C

η2t2
µ(ρB̃)Mρ

µ(f2µ)(ξ0)

≤ θµ(B)+
C

η2t2
µ(ρB̃)γ2t2

≤ (θ+Cη−2γ2)µ(ρB̃)

≤αµ(B′),

provided θ and γ are chosen small enough so that (θ+Cη−2γ2)≤α. This completes
the proof of Lemma 4.12 and consequently the proof of Theorem 4.11. �

4.5. Proof of the implication (3)⇒(2) in Theorem 4.1

Let 2<p<∞ and f∈Lp(µ). We have that
∫

|T (fµ)|p dµ

=
∫ ∞

0

µ({z∈D : |T (fµ)(z)|> t}) dtp

= (1+η)p

∫ ∞

0

µ({z ∈D : |T (fµ)(z)|> (1+η)t}) dtp

≤ (1+η)p

∫ ∞

0

µ({z ∈D : |T (fµ)(z)|> (1+η)t, Mρ
µ(f2µ)1/2(z)≤ γt}) dtp

+(1+η)p

∫ ∞

0

µ({z ∈D : Mρ
µ(f2µ)1/2(z)≥ γt}) dtp

≤ (1+η)p

2

∫ ∞

0

µ({z ∈D : |T (fµ)(z)|> t}) dtp

+
(1+η)p

γp

∫
(Mρ

µ(f2µ)1/2(z))p dµ
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by Theorem 4.11. We then choose η small and use Proposition 4.3 to obtain that
∫

|T (fµ)|p dµ≤C

∫
|f |p dµ.(31)

4.6. Proof of the implication (2)⇒(1) in Theorem 4.1

Since T is self-adjoint, it follows by duality that (31) holds also for 1<p<2.
Hence, by interpolation it also holds for p=2. This finishes the proof.

We have proved the result for the case α=−n. The same argument holds with
minor changes for −n−1<α<−n. In fact one has to use the following maximal
operator

Mkν(z)= sup
r>1−|z|

|ν|(B(z, r))
rk

in the place of M , where k=n+1+α, and the following curvature

c2(z1, z2, z3)=
∑

σ

Kα(zσ(2), zσ(1))Kα(zσ(3), zσ(1)).

Indeed, in Lemma 4.5, one should replace d(z0, w)1+β by d(z0, w)k+β . The growth
condition (µ(B(z, r))≤Crk) ensures the boundedness of Mk in Lp(µ) (1<p<∞).
The rest of the proof works the same way with T replaced by Tα and K by Kα.
Proposition 2.13 ensures that the estimates used are still valid in this case.

5. Comments

One reason why we could not carry out our argument in the remaining range
−n<α<−1 is that the kernel’s real part is signed and we do not have immediate
information on the sign of the curvature we defined. Nevertheless, we conjecture
that condition (3) in Theorem 4.1 is sufficient for boundedness in the remaining
range.

Since Tα is a self-adjoint Calderón–Zygmund operator, one classical result
in the Calderón–Zygmund theory is that a Calderón–Zygmund operator which is
bounded in L2(µ) is weakly bounded. So a natural question comes: Is it true that
condition (3) in Theorem 4.1 implies that Tα is weakly bounded?, that is

µ({z ∈D : |Tαf(z)|> λ})≤C
‖f‖L1(µ)

λ
for all f ∈L1(µ).
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