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Higher order Riesz transforms associated
with Bessel operators

Jorge J. Betancor, Juan C. Fariña, Teresa Martinez and Lourdes Rodrguez-Mesa

Abstract. In this paper we investigate Riesz transforms R
(k)
µ of order k≥1 related to the

Bessel operator ∆µf(x)=−f ′′(x)−((2µ+1)/x)f ′(x) and extend the results of Muckenhoupt and

Stein for the conjugate Hankel transform (a Riesz transform of order one). We obtain that for

every k≥1, R
(k)
µ is a principal value operator of strong type (p, p), p∈(1,∞), and weak type (1, 1)

with respect to the measure dλ(x)=x2µ+1 dx in (0,∞). We also characterize the class of weights ω

on (0,∞) for which R
(k)
µ maps Lp(ω) into itself and L1(ω) into L1,∞(ω) boundedly. This class of

weights is wider than the Muckenhoupt class Aµ
p of weights for the doubling measure dλ. These

weighted results extend the ones obtained by Andersen and Kerman.

1. Introduction

A theory parallel to the classical Fourier analysis was developed by Mucken-
houpt and Stein, in the descriptive and deep paper [13], in the context of orthogonal
expansions (ultraspherical expansions) and their continuous analogues (associated
with Hankel transforms), which are the objects treated in this paper. We consider
the (positive) Laplacian of Bessel-type

∆µ =− ∂2

∂x2
− 2µ+1

x

∂

∂x
= D∗D, µ >−1

2
,(1)

where D=∂/∂x and D∗=−x−2µ−1Dx2µ+1 denotes the adjoint operator of D in
L2(x2µ+1 dx). Our aim, inspired by classical investigations about higher order Riesz
transforms (see [14]), is to define and study the appropriate higher order Riesz
transforms for this context. Following the ideas in [15] (see also [7]), we define

The first, second and fourth authors were partially supported by MTM2004/05878 and
MTM2007/65009, the fourth author was also partially supported by PI04 2004/067 and the third
author was partially supported by BFM grant 2002-04013-C02-02.
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formally the Riesz transform of order k for any k∈N as

R(k)
µ = Dk∆−k/2

µ .(2)

In order to give sense to the Riesz transforms (2), the first step is to define properly
the “fractional integrals” ∆−k/2

µ for a general k (see Section 2). We see that, for
a C∞

c (0,∞)-function f , ∆−k/2
µ f is k times differentiable for x outside the support of

f and k−1 times differentiable inside the support of f (see Proposition 14). Thus,
for f∈C∞

c (0,∞) and x outside the support of f , (2) makes perfect sense, and it is
given by the integral against a kernel

R(k)
µ f(x)=

∫ ∞

0

R(k)
µ (x, y)f(y) y2µ+1 dy, x /∈ supp f.

A precise definition of the kernel R
(k)
µ (x, y), x, y∈(0,∞), in terms of the Poisson

kernel associated with the operator ∆µ, appears in (23). Moreover, if f∈C∞
c (0,∞),

R(k)
µ f(x)= ωkf(x)+lim

ε!0

∫
|x−y|>ε

f(y)R(k)
µ (x, y)y2µ+1 dy, x∈ (0,∞),

where ωk∈R (see Lemma 31). The next step is to extend this definition to a general
function in Lp(x2µ+1dx), 1≤p<∞. In fact this is one of the main results of this
paper.

Theorem 3. For every k∈N and f∈Lp(x2µ+1 dx), 1≤p<∞, the limit

lim
ε!0

∫
|x−y|>ε

f(y)R(k)
µ (x, y)y2µ+1 dy exists for a.e. x∈ (0,∞).

Moreover the Riesz transform R
(k)
µ can be extended to Lp(x2µ+1 dx), by defining

R(k)
µ f(x)= ωkf(x)+lim

ε!0

∫
|x−y|>ε

f(y)R(k)
µ (x, y)y2µ+1 dy for a.e. x∈ (0,∞),(4)

as a bounded operator from Lp(x2µ+1 dx) into itself, for every 1<p<∞, and as
a bounded operator from L1(x2µ+1 dx) into L1,∞(x2µ+1 dx). Here ωk=0, when k is
odd, and ωk=(−1)k/2π/(2µ+1), when k is even.

The key ingredient in the proof of this theorem is a careful study of the kernel
R

(k)
µ (x, y). Outside of the diagonal this kernel is bounded above by a kernel defin-

ing a bounded operator in Lp(x2µ+1 dx) while near the diagonal it is essentially
a modification of the Hilbert transform, see Proposition 24.

Muckenhoupt and Stein, see [13], define and study a “Riesz transform” for the
operator defined in (1), following the classical model of the conjugate function in the
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torus. More concretely, they define the “harmonic extension”, or Poisson integral,
Pµf(t, x) of f(x), and the appropriate conjugate extension Qµf(t, x) of Pµf(t, x).
The conjugate function Rµf(x) is then defined as the boundary-value function of
Qµf(t, x). They got Lp-boundedness of the conjugate function for p in the range
1<p<∞ and some substitutive inequality in the case p=1. The conjugate function
defined by them coincides with our Riesz transform of order one. Therefore from
our results it follows that Muckenhoupt and Stein’s conjugate function is a principal
value and that it is of weak type (1, 1).

Weighted inequalities for R
(k)
µ , k≥1, are also studied here and we obtain that

R
(k)
µ , k≥1, are bounded operators from Lp(ω(x)x2µ+1 dx), 1<p<∞, into itself and

from L1(ω(x)x2µ+1 dx) into L1,∞(ω(x)x2µ+1 dx), when ω is a weight in the usual
Muckhenhoupt class Aµ

p of weights in (0,∞) with respect to the doubling measure
x2µ+1 dx. The weights in Aµ

p are not optimal for these operators. There exists
a wider class of weights such that the former weighted Lp-boundedness properties
still hold for R

(k)
µ (see Theorem 34). This wider class coincides with the one given by

Andersen and Kerman in [2], who characterized the weights ω on (0,∞) such that
R

(1)
µ maps Lp(ω(x) dx) into itself, 1<p<∞, and L1(ω(x) dx) into L1,∞(ω(x) dx)

boundedly.
These weighted inequalities allow us to get boundedness of operators associated

with other Laplacians as follows. In [4] a Riesz transform associated with the Bessel-
type operator

Sµ =− ∂2

∂x2
+

µ2− 1
4

x2
=−x−µ−1/2Dx2µ+1Dx−µ−1/2

is described. If we let Rµ=xµ+1/2Dx−µ−1/2S
−1/2
µ be the Riesz transform intro-

duced in [4], it can be shown that,

Rµ(f)(x)= xµ+1/2R(1)
µ (y−µ−1/2f)(x).

Also we can define R(k)
µ , k∈N, (in the context of [4]) related to the operator Sµ

following our procedure. Then,

R(k)
µ (f)(x)= xµ+1/2R(k)

µ (y−µ−1/2f)(x).

Hence, Theorem 34 allows us to get the weights ω for which R(k)
µ is bounded from

Lp(ω(x) dx) into itself for 1<p<∞, and from L1(ω(x) dx) into L1,∞(ω(x) dx). The
class of weights obtained in this way is wider than the one got by using Calderón–
Zygmund theory in [4] for the first-order Riesz transforms. The result for higher-
order Riesz transforms associated with Sµ are new, even in the unweighted case.
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The organization of the paper is as follows. In Section 2 we give an appropriate
definition of the fractional integrals ∆−α/2

µ , α>0. We establish the main properties
of these fractional integrals that will be useful in the sequel. Theorem 3 is proved
in Section 3. In Section 4 we analyze the boundedness of the Riesz transform R(k)

µ

on weighted Lp-spaces.
Throughout this paper, the letter C denotes a positive constant, not necessarily

the same in each occurrence. Here, as usual, by C∞
c (0,∞) we represent the space

of smooth functions on (0,∞) having compact support on (0,∞).

Acknowledgements. The authors are grateful to Prof. José Luis Torrea for
insightful comments and for several suggestions that considerably improved the
presentation of the paper.

Also the authors would like to express their sincere gratitude to the referee. He
or she read the manuscript very carefully and made valuable remarks. The referee
pointed out to us the proof of Proposition 33 and an improvement in the proof of
Lemma 31.

2. Fractional integrals

The usual way to define ∆−α/2
µ , α>0, is

∆−α/2
µ f(x)=

1
Γ(α)

∫ ∞

0

tα−1e−t
√

∆µf(x) dt(5)

=
1

Γ(α)

∫ ∞

0

tα−1

∫ ∞

0

Pµ(t, x, y)f(y)y2µ+1 dy dt,

where e−t
√

∆µf(x)=Pµ(f)(t, x)=
∫ ∞
0

Pµ(t, x, y)f(y)y2µ+1 dy stays for the corres-
ponding Poisson integral. But in the present case this formula has sense for every x

only when 0<α<2µ+2, see Proposition 10. If α≥2µ+2 we shall use a modification
of the Poisson kernel which extends formula (5) and preserves the definition (2) of
the Riesz transforms, see Proposition 14.

In [13] and [17], the Poisson kernel associated with ∆µ, is found to be

Pµ(t, x, y)=
∫ ∞

0

e−ztϕx(z)ϕy(z)z2µ+1 dz(6)

=
2µ+1

π
t

∫ π

0

sin2µ θ dθ

((x−y)2+t2+2xy(1−cosθ))µ+3/2
, t, x, y∈ (0,∞),

where ϕx(z)=(xz)−µJµ(xz), x, z∈(0,∞), and Jµ denotes the Bessel function of the
first kind of order µ. By the results in [13], Pµ defines a semigroup of contractions

Pµ(f)(t, x)=e−t
√

∆µf(x), for t>0, in Lp(x2µ+1 dx), 1≤p≤∞.
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Lemma 7. Let 0<α<2µ+2. If f∈C∞
c (0,∞) the integral in (5) defining

∆−α/2
µ f(x) is absolutely convergent for every x∈(0,∞) and

∆−α/2
µ f(x)=

1
Γ(α)

∫ ∞

0

f(y)y2µ+1

(∫ ∞

0

tα−1Pµ(t, x, y) dt

)
dy, x∈ (0,∞).

Proof. Let f∈C∞
c (0,∞). According to [13, p. 86] we have that

Pµ(t, x, y)≤Ct min
{

(xy)−µ−1/2

|x−y|2+t2
,

1
(|x−y|2+t2)µ+3/2

}
, t, x, y ∈ (0,∞).

Hence, for every x∈(0,∞),

∫ ∞

0

∫ ∞

0

tα−1Pµ(t, x, y)|f(y)|y2µ+1 dt dy

≤C

∫ ∞

0

(∫ 1

0

tα|f(y)|(xy)−µ−1/2y2µ+1

|x−y|2+t2
dt+

∫ ∞

1

tα|f(y)|y2µ+1 dt

(|x−y|2+t2)µ+3/2

)
dy

= I1(x)+I2(x).

For the first term we have for each x∈(0,∞),

I1(x)≤Cx−µ−1/2

(∫
|x−y|≥1

|f(y)|yµ+1/2

∫ 1

0

tα dt dy

|x−y|2+t2

+
∫
|x−y|<1

|f(y)|yµ+1/2

(∫ |x−y|

0

+
∫ 1

|x−y|

)
tα dt dy

|x−y|2+t2

)

≤Cx−µ−1/2

(∫ ∞

0

|f(y)|yµ+1/2 dy

∫ 1

0

tα dt

1+t2
+

∫ ∞

0

|f(y)|yµ+1/2

|x−y|1−α
dy

∫ 1

0

uα du

1+u2

+
∫ ∞

0

|f(y)|yµ+1/2 max{1, |x−y|α−1} log
|x−y|2+1
|x−y|2 dy

)

<∞.

The second term is also finite for each x∈(0,∞), since

I2(x)≤C

∫ ∞

0

|f(y)|y2µ+1 dy

∫ ∞

1

tα−2µ−3 dt <∞, x∈ (0,∞). �

Moreover, ∆−α/2
µ for 0<α<2µ+2, turn out to be the fractional integrals, Iα

µ ,
defined by Muckenhoupt and Stein in [13, p. 89]. They introduced fractional inte-
grals in the Hankel setting by using Hankel convolutions. Convolution operations
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associated with Hankel transforms were studied by Hirschman [9] and Haimo [8].
Let f, g∈L1(x2µ+1 dx). The µ-Hankel convolution f#µg of f and g is defined by

(f#µg)(x)=
∫ ∞

0

f(y) µτx(g)(y)
y2µ+1

2µΓ(µ+1)
dy,

where the µ-Hankel translation µτx(g) of g is given by

µτx(g)(y)=
∫ ∞

0

Dµ(x, y, z)g(z)
z2µ+1

2µΓ(µ+1)
dz,

and Dµ denotes the Delsarte kernel

Dµ(x, y, z)= (2µΓ(µ+1))2
∫ ∞

0

ϕx(t)ϕy(t)ϕz(t)t2µ+1 dt

for x, y, z∈(0,∞). The µ-fractional potential Iα
µ (f) of f is defined in [13, p. 89] by

Iα
µ (f)=f#µKα, where

Kα(y)= yα−2µ−2 2µΓ((α+1)/2)Γ(µ−α/2+1)√
πΓ(α)

for y∈(0,∞).

Lemma 8. Let 0<α<2µ+2. Then ∆−α/2
µ f =Iα

µf for every f∈C∞
c .

Proof. Let f∈C∞
c (0,∞). According to Lemma 7 to see that ∆−α/2

µ f =Iα
µ f it

is sufficient to show that∫ ∞

0

tα−1Pµ(t, x, y) dt = Γ(α)µτx(Kα)(y)
2µΓ(µ+1)

.(9)

By using [16, pp. 22–23] we obtain that Pµ(t, x, y)=µτx(Pt)(y) for any t, x, y∈(0,∞),
where Pt(u)=2Γ(µ+ 3

2 )t/
√

πΓ(µ+1)(t2+u2)µ+3/2, t, u∈(0,∞). Since all the func-
tions involved are positive, we can interchange the order of integration and obtain (9)
as follows∫ ∞

0

tα−1Pµ(t, x, y) dt =
1

2µΓ(µ+1)

∫ ∞

0

tα−1

∫ ∞

0

Dµ(x, y, z)Pt(z)z2µ+1 dz dt

=
Γ
(
µ+ 3

2

)
√

π2µ−1Γ(µ+1)2

∫ ∞

0

Dµ(x, y, z)zα−2µ−2z2µ+1 dz

×
∫ ∞

0

uα du

(1+u2)µ+3/2

= Γ(α)µτx(Kα)(y)
2µΓ(µ+1)

for x, y∈(0,∞). �
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As a consequence of [13, p. 89] we have the following result.

Proposition 10. In the case 0<α<2µ+2, the operator ∆−α/2
µ can be ex-

tended to Lp(x2µ+1 dx) as a bounded operator from Lp(x2µ+1 dx) into Lq(x2µ+1 dx)
provided that 1<p<q<∞ and 1/q=1/p−α/(2µ+2).

We now establish a formula relating the Hankel transform defined by

hµ(f)(x)=
∫ ∞

0

(xy)−µJµ(xy)f(y)y2µ+1 dy

and the operator ∆−α/2
µ . The behavior of hµ on ∆−α/2

µ corresponds to the one of
the fractional integrals of the usual Laplacian with respect to the Fourier transform.
The mapping hµ is an automorphism on the space Se of the even functions in the
Schwartz space S ([1, Satz 5]). The Hankel transform is defined on the dual space
S′

e of Se by transposition and is then denoted by h′
µ.

Proposition 11. Let 0<α<2µ+2 and f∈C∞
c (0,∞). Then h′

µ(∆−α/2
µ f)(y)=

(1/yα)hµ(f)(y).

Proof. We only give some hints for the proof of this proposition. For every
s∈(0, 1), we define the operator

Gs(f)(x)=
1

Γ(α)

∫ 1/s

s

tα−1

∫ ∞

0

Pµ(t, x, y)f(y)y2µ+1 dy dt, x∈ (0,∞).

It follows that lims!0 Gsf =∆−α/2
µ f , in the weak-∗ topology of S′

e. Thus we can
conclude the result. �

We extend the definition of the operator ∆−α/2
µ to all α>0. Choose lα=

min{l∈N:2µ+2+2l>α}. If h(z)=(1+z)−µ−3/2, z∈(0,∞), we introduce the ex-
tended Poisson kernel by

P (α)
µ (t, x, y) = Pµ(t, x, y)−χ(1,∞)(t)

2µ+1
πt2µ+2

(12)

×
lα−1∑
j=0

h(j)(0)
j!t2j

∫ π

0

((x−y)2+2xy(1−cosθ))j sin2µ θ dθ

for t, x, y∈(0,∞). The operator ∆−α/2
µ is defined by

∆−α/2
µ f(x)=

1
Γ(α)

∫ ∞

0

f(y)y2µ+1

∫ ∞

0

P (α)
µ (t, x, y)tα−1 dt dy, f ∈C∞

c (0,∞).

(13)
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By using the mean-value theorem and proceeding as in the proof of Lemma 7 we
can prove that the integral in (13) is absolutely convergent. Note that definition (13)
reduces to definition (5) provided that 0<α<2µ+2 or

∫ ∞
0 f(x)xjx2µ+1 dx=0,

j=0, ..., 2lα−2. The definition (12) of P
(α)
µ (t, x, y) improves the behavior of the

original Poisson kernel Pµ(t, x, y) when t is large. This allows us to define ∆−α/2
µ

in (13) for f∈C∞
c (0,∞) although f has not any zero moment. Note also that

(dk/dxk)Pµ(t, x, y)=(dk/dxk)P (k)
µ (t, x, y), t, x, y∈(0,∞). Then, the modification of

the Poisson kernel will not change the definition of the Riesz transforms R
(k)
µ in any

case (see Proposition 14).

Proposition 14. Let k∈N and let f∈C∞
c (0,∞). Then ∆−k/2

µ f is k-times
differentiable on (0,∞)\supp f and (k−1)-times differentiable on (0,∞). More-
over,

dm

dxm
∆−k/2

µ f(x)=
1

Γ(k)

∫ ∞

0

f(y)y2µ+1

(∫ ∞

0

dm

dxm
P (k)

µ (t, x, y)tk−1 dt

)
dy

for every m=0, ..., k−1 and x∈(0,∞), and for m=k and x /∈supp f .

Proof. Let f∈C∞
c (0,∞), k∈N, and u=((x−y)2+2xy(1−cosθ))/t2. Note that

P (k)
µ (t, x, y)=

2µ+1
πt2µ+2

∫ π

0

(
h(u)−

lk−1∑
j=0

h(j)(0)
j!

ujχ(1,∞)(t)
)

sin2µ θ dθ,

where t, x, y∈(0,∞) and h(u)=(1+u)−µ−3/2, u∈(0,∞).
It is not hard to see that for every m∈N there exist cj,m, j=[(m+1)/2], ..., m,

such that

dm

dxm
=

m∑
j=[(m+1)/2]

cj,m

(
du

dx

)2j−m 1
t2(m−j)

dj

duj
.(15)

Also note that if x, y∈(0,∞) then

dj

duj

(
h(u)−

lk−1∑
l=0

h(l)(0)
l!

ulχ(1,∞)(t)
)

=
dj

duj
h(u),

provided that t∈(0,∞) and j≥lk, or t∈(0, 1) and j∈N. Hence, if x, y∈(0,∞) we
have that

∣∣∣∣ dj

duj

(
h(u)−

lk−1∑
l=0

h(l)(0)
l!

ulχ(1,∞)(t)
)∣∣∣∣≤ C

(1+u)µ+3/2+j
,
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when t∈(0,∞) and j≥lk, or t∈(0, 1) and j∈N. Moreover by using the mean-value
theorem we obtain that

∣∣∣∣ dj

duj

(
h(u)−

lk−1∑
l=0

h(l)(0)
l!

ulχ(1,∞)(t)
)∣∣∣∣≤Culk−j

for t∈(1,∞), x, y∈(0,∞) and j∈N, j≤lk−1.
Let m∈N, m≤k. We write, for x, y∈(0,∞), x �=y, |x−y|<1, 0≤j≤m,

∫ |x−y|

0

tk−1

t2(m−j)

∫ π

0

∣∣∣∣
(

du

dx

)2j−m
djh(u)

duj

sin2µ θ

t2µ+2

∣∣∣∣ dθ dt

≤C

∫ |x−y|

0

tk−2µ−3−2(m−j)

t4j−2m

∫ π

0

sin2µ θ(|x−y|+y(1−cosθ))2j−m dθ dt

(1+((x−y)2+2xy(1−cosθ))/t2)µ+3/2+j

≤C

2j−m∑
i=0

∫ |x−y|

0

tk|x−y|2j−m−iyi

×
(∫ π/2

0

+
∫ π

π/2

)
sin2µ θ(1−cos θ)i dθ dt

((x−y)2+2xy(1−cosθ))µ+3/2+j
.

In the inner integral for θ∈(0, π/2) we use that sin θ∼θ and 1−cos θ∼θ2/2 and in
the inner integral for θ∈(π/2, π) we apply the change of variables η=π−θ, obtaining
that this sum of integrals is bounded from above by

∫ π/2

0

θ2µ+2i dθ

((x−y)2+xyθ2)µ+3/2+j
+

∫ π

π/2

sin2µ θ dθ

(|x−y|2+2xy)µ+3/2+j

≤ C(xy)−µ−i−1/2

|x−y|2+2j−2i

∫ π
√

xy/2|x−y|

0

v2µ+2i dv

(1+v2)µ+3/2+j
+

C

(|x−y|2+2xy)µ+3/2+j

≤ C(xy)−µ−i−1/2

|x−y|2(1+j−i)
,(16)

where in the penultimate inequality we have performed the change of variables
v2=xyθ2/(x−y)2. With this estimate, we get that

∫ |x−y|

0

tk−1

t2(m−j)

∫ π

0

∣∣∣∣
(

du

dx

)2j−m
djh(u)

duj

sin2µ θ

t2µ+2

∣∣∣∣ dθ dt

≤C

2j−m∑
i=0

|x−y|i+k−m−1x−µ−i−1/2y−µ−1/2.(17)
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Also, for x, y∈(0,∞), x �=y, |x−y|<1, 0≤j≤m, we obtain by similar arguments
that
∫ 1

|x−y|

tk−1

t2(m−j)

∫ π

0

∣∣∣∣
(

du

dx

)2j−m
djh(u)

duj

sin2µ θ

t2µ+2

∣∣∣∣ dθ dt

≤C

2j−m∑
i=0

|x−y|2j−m−iyi

∫ 1

|x−y|
tk

(
(xy)−µ−i−1/2

((x−y)2+t2)1+j−i

×
∫ (π/2)

√
xy/((x−y)2+t2)

0

v2µ+2i dv

(1+v2)µ+3/2+j
+

1
((x−y)2+t2+2xy)µ+3/2+j

)
dt

≤C

2j−m∑
i=0

|x−y|2j−m−iyi(xy)−µ−i−1/2

∫ 1

|x−y|
tk−1−2j+2i t dt

(x−y)2+t2

(18) ≤C

2j−m∑
i=0

|x−y|2j−m−iyi max{1, |x−y|k−1−2j+2i}(xy)−µ−i−1/2 log
(x−y)2+1
2(x−y)2

.

On the other hand, by proceeding as above we obtain, for every x, y∈(0,∞) with
|x−y|>1, that

∫ 1

0

tk−1

t2(m−j)

∫ π

0

∣∣∣∣
(

du

dx

)2j−m
djh(u)

duj

sin2µ θ

t2µ+2

∣∣∣∣ dθ dt

≤C

2j−m∑
i=0

|x−y|i−m−2x−µ−i−1/2y−µ−1/2.(19)

By using the same procedure as in (16) and by [13, p. 60], if j≥lk we get, for every
x, y∈(0,∞), that
∫ ∞

1

tk−1

t2(m−j)

∫ π

0

∣∣∣∣
(

du

dx

)2j−m
djh(u)

duj

sin2µ θ

t2µ+2

∣∣∣∣ dθ dt

≤C

2j−m∑
i=0

|x−y|2j−m−iyi

∫ ∞

1

tk
(

(xy)−µ−i−1/2

((x−y)2+t2)1+j−i

×
∫ (π/2)

√
xy/((x−y)2+t2)

0

v2µ+2i dv

(1+v2)µ+3/2+j
+

1
((x−y)2+t2+2xy)µ+3/2+j

)
dt

≤C

2j−m∑
i=0

|x−y|2j−m−iyi

∫ ∞

1

tk−2µ−3−2j dt

≤C

2j−m∑
i=0

|x−y|2j−m−iyi.(20)
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In the case j<lk the following estimate holds
∫ ∞

1

tk−1

t2(m−j)

∫ π

0

∣∣∣∣
(

du

dx

)2j−m
dj

duj

(
h(u)−

lk−1∑
l=0

h(l)(0)
l!

ul

)
sin2µ θ

t2µ+2

∣∣∣∣ dθ dt

≤C

∫ ∞

1

tk−1−2(m−j)

t2µ+2

×
∫ π

0

((x−y)+y(1−cosθ))2j−m

t2(2j−m)

(
(x−y)2+2xy(1−cosθ)

t2

)lk−j

sin2µ θ dθ dt

≤C

∫ ∞

1

dt

t2µ+3−k+2lk

×
∫ π

0

((x−y)+y(1−cosθ))2j−m((x−y)2+2xy(1−cosθ))lk−j sin2µ θ dθ.(21)

Now, from (15) and the estimates (17)–(21), we deduce that∫ ∞

0

|f(y)|y2µ+1

∫ ∞

0

∣∣∣∣tk−1 dm

dxm
P (k)

µ (t, x, y)
∣∣∣∣ dt dy <∞,

provided that m=0, 1, 2, ..., k−1 and x∈(0,∞), or m=k and x /∈supp f . Thus we
establish the smoothness of ∆−k/2

µ f . �

3. Proof of Theorem 3

As a consequence of Proposition 14, for k∈N and f∈C∞
c (0,∞), we have that

R(k)
µ f(x)= Dk∆−k/2

µ f(x)=
∫ ∞

0

R(k)
µ (x, y)f(y)y2µ+1 dy, x /∈ supp f,(22)

where, in view of our choice of lk,

R(k)
µ (x, y)=

1
Γ(k)

∫ ∞

0

tk−1 dk

dxk
Pµ(t, x, y) dt, x, y ∈ (0,∞), x �= y.(23)

Proposition 24. Let k∈N. There exist b>1 and C>0 (depending only on µ

and k) such that∣∣∣∣R(k)
µ (x, y)−ak(x, y)

(xy)−µ−1/2

x−y

∣∣∣∣≤CHµ(x, y), x, y ∈ (0,∞), x �= y,

where

Hµ(x, y)=

⎧⎪⎨
⎪⎩

x−2µ−2, 0<y<x/b,

y−2µ−2(1+log(1+xy/|x−y|2)), x/b≤y≤bx,

y−2µ−2, y>bx,



230 Jorge J. Betancor, Juan C. Fariña, Teresa Martinez and Lourdes Rodrguez-Mesa

and ak(x, y)=0 if k is even, ak(x, y)=(1/ιk+1π)χ{x/b≤y≤bx}(x, y) for odd k, and ι

denotes the imaginary unit.

Proof. According to (15) we have that

dk

dxk
Pµ(t, x, y)

=
k∑

j=[(k+1)/2]

cj,k

t2µ+2+2j

∫ π

0

sin2µ θ((x−y)+y(1−cosθ))2j−k dθ

(1+((x−y)2+2xy(1−cosθ))/t2)µ+3/2+j

=
k∑

j=[(k+1)/2]

2j−k∑
i=0

ci,j,ktyi(x−y)2j−k−i

∫ π

0

sin2µ θ(1−cos θ)i dθ

((x−y)2+t2+2xy(1−cosθ))µ+3/2+j

for certain cj,k, ci,j,k∈R. We split the kernel of R
(k)
µ as

Γ(k)R(k)
µ (x, y)=

k∑
j=[(k+1)/2]

2j−k∑
i=0

ci,j,k(S1
i,j(x, y)+S2

i,j(x, y)),(25)

where

S1
i,j(x, y)= (x−y)2j−k−iyi

∫ ∞

0

tk
∫ π/2

0

sin2µ θ(1−cos θ)i dθ dt

((x−y)2+t2+2xy(1−cosθ))µ+3/2+j

and S2
i,j(x, y) has the same expression as that for S1

i,j(x, y); the only difference being
that we take the inner integral over θ∈(π/2, π).

Assume that b>1 is a constant whose precise value will be fixed later (see (30)).
As 1−cos θ≥1, θ∈[π/2, π], for (x, y) in the local region x/b<y<bx, we can write

|S2
i,j(x, y)| ≤C|x−y|2j−k−iyi

(∫ y

0

+
∫ ∞

y

)
tk dt

((x−y)2+t2+2xy)µ+3/2+j

≤C|x−y|2j−k−iyi

(
1

((x−y)2+2xy)µ+3/2+j

∫ y

0

tk dt+
∫ ∞

y

dt

t2j−k+2µ+3

)

≤C|x−y|2j−k−iyi

(
yk+1

(xy)µ+3/2+j
+y−(2j−k+2µ+2)

)

≤ C

y2µ+2
,

since in this region |x−y|≤Cx. Outside the local region, for y>bx or y<x/b,
|x−y|≥C max{x, y} and therefore

|S2
i,j(x, y)| ≤C|x−y|2j−k−iyi

∫ ∞

0

tk dt

((x−y)2+t2)µ+3/2+j

≤C

∫ ∞

0

t dt

((x−y)2+t2)µ+2
≤ C

|x−y|2µ+2
≤C

{
x−2µ−2, y<x/b,

y−2µ−2, y>bx.
(26)
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From these estimates we get that |S2
i,j(x, y)|≤CHµ(x, y). In order to analyze S1

i,j ,
note that by proceeding as in (26) we can see that

|S1
i,j(x, y)| ≤C

{
x−2µ−2, y<x/b,

y−2µ−2, y>bx.

In the region where x/b≤y≤bx, let us split S1
i,j(x, y) as

S1
i,j(x, y) = S1,0

i,j (x, y)+S1,∞
i,j (x, y)

= (x−y)2j−k−iyi

(∫ δ
√

xy

0

+
∫ ∞

δ
√

xy

)
tk

×
∫ π/2

0

sin2µ θ(1−cos θ)i dθ dt

((x−y)2+t2+2xy(1−cosθ))µ+3/2+j
,

where δ is a positive number whose precise value will be specified later (see (30)).
Applying the change of variables u2=xyθ2/((x−y)2+t2) we obtain that

|S1,∞
i,j (x, y)| ≤C|x−y|2j−k−iyi

∫ ∞

δ
√

xy

tk

((x−y)2+t2)j+1−i(xy)µ+i+1/2

×
∫ (π/2)

√
xy/

√
(x−y)2+t2

0

u2µ+2i du dt

(1+u2)µ+3/2+j
.

By using the estimate [13, p. 60] we have that
∫ (π/2)

√
xy/

√
(x−y)2+t2

0

u2µ+2i du

(1+u2)µ+3/2+j

is bounded above by a constant times (xy)i/2((x−y)2+t2)−i/2. In these circum-
stances, and taking into account that x/b<y<bx, we obtain that

|S1,∞
i,j (x, y)| ≤C|x−y|2j−k−iyi

∫ ∞

δ
√

xy

1
t2

dt

((x−y)2+t2)j−i/2−k/2(xy)µ+1/2+i/2

≤C
1

y2µ+1

∫ ∞

δ
√

xy

dt

t2
≤C

1
y2µ+2

.

The study of S1,0
i,j (x, y) is more involved. We consider the following kernels

Ai,j(x, y)=
∫ δ

√
xy

0

tk

2i
(x−y)2j−k−iyi

∫ π/2

0

θ2µ+2i dθ dt

((x−y)2+t2+2xy(1−cosθ))µ+3/2+j

and

Bi,j(x, y)=
∫ δ

√
xy

0

tk

2i
(x−y)2j−k−iyi

∫ π/2

0

θ2µ+2i dθ dt

((x−y)2+t2+xyθ2)µ+3/2+j
,
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and we write

S1,0
i,j (x, y)= (S1,0

i,j (x, y)−Ai,j(x, y))+(Ai,j(x, y)−Bi,j(x, y))+Bi,j(x, y).(27)

For the first difference, since sin θ∼θ and 1−cosθ∼θ2/2 for θ∈[0, π/2], by using the
mean-value theorem we get that

∣∣∣∣sin2µ θ(1−cos θ)i− θ2µ+2i

2i

∣∣∣∣≤Cθ2µ+2i+2, θ∈
[
0,

π

2

]
.

Hence,

|S1,0
i,j (x, y)−Ai,j(x, y)|

≤C|x−y|2j−k−iyi

∫ δ
√

xy

0

tk
∫ π/2

0

θ2µ+2i+2 dθ dt

((x−y)2+t2+θ2xy)µ+3/2+j

≤C|x−y|2j−k−iyi

∫ δ
√

xy

0

tk(xy)−µ−3/2−i

((x−y)2+t2)j−i

∫ (π/2)
√

xy/
√

(x−y)2+t2

0

u2µ+2i+2 du dt

(1+u2)µ+3/2+j
,

where in the last inequality we have performed the usual change of variables u2=
xyθ2/((x−y)2+t2). Then, from [13, p. 60] we deduce that, when i �=k or j �=k,

|S1,0
i,j (x, y)−Ai,j(x, y)|

≤C|x−y|2j−k−iyi

∫ δ
√

xy

0

tk(xy)−µ−3/2−i

((x−y)2+t2)j−i

( √
xy√

(x−y)2+t2+
√

xy

)2µ+3+2i

dt

≤C|x−y|2j−k−iyi

∫ δ
√

xy

0

tk dt

((x−y)2+t2)j−i(xy)µ+1+i/2((x−y)2+t2)1/2+i/2

≤C
1

y2µ+2

∫ δ
√

xy

0

t dt

(x−y)2+t2

≤C
1

y2µ+2
log

(
1+

δ2xy

(x−y)2

)
.

On the other hand, we have that

|S1,0
k,k(x, y)−Ak,k(x, y)| ≤Cyk

∫ δ
√

xy

0

tk
∫ π/2

0

θ2µ+2k+2 dθ dt

((x−y)2+t2+θ2xy)µ+3/2+k

≤C

∫ δ
√

xy

0

∫ π/2

0

θ

(x−y)2+θ2xy

θ2µ+1+2ktkyk dθ dt

tk(θ2xy)µ+1/2+k/2

≤ C

y2µ+2
log

(
1+

π2

4
xy

(x−y)2

)
.



Higher order Riesz transforms associated with Bessel operators 233

By using again the mean-value theorem one obtains that, for every θ∈[0, π/2],
∣∣∣∣ 1
((x−y)2+y2+2xy(1−cosθ))µ+3/2+j

− 1
((x−y)2+y2+xyθ2)µ+3/2+j

∣∣∣∣
≤C

θ4xy

((x−y)2+y2+xyθ2)µ+5/2+j
.

Then, by proceeding as for |S1,0
i,j −Ai,j|, we get that

|Ai,j(x, y)−Bi,j(x, y)| ≤C

∫ δ
√

xy

0

tk
∫ π/2

0

θ2µ+2i+4xyi+1|x−y|2j−k−i

((x−y)2+y2+xyθ2)µ+5/2+j
dθ dt

≤C

∫ δ
√

xy

0

tk
∫ π/2

0

θ2µ+2i+2yi|x−y|2j−k−i

((x−y)2+t2+xyθ2)µ+3/2+j
dθ dt

≤ C

y2µ+2

⎧⎪⎪⎨
⎪⎪⎩

log
(

1+δ2 xy

(x−y)2

)
, i �=k or j �=k,

log
(

1+
π2

4
xy

(x−y)2

)
, i=j=k.

To analyze Bi,j we need to proceed in a different way. If we substitute (27) in (25),
it turns out that the term that is left to study is given by

B(x, y)=
k∑

j=[(k+1)/2]

2j−k∑
i=0

ci,j,kBi,j(x, y).

It turns out that this kernel behaves like that of the Hilbert transform in the case
when k is odd, and that it is an integrable kernel in the case when k is even. More
concretely, the following lemma holds, concluding the proof of Proposition 24. �

Lemma 28. For every k∈N, and 0<x/b<y<bx,

B(x, y)= ck
(xy)−µ−1/2

x−y
+O

(
1

x2µ+2
log

(
1+

xy

(x−y)2

))
,

where ck=0 if k is even and ck=(k−1)!/ιk+1π for odd k.

Proof. Note firstly that, from (27) and (25), and by using (15),

B(x, y)=
k∑

j=[(k+1)/2]

2j−k∑
i=0

ci,j,kBi,j(x, y)

=
2µ+1

π

∫ δ
√

xy

0

tk
dk

dxk

∫ π/2

0

θ2µ dθ dt

((x−y)2+t2+xyθ2)µ+3/2
.
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By the usual change of variables z2=xyθ2/((x−y)2+t2), we obtain that

∫ π/2

0

θ2µ dθ

((x−y)2+t2+xyθ2)µ+3/2
=−

∫ ∞

π/2

θ2µ dθ

((x−y)2+t2+xyθ2)µ+3/2

+
1

2µ+1
(xy)−µ−1/2

(x−y)2+t2
.

Therefore, we get that

B(x, y)=
k∑

j=[(k+1)/2]

2j−k∑
i=0

ci,jHi,j(x, y)+
k−1∑
l=0

l∑
s=[(l+1)/2]

dl,sDl,s(x, y)+dkDk(x, y),

(29)

where for every j=[(k+1)/2], ..., k, i=0, ..., 2j−k, ci,j∈R and

Hi,j(x, y)= (x−y)2j−k−iyi

∫ δ
√

xy

0

tk
∫ ∞

π/2

θ2µ+2i dθ

((x−y)2+t2+xyθ2)µ+3/2+j
,

dk=1/π and, for l=0, ..., k−1, s=[(l+1)/2], ..., l, dl,s∈R and

Dl,s(x, y)= y−µ−1/2x−µ−1/2−k+l(x−y)2s−l

∫ δ
√

xy

0

tk dt

((x−y)2+t2)1+s
,

Dk(x, y)= (xy)−µ−1/2

∫ δ
√

xy

0

dk

dxk

(
1

(x−y)2+t2

)
tk dt.

Let us start with the term Hi,j . We first need to make some observations. Let
us consider the function gi,j(u)=u2µ+2i/(1+u2)µ+1/2+j , u∈(0,∞). It is not hard
to see that if µ+i≤0, then gi,j is decreasing on (0,∞), and if µ+i>0, then gi,j is
decreasing on (

√
(2µ+2i)/(1+2j−2i),∞). Note that 1+2j−2i>0. One can prove

(see [4] for the details) that there exist b>1 and δ>0 such that

π

2

√
xy

(x−y)2+t2
≥

√
2µ+2i

1+2j−2i
(30)

for x/b≤y≤bx, x∈(0,∞) and t∈(0, δ
√

xy). Observe that δ and b can be taken
independently of j and i. For these values of the variables we have

∫ ∞

A

u2µ+2i du

(1+u2)µ+3/2+j
≤ Cu2µ+2i

(1+u2)µ+1/2+j

∣∣∣∣
u=A

≤ C(xy)µ+i((x−y)2+t2)j−i+1/2

((x−y)2+t2+xy)µ+1/2+j
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in the particular case when A=(π/2)
√

xy/((x−y)2+t2). This estimate, together
with the usual change of variables u2=xyθ2/((x−y)2+t2), leads to

|Hi,j(x, y)| ≤C
|x−y|2j−k−iyi

(xy)µ+i+1/2

∫ δ
√

xy

0

tk

((x−y)2+t2)j+1−i

×
∫ ∞

(π/2)
√

xy/((x−y)2+t2)

u2µ+2i du dt

(1+u2)µ+3/2+j

≤C
|x−y|2j−k−iyi

(xy)1/2

∫ δ
√

xy

0

t

(x−y)2+t2
tk−1((x−y)2+t2)1/2 dt

(xy)µ+1/2+i/2((x−y)2+t2)j−i/2

≤C
1

x2µ+2
log

(
1+

δ2xy

(x−y)2

)
.

For the terms Dl,s in (29), we have that

|Dl,s(x, y)|

≤Cy−µ−1/2x−µ−1/2−k+l|x−y|k−l−1

∫ δ
√

xy/|x−y|

0

uk du

(1+u2)1+s

≤Cy−µ−1/2x−µ−1/2−k+l|x−y|k−l−1

( √
xy

|x−y|
)k−l−1 ∫ δ

√
xy/|x−y|

0

ul+1 du

(1+u2)1+s
.

By using [13, pp. 60–61], since l+1−2(1+s)=−1+l−2s≤−1, we get that

∫ δ
√

xy/|x−y|

0

ul+1 du

(1+u2)1+s
≤C

(
δ
√

xy

δ
√

xy+|x−y|
)l+2(

1+log
(

1+
δ
√

xy

|x−y|
))

.

Hence we conclude that

|Dl,s(x, y)| ≤Cy−2µ−2

(
1+log

(
1+

δ
√

xy

|x−y|
))

.

We now write Dk(x, y)=−D1
k(x, y)+D2

k(x, y), where

D1
k(x, y)= (xy)−µ−1/2

∫ ∞

δ
√

xy

tk
dk

dxk

(
1

(x−y)2+t2

)
dt

and

D2
k(x, y)= (xy)−µ−1/2

∫ ∞

0

tk
dk

dxk

(
1

(x−y)2+t2

)
dt.
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Note that, for certain cj∈R, j=[(k+1)/2], ..., k,

D1
k(x, y)= (xy)−µ−1/2

k∑
j=[(k+1)/2]

cj

∫ ∞

δ
√

xy

tk(x−y)2j−k dt

((x−y)2+t2)1+j
.

Then

|D1
k(x, y)| ≤ C

(xy)µ+1/2

k∑
j=[(k+1)/2]

∫ ∞

δ
√

xy

1
t2

tk+2

((x−y)2+t2)k/2+1

|x−y|2j−k dt

((x−y)2+t2)j−k/2

≤ C

(xy)µ+1
≤Cx−2µ−2.

On the other hand, a straightforward manipulation allows us to write

dk

duk

(
1

u2+t2

)
=− (−1)kk!

2ιt

(
1

(u+ιt)k+1
− 1

(u−ιt)k+1

)
.

By partial integration k−1 times we obtain that
∫ ∞

0

tk−1 dt

(u+ιt)k+1
−

∫ ∞

0

tk−1 dt

(u−ιt)k+1
=

1
ku

(
1
ιk

− 1
(−ι)k

)
.

Hence, we conclude that

D2
k(x, y)= ck

(xy)−µ−1/2

x−y
, where ck =

⎧⎨
⎩

0, if k is even,
(k−1)!
ιk+1

, if k is odd. �

By using the procedure developed in Proposition 24 we can obtain the following
result.

Lemma 31. Let f∈C∞
c (0,∞) and k∈N. Then, for all x∈(0,∞),

R(k)
µ f(x)= ωkf(x)+lim

ε!0

∫
|x−y|>ε

f(y)R(k)
µ (x, y)y2µ+1 dy,

where ωk=0, when k is odd, and ωk=(−1)k/2π/(2µ+1), when k is even.

Proof. According to Proposition 14 and taking into account that

lk = min{l∈N : 2µ+2+2l> k}≤ (k−1)/2,

we get that

dk−1

dxk−1
∆−k/2

µ f(x)=
1

Γ(k)

∫ ∞

0

f(y)y2µ+1

∫ ∞

0

tk−1 dk−1

dxk−1
Pµ(t, x, y) dt dy
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for x∈(0,∞). We now write, for every x∈(0,∞),

dk−1

dxk−1
∆−k/2

µ f(x) =
1

Γ(k)

∫ ∞

0

f(y)y2µ+1

(∫ ∞

0

tk−1 dk−1

dxk−1
Pµ(t, x, y) dt

− 1
2µ+1

(xy)−µ−1/2

∫ 1

0

dk−1

dxk−1

(
1

(x−y)2+t2

)
tk dt

)
dy

+
1

2µ+1
1

Γ(k)

∫ ∞

0

f(y)y2µ+1(xy)−µ−1/2

×
∫ 1

0

dk−1

dxk−1

(
1

(x−y)2+t2

)
tk dt dy.

By proceeding as in the proof of Proposition 24 we can see that for x∈(0,∞),

d

dx

(
1

Γ(k)

∫ ∞

0

f(y)y2µ+1

(∫ ∞

0

tk−1 dk−1

dxk−1
Pµ(t, x, y) dt

− 1
2µ+1

(xy)−µ−1/2

∫ 1

0

dk−1

dxk−1

(
1

(x−y)2+t2

)
tk dt

)
dy

)

=
1

Γ(k)

∫ ∞

0

f(y)y2µ+1

∫ ∞

1

tk−1 dk

dxk
Pµ(t, x, y) dt dy

+
1

Γ(k)

∫ ∞

0

f(y)y2µ+1

∫ 1

0

d

dx

(
tk−1 dk−1

dxk−1
Pµ(t, x, y)

− 1
2µ+1

(xy)−µ−1/2 dk−1

dxk−1

(
1

(x−y)2+t2

)
tk

)
dt dy

=
1

Γ(k)

∫ ∞

0

f(y)y2µ+1

∫ ∞

1

tk−1 dk

dxk
Pµ(t, x, y) dt dy

+
1

Γ(k)

∫ ∞

0

f(y)y2µ+1

∫ 1

0

(
tk−1 dk

dxk
Pµ(t, x, y)

− 1
2µ+1

(xy)−µ−1/2 dk

dxk

(
1

(x−y)2+t2

)
tk

)
dt dy

+
1
2
x−µ−3/2 1

Γ(k)

∫ ∞

0

f(y)yµ+1/2

∫ 1

0

dk−1

dxk−1

(
1

(x−y)2+t2

)
tk dt dy.

The integrals are absolutely convergent.
We define

Φ(x)=
∫ 1

0

dk−1

dxk−1

(
1

x2+t2

)
tk dt, x∈R.
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Then Φ∈L1(R, dx) and Φ∈C∞(R\{0}). Moreover, by defining the function g as
g(y)=f(y)yµ+1/2, y≥0, and g(y)=0, y<0, it has, for every x∈(0,∞),

d

dx

∫ ∞

0

Φ(x−y)f(y)yµ+1/2 dy

=
d

dx

∫ ∞

−∞
Φ(y)g(x−y) dy

=−
∫ ∞

−∞
Φ(y)

d

dy
g(x−y) dy =− lim

ε!0

∫
|y|>ε

Φ(y)
d

dy
g(x−y)dy

= lim
ε!0

(∫
|x−y|>ε

Φ′(x−y)g(y) dy−(Φ(−ε)g(x+ε)−Φ(ε)g(x−ε))
)

.

Let x∈(0,∞). Note that if k is odd, then Φ is even and

lim
ε!0

(Φ(−ε)g(x+ε)−Φ(ε)g(x−ε))= lim
ε!0

Φ(ε)(g(x+ε)−g(x−ε))= 0,

because

|Φ(ε)(g(x+ε)−g(x−ε))| ≤Cε|Φ(ε)|!0, as ε! 0.

On the other hand, if k is even, then Φ is odd and, according to [5, Lemma 4.3, (4.6)],
for every ε>0, we have

Φ(−ε)g(x+ε)−Φ(ε)g(x−ε)=−Φ(ε)(g(x+ε)+g(x−ε))

=−(g(x+ε)+g(x−ε))
∫ 1

0

dk−1

dxk−1

(
1

x2+t2

)
tk dt

∣∣∣∣
x=ε

= (g(x+ε)+g(x−ε))
k/2−1∑
j=0

2k−1−2j Γ(k)Γ(k−j)
Γ(j+1)Γ(k−2j)

×(−1)k−1−j

∫ 1/ε

0

uk du

(1+u2)k−j
.

Hence

lim
ε!0

(Φ(−ε)g(x+ε)−Φ(ε)g(x−ε))

= 2
k/2−1∑
j=0

2k−1−2j Γ(k)Γ(k−j)
Γ(j+1)Γ(k−2j)

(−1)k−1−jf(x)xµ+1/2

∫ ∞

0

uk du

(1+u2)k−j
.

Using the duplication formula for the gamma function we get that

k/2−1∑
j=0

2k−1−2j Γ(k)Γ(k−j)
Γ(j+1)Γ(k−2j)

(−1)k−1−j

∫ ∞

0

uk

(1+u2)k−j
du =

π

2
(−1)k/2Γ(k).
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We obtain that

d

dx

(
1

Γ(k)

∫ ∞

0

f(y)y2µ+1(xy)−µ−1/2

∫ 1

0

dk−1

dxk−1

(
tk

(x−y)2+t2

)
dt dy

)

=−
(

µ+
1
2

)
x−µ−3/2 1

Γ(k)

∫ ∞

0

f(y)yµ+1/2

∫ 1

0

dk−1

dxk−1

(
tk

(x−y)2+t2

)
dt dy

+lim
ε!0

1
Γ(k)

∫
0<y<∞
|x−y|>ε

f(y)y2µ+1(xy)−µ−1/2

∫ 1

0

dk

dxk

(
tk

(x−y)2+t2

)
dt dy+ckf(x),

where ck=0, for k odd, and ck=(−1)k/2π, when k is even.
Then,

dk

dxk
∆−k/2

µ f(x)= ωkf(x)+lim
ε!0

∫
|x−y|>ε

f(y)R(k)
µ (x, y)y2µ+1 dy, x∈ (0,∞),

where ωk=0, for k odd, and ωk=(−1)k/2π/(2µ+1), when k is even.
Thus the proof is finished. �

Lp-boundedness of R
(k)
µ is also a consequence of Proposition 24 and the corres-

ponding properties of the Hilbert transform and the Hardy-type operators Hµ and
H∗

µ defined by

Hµf(x)=
1

x2µ+2

∫ x

0

f(y)y2µ+1 dy and H∗
µf(x)=

∫ ∞

x

f(y)
y

dy, x> 0.

Note that H∗
µ is the adjoint operator in L2((0,∞), x2µ+1 dx) of Hµ. Let 1≤p<∞.

According to Proposition 24, we can write for every f∈Lp(x2µ+1 dx),

|R(k)
µ,εf(x)| ≤C(Hµ(|f |)(x)+H∗

µ(|f |)(x)+|Hε
loc,µf(x)|+Tµ(|f |)(x)),(32)

where

R(k)
µ,εf(x) =

∫
|x−y|>ε

f(y)R(k)
µ (x, y)y2µ+1 dy,

Hε
loc,µf(x) =

∫
x/2<y<2x
|x−y|>ε

(xy)−µ−1/2

x−y
f(y)y2µ+1 dy,

Tµf(x) =
∫ 2x

x/2

f(y)
y

log
(

1+
xy

(x−y)2

)
dy.

By [12, Theorems 1 and 2] and [3, Theorems 1 and 2], both Hµ and H∗
µ map

Lp(x2µ+1 dx) into itself, 1<p<∞, and L1(x2µ+1 dx) into L1,∞(x2µ+1 dx) boundedly.
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The same boundedness properties hold for the maximal operator H∗
loc,µ defined by

H∗
loc,µf = sup

ε>0
|Hε

loc,µf |.

For Tµ, proceeding as in [13] and [2], the same boundedness properties are obtained.
Thus we see that the maximal operator

R
(k)
µ,∗f = sup

ε>0
|R(k)

µ,εf |

is bounded from Lp(x2µ+1 dx) into itself, for 1<p<∞, and from L1(x2µ+1 dx)
into L1,∞(x2µ+1 dx). Hence, the existence of the principal value in (4) for f∈
Lp(x2µ+1 dx), 1≤p<∞, follows from Lemma 31 in a standard way by using density
arguments.

Lp-boundedness of the principal-value operator R
(k)
µ can be obtained by using

again the corresponding properties for the Hilbert transform and the Hardy-type
operators.

4. Weighted inequalities

Further, we analyze the boundedness of the Riesz transforms R
(k)
µ on weighted

Lp-spaces. Our next objective is to obtain the class of weights having good Lp-
behavior for R

(k)
µ . Let us consider the weights introduced in [2]. A nonnegative

measurable function ω on (0,∞) is in Ap,µ, where 1<p<∞, provided that there
exists C>0 such that, for every 0<a<b<∞,

∫ b

a

ω(t)tp dt

(∫ b

a

ω(t)−1/(p−1)tp(2µ+1)/(p−1) dt

)p−1

≤C(b2µ+3−a2µ+3)p.

In the case p=1, we say that a nonnegative measurable function ω on (0,∞) is
in A1,µ, when for some (equivalently, for all) ε>0, there exists Cε>0 such that, for
every 0<a<b<∞,

sup
t∈(a,b)

(
tµ−1/2

ω(t)

) ∫ b

a

(a

s
+

s

b

)µ+3/2+ε

ω(s)s−µ−1/2 ds≤Cε
b2µ+3−a2µ+3

(ab)µ+3/2
.

The measure x2µ+1 dx has the doubling property on (0,∞) with respect to the
usual Euclidean metric d(x, y)=|x−y|, x, y∈(0,∞). We denote by Aµ

p , 1≤p<∞,
the Muckenhoupt class of weights associated with the measure x2µ+1 dx on (0,∞),
i.e. the class of nonnegative measurable functions ω on (0,∞) such that there exists
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C>0 satisfying, for every 0≤a<b<∞,
∫ b

a

ω(t)t2µ+1 dt

(∫ b

a

ω(t)−1/(p−1)t2µ+1 dt

)p−1

≤C(b2(µ+1)−a2(µ+1))p,

in the case 1<p<∞, and
∫ b

a

ω(t)t2µ+1 dt≤C(b2(µ+1)−a2(µ+1)) inf
a<t<b

ω(t)

for p=1.
In the following we prove that if ω∈Aµ

p then x2µ+1ω∈Ap,µ.

Proposition 33. Let 1≤p<∞ and let Ãµ
p ={ω̃(x)=x2µ+1ω(x):ω∈Aµ

p}. Then,
Ãµ

p ⊂Ap,µ.

Proof. Assume that ω belongs to Aµ
p . Then the measures ω(t)t2µ+1 dt and

ω(t)−1/(p−1)t2µ+1 dt satisfy the doubling condition with respect to d.
Suppose that 1<p<∞. Then, if 0≤a<b<∞,

∫ b

a

ω(t)tpt2µ+1 dt

(∫ b

a

(ω(t)t2µ+1)−1/(p−1)tp(2µ+1)/(p−1) dt

)p−1

≤Cbp

∫ b

a

ω(t)t2µ+1 dt

(∫ b

a

ω(t)−1/(p−1)t2µ+1 dt

)p−1

≤Cbp(b2µ+2−a2µ+2)p,

where in the last inequality we have used the Muckenhoupt Aµ
p -condition. It is clear

that b(b2µ+2−a2µ+2)≤b2µ+3−a2µ+3 and the proof finishes in this case.
We now turn to the case p=1. Assume that ω∈Aµ

1 . Since the conditions are
dilatation invariant, it suffices to prove the required inequality for a=1 and b>1.
We shall consider two subcases.

Assume that b≥2. If 1<b<2 we can proceed in a similar way. We need to
show that

sup
t∈(1,b)

(
tµ−1/2

w(t)t2µ+1

) ∫ b

1

(
1
s
+

s

b

)µ+3/2+ε

ω(s)s2µ+1s−µ−1/2 ds≤C
b2µ+3−1
bµ+3/2

∼ bµ+3/2,

with ε>0. We split the integral in the left-hand side into two integrals extended
over (1,

√
b) and (

√
b, b), respectively. Then

sup
t∈(1,b)

(
tµ−1/2

w(t)t2µ+1

) ∫ b

√
b

(
1
s
+

s

b

)µ+3/2+ε

ω(s)s2µ+1s−µ−1/2 ds

≤C sup
t∈(1,b)

(
1

w(t)tµ+3/2

) ∫ b

√
b

(s

b

)µ+3/2+ε

ω(s)s2µ+1s−µ−1/2 ds
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≤C sup
t∈(1,b)

(
1

w(t)

) ∫ b

√
b

ω(s)s2µ+1 s1+ε

b1+ε
b−µ−1/2 ds

≤C sup
t∈(1,b)

(
1

w(t)

) ∫ b

√
b

ω(s)s2µ+1b−µ−1/2 ds

≤Cbµ+3/2.

In the last inequality we have used the Aµ
1 -condition.

To estimate the part that consists of the integral over (1,
√

b) we proceed as
follows. Let β be the positive integer such that 2β≤√

b<2β+1. We divide the
interval (1, b) into intervals I0=(1,

√
b), I1=(

√
b, 2

√
b), ..., Iβ−1=(2β−2

√
b, 2β−1

√
b),

Iβ=(2β−1
√

b, b). Let k∈{0, ..., β} be such that

sup
t∈(1,b)

1
ω(t)tµ+3/2

= sup
t∈Ik

1
ω(t)tµ+3/2

.

We assume firstly that k>0. Then

L = sup
t∈(1,b)

(
tµ−1/2

w(t)t2µ+1

) ∫ √
b

1

(
1
s
+

s

b

)µ+3/2+ε

ω(s)s2µ+1s−µ−1/2 ds

≤C sup
t∈Ik

(
1

w(t)tµ+3/2

) ∫ √
b

1

(
1
s

)µ+3/2+ε

ω(s)s2µ+1s−µ−1/2 ds

≤C sup
t∈Ik

(
1

w(t)

)
(2k

√
b)−µ−3/2

∫ √
b

1

ω(s)s−1−ε ds.

By the doubling property of ω(t)t2µ+1 dt with respect to d,

∫ √
b

1

ω(s)s−1−ε ds≤
∫ √

b

1

ω(s)s2µ+1 ds≤C

∫
Ik

ω(s)s2µ+1 ds.

Hence

L≤C sup
t∈Ik

(
1

w(t)

)
(2k

√
b)−µ−3/2

∫
Ik

ω(s)s2µ+1 ds.

Recalling that 2k≤C
√

b and using the Aµ
1 -condition we get that

L≤C(2k
√

b)−µ−3/2(2k
√

b)2µ+2 ≤Cbµ+3/2.

If k=0 the proof of the needed inequality is analogous and simpler than in the
previous case.
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Finally, when 1<b<2 the proof of the desired inequality can be proved in
a simpler way following the same procedure that we have employed above. �

Note that the inclusion in Proposition 33 is strict. Indeed, assume that p>1.
According to [2, p. 16], ωα(t)=tα is in Ap,µ when −p−1<α<(2µ+2)p−1. However,
if α=−2µ− 5

2 , ωα /∈Aµ
p and wα+2µ+1∈Ap,µ.

In the next theorem, we show that the class Ap,µ of weights is in some sense the
optimal one, since we find that ω∈Ap,µ is also necessary in order to have weighted
inequalities for R

(k)
µ for all k odd such that k<2µ+2.

Theorem 34. Let k∈N and 1≤p<∞.
(i) If ω∈Ap,µ then R

(k)
µ defines a bounded operator from Lp(ω(x) dx) into itself,

1<p<∞, and from L1(ω(x) dx) into L1,∞(ω(x) dx).
(ii) If k is odd, k<2µ+2 and R

(k)
µ maps Lp(ω(x) dx) boundedly into itself,

1<p<∞ (respectively, L1(ω(x) dx) into L1,∞(ω(x) dx)), then ω∈Ap,µ (respectively,
ω∈A1,µ).

Proof. The proof of Theorem 34 is a consequence of Propositions 24 and 35
(stated and proved below), by proceeding as in the proof of [2, Theorems 1
and 2]. �

In the next proposition new estimates for the kernel R
(k)
µ (x, y) are given, ex-

tending the ones stated in Proposition 24. The technique we use in the proof of this
result is different from the one employed in [10, Lemma 2.1] and [11, Theorem 2.1].

Proposition 35. Let k, l∈N. There exist α, b>1 such that
(i) if y>bx, then α−1≤y2µ+3R

(k)
µ (x, y)/x≤α if k is odd and |y2µ+2R

(k)
µ (x, y)|≤

α(x/y)l if k is even.
(ii) If 0<y<x/b and k<2µ+2, then α−1≤(−1)kx2µ+2R

(k)
µ (x, y)≤α.

Proof. We begin by expressing the kernel R
(k)
µ (x, y) in a suitable way. By

applying the change of variables x=uy and t=vy in the formula (6) for Pµ(t, x, y)
and recalling (23), we can write

Γ(k)R(k)
µ (x, y)= y−2µ−2

(∫ ∞

0

vk−1 dk

duk
Pµ(v, u, 1) dv

)∣∣∣∣
u=x/y

= y−2µ−2Tk(u)|u=x/y.

Note that Tk is an infinitely differentiable function on R. Moreover, since z−µJµ(z)
is an even function, Pµ(v, u, 1) is also an even function of u. Hence, Tk is an even
function (respectively, odd) provided that k is even (respectively, odd). Thus, to
prove (i) is equivalent to show that T ′

k(0)>0, when k is odd, and T
(l)
k (0)=0, l∈N,

l≥1, if k is even.
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The following expression for (dn/dun)Tk, n∈N, will be useful later. We can
find cj>0 such that, for every u>0

dn

dun
Tk(u)=

k+n∑
j=[(k+n+1)/2]

(−1)jcju
2j−k−n

∫ ∞

0

vk−1(36)

×
∫ ∞

0

e−vz(uz)−µ−jJµ+j(uz)z−µJµ(z)z2µ+2j+1 dz dv.

Indeed, we only must take into account that for every l∈N we can write

dl

dul
=

l∑
j=[(l+1)/2]

cj,lu
2j−l

(
1
u

d

du

)j

,(37)

for suitable cj,l∈R, with c[(l+1)/2],l>0, and that by [18, §5.1 (7)]

(
1
u

d

du

)l

[(uz)−µJµ(uz)] = (−1)lz2l(uz)−µ−lJµ+l(uz).(38)

Let us first prove (i) for odd k. As was mentioned, in this case Tk is an odd function
and consequently Tk(0)=0. Hence, in order to prove that Tk(u)∼u near the origin
we have to see that (d/du)Tk(0) �=0. By using (36) for n=1 and observing that the
function z−σJσ(z) takes the value Aσ=2−σΓ(σ+1)−1 when z=0, we get that

d

du
Tk(0)= Bµ

∫ ∞

0

vk−1

∫ ∞

0

e−vzz−µJµ(z)z2µ+k+2 dz dv(39)

= Dµ

∫ ∞

0

vk−1 dk+1

dvk+1

v

(1+v2)µ+3/2
dv,

where Bµ=(−1)(k+1)/2c(k+1)/2Aµ+(k+1)/2 and Dµ=Bµ2µ+1Γ(µ+3/2)π−1/2. In the
last equality we have used that the integral with respect to z is L(zk+µ+2Jµ(z)),
where L denotes the Laplace transform, and we have applied [6, 6.623(2)]. After
integrating by parts k−1 times, we have that

d

du
Tk(0)= Dµ

(k−1∑
l=0

(−1)l+1 Γ(k)
Γ(l+1)

vl dl+1

dul+1

v

(1+v2)µ+3/2

∣∣∣∣
∞

v=0

)
.

Denote by gl, l=0, ..., k−1, the function

gl(v)= vl dl+1

dul+1

v

(1+v2)µ+3/2
.
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Straightforward manipulations allow us to see that gl(v)=O(v−2µ−3), when v!∞,
for each l=0, ..., k−1, that gl(0)=0, l=1, ..., k−1, and that g0(0)=1. Hence,

d

du
Tk(0)=−Γ(k)Dµ.

Therefore, if k is odd, there exists b>1 sufficiently large for which y2µ+2R
(k)
µ (x, y)∼

x/y, when bx<y.
Let us consider the case of even k in (i). It suffices to prove in this case that

(dn/dun)Tk(0)=0 for every n∈N. Since Tk is now an even function, it follows that
(dn/dun)Tk(0)=0, provided that n is odd. Suppose that n is even. By (36) and
proceeding as to get (39), we find that

dn

dun
Tk(0)= Bµ,n

∫ ∞

0

vk−1

∫ ∞

0

e−vzz−µJµ(z)z2µ+k+n+1 dz dv

= Dµ,n

∫ ∞

0

vk−1 dk+n

dvk+n

v

(1+v2)µ+3/2
dv,

for a certain coefficient Bµ,n, where Dµ,n=Bµ,n2µ+1Γ
(
µ+ 3

2

)
π−1/2 in the last equal-

ity. After integrating by parts k−1 times we get that

dn

dun
Tk(0)= Dµ,n

(k−1∑
l=0

(−1)l+1 Γ(k)
Γ(l+1)

vl dl+n

dul+n

v

(1+v2)µ+3/2

∣∣∣∣
∞

v=0

)
.

If

hl(v)= vl dl+n

dul+n

v

(1+v2)µ+3/2
, l = 0, ..., k−1,

in the same way as before we can see that hl(v)=O(v−2µ−2−n), when v!∞, and
that hl(0)=0, l=1, ..., k−1. Moreover, since H(v)=v/(1+v2)µ+3/2 is an odd func-
tion and n is even, h0(v) is an odd function and therefore h0(0)=0. We conclude
then that (dn/dun)Tk(0)=0.

Let us now prove (ii), thus in the sequel k<2µ+2. We rewrite the kernel
R

(k)
µ (x, y) in the following way

R(k)
µ (x, y) =

k∑
j=[(k+1)/2]

(−1)jcj,kx2j−k

∫ ∞

0

tk−1

×
∫ ∞

0

e−tw(xw)−µ−jJµ+j(xw)(yw)−µJµ(yw)w2µ+2j+1 dw dt,
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where cj >0. Here we have used (37) and (38). By performing the changes of
variables z=xw and t=xv we get that

x2µ+2R(k)
µ (x, y) =

k∑
j=[(k+1)/2]

(−1)jcj,k

∫ ∞

0

vk−1

×
∫ ∞

0

e−vzz−µ−jJµ+j(z)
(

y

x
z

)−µ

Jµ

(
y

x
z

)
z2µ+2j+1 dz dv.

Let us denote by Sk the function

Sk(u)=
∫ ∞

0

vk−1

∫ ∞

0

e−vz dk

dzk
[z−µJµ(z)](uz)−µJµ(uz)z2µ+k+1 dz dv.(40)

By taking into account (37) and (38) it is easy to see that x2µ+2R
(k)
µ (x, y)=Sk(y/x).

To prove (ii) it is then sufficient to see that Sk(0)>0, if k is even, and Sk(0)<0,
when k is odd. Taking u=0 in (40) we have

Sk(0)=
1

2µΓ(µ+1)

∫ ∞

0

vk−1

∫ ∞

0

e−vz dk

dzk
[z−µJµ(z)]z2µ+k+1 dz dv.(41)

After integrating by parts k times in the last integral we get that

∫ ∞

0

e−vz dk

dzk
[z−µJµ(z)]z2µ+k+1 dz

=
k−1∑
j=0

(−1)j dj

dzj
[e−vzz2µ+k+1]

dk−j−1

dzk−j−1
[z−µJµ(z)]

∣∣∣∣
∞

z=0

+(−1)k

∫ ∞

0

z−µJµ(z)
dk

dzk
[e−vzz2µ+k+1] dz, v ∈ (0,∞).

Since z−σJσ(z), σ≥− 1
2 , is a bounded function on (0,∞), it is not difficult to

see, by taking into account (38), that for v∈(0,∞),

∫ ∞

0

e−vz dk

dzk
[z−µJµ(z)]z2µ+k+1 dz

= (−1)k

∫ ∞

0

z−µJµ(z)
dk

dzk
[e−vzz2µ+k+1] dz

= (−1)k
k∑

j=0

(−1)j

(
k

j

)
Γ(2µ+k+2)
Γ(2µ+j+2)

vj

∫ ∞

0

z−µJµ(z)e−vzz2µ+j+1 dz.
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Let bj=(−1)j
(
k
j

)
/Γ(2µ+j+2), j=0, ..., k. By using the Laplace transform L and

[6, 6.623(2)] we can write for v∈(0,∞),∫ ∞

0

e−vz dk

dzk
[z−µJµ(z)]z2µ+k+1 dz

= (−1)kΓ(2µ+k+2)
k∑

j=0

bjv
jL(zj+µ+1Jµ)(v)

=
(−1)k2µ+1Γ(2µ+k+2)Γ

(
µ+ 3

2

)
√

π

k∑
j=0

(−1)jbjv
j dj

dvj

(
v

(1+v2)µ+3/2

)
.

By inserting this integral into (41) we infer that

Sk(0)=
(−1)k2Γ(2µ+k+2)Γ

(
µ+ 3

2

)
√

πΓ(µ+1)

k∑
j=0

(−1)jbj

∫ ∞

0

vk+j−1 dj

dvj

(
v

(1+v2)µ+3/2

)
dv.

For each j=0, ..., k we analyze the integral

Ij =
∫ ∞

0

vk+j−1 dj

dvj

(
v

(1+v2)µ+3/2

)
dv.

Let j=1, ..., k. If we integrate by parts j times we get that

Ij =
j∑

l=1

(−1)j−lal,jv
k+l−1 dl−1

dvl−1

(
v

(1+v2)µ+3/2

)∣∣∣∣
∞

v=0

+(−1)ja0,j

∫ ∞

0

vk

(1+v2)µ+3/2
dv.

Here al,j =Γ(k+j)/Γ(k+l), 0≤l≤j. Since k<2µ+2, for each l=1, ..., j, the function

ql(v)= vk+l−1 dl−1

dvl−1

(
v

(1+v2)µ+3/2

)

satisfies that ql(0)=0 and ql(v)=O(vk−2µ−2), as v!∞. Therefore,

Ij = (−1)ja0,j

∫ ∞

0

vk

(1+v2)µ+3/2
dv, j = 0, ..., k,

where a0,j=Γ(k+j)/Γ(k), j=0, ..., k. Then, we can write

Sk(0)=
(−1)k2Γ(2µ+k+2)Γ

(
µ+ 3

2

)
√

πΓ(µ+1)

∫ ∞

0

vk

(1+v2)µ+3/2
dv

k∑
j=0

bja0,j .

Since
∑k

j=0 bja0,j=Γ(k)−1
∑k

j=0(−1)j
(
k
j

)
Γ(k+j)/Γ(2µ+2+j) and 2µ+2>k, ac-

cording to Lemma 42 below we conclude that Sk(0)>0, when k is even, and
Sk(0)<0, if k is odd. �
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Lemma 42. Let k∈N and fk the function defined by

fk(x)=
k∑

j=0

(−1)j

(
k

j

)
Γ(k+j)
Γ(x+j)

, x> 0.

Then, for every l=1, ..., k, fk(l)=0 and fk(x) �=0, when x /∈{1, ..., k}. Moreover,
fk(x)>0, for x>k.

Proof. We can write

fk(x)=
Γ(2k)

Γ(x+k)

k∑
j=0

(−1)j

(
k

j

)
(x+k−1)(x+k−2)...(x+j)

(2k−1)(2k−2)...(k+j)
=

Γ(2k)
Γ(x+k)

pk(x),

where pk is a polynomial of degree k satisfying that limx!∞ pk(x)=∞. Hence, since
Γ(2k)/Γ(x+k)>0, for x>0, and pk has exactly k complex roots, the statement of
the lemma will be established as soon as we prove that pk(l)=0, l=1, ..., k.

Let l∈{1, ..., k}. We observe that

fk(l)=
k∑

j=0

(−1)j

(
k

j

)
Γ(k+j)
Γ(l+j)

=
k−l∑
i=0

al(i)
k∑

j=0

(−1)j

(
k

j

)
ji,

for certain {al(i)}k−l
i=0⊂N, where we use the convention that 00=1. Therefore it is

sufficient to prove that

Hk(i) :=
k∑

j=0

(−1)j

(
k

j

)
j i = 0, i = 0, ..., k−1.(43)

We proceed by induction on k. Consider first k=1. In this case it is clear
that (43) is satisfied. Assume now that for a given k∈N, k≥1, Hk(i)=0, for each
i=0, ..., k−1, and let us show that Hk+1(i)=0, i=0, ..., k. It is known that

Hk+1(0)=
k+1∑
j=0

(−1)j

(
k+1

j

)
= 0.

Take now i∈{1, ..., k}. Since
(
m
n

)
=(m/n)

(
m−1
n−1

)
, for m≥n≥1, we get that

Hk+1(i)=
k+1∑
j=0

(−1)j

(
k+1

j

)
ji

=
k+1∑
j=1

(−1)j

(
k+1

j

)
ji
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= (k+1)
k+1∑
j=1

(−1)j

(
k

j−1

)
ji−1

=−(k+1)
k∑

j=0

(−1)j

(
k

j

)
(j+1)i−1

=−(k+1)
i−1∑
r=0

(
i−1
r

) k∑
j=0

(−1)j

(
k

j

)
jr

=−(k+1)
i−1∑
r=0

(
i−1
r

)
Hk(r).

The induction hypothesis allows us to conclude that Hk+1(i)=0, i=1, ..., k, and the
lemma is thus proved. �
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