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Convergence and multiplicities
for the Lempert function

Pascal J. Thomas and Nguyen Van Trao

Abstract. Given a domain Ω⊂Cn, the Lempert function is a functional on the space

Hol(D, Ω) of analytic disks with values in Ω, depending on a set of poles in Ω. We generalize

its definition to the case where poles have multiplicities given by local indicators (in the sense of

Rashkovskii) to obtain a function which still dominates the corresponding Green function, behaves

relatively well under limits, and is monotonic with respect to the local indicators. In particular,

this is an improvement over the previous generalization used by the same authors to find an

example of a set of poles in the bidisk so that the (usual) Green and Lempert functions differ.

1. Introduction

We assume throughout that Ω is a bounded domain in Cn. Let D stand for the
unit disk in C. The classical Lempert function with pole at a∈Ω, [7], is defined by

�a(z) := inf{log |ζ| : there exists ϕ∈Hol(D, Ω) such that ϕ(0)= z and ϕ(ζ)= a}.
Given a finite number of points aj∈Ω, j=1, ..., N , Coman [3] extended this to

�(z) := �{a1,...,aN}(z) := inf
{ N∑

j=1

log |ζj | : there exists ϕ∈Hol(D, Ω)

such that ϕ(0)= z and ϕ(ζj)= aj, j = 1, ..., N

}
.

(1)

The Green function for the same poles is

g := sup{u∈PSH(Ω, R−) : u(z)≤ log |z−aj|+Cj

for z in a neighborhood of aj , j = 1, ..., N},
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the help of the program Formath Vietnam.



184 Pascal J. Thomas and Nguyen Van Trao

where PSH(Ω, R−) stands for the set of all negative plurisubharmonic functions
in Ω. The inequality g(z)≤�(z) always holds, and it is known that it can be strict,
see [2], [9] and [14]. If � ever turns out to be plurisubharmonic itself, then � must
be equal to g, [3].

There are natural extensions of the definition of the Green function. In one
dimension, considering a finite number of poles in the same location a, say m

poles, it has a natural interpretation in terms of multiplicities: the point mass
in the Riesz measure of the Green function is multiplied by m. Locally, the Green
function behaves like log |f |, where f is a holomorphic function vanishing at a with
multiplicity m.

Lelong and Rashkovskii [6] and [10] defined a generalized Green function. The
function log |z| was replaced by “local indicators”, i.e. circled plurisubharmonic
functions Ψ whose Monge–Ampère measure (ddcΨ)n is concentrated at the origin,
such that whenever log |wj |=c log |zj| for all j∈{1, ..., n}, then Ψ(w)=cΨ(z). This
has the advantage of allowing for the consideration of non-isotropic singularities such
as max(2 log |z1|, log |z2|), but the “circled” condition privileges certain coordinate
axes, so that the class is not invariant under linear changes of variables. We will
have to remove this restriction to obtain a class large enough to describe some
natural limits.

In several complex variables, we would like to know which notion of multiplicity
can arise when we take limits of ordinary Green (or Lempert) functions with several
poles tending to the same point. This idea was put to use in [14] to exhibit an ex-
ample where a Lempert function with four poles is different from the corresponding
Green function. The definition of a generalized Lempert function chosen in [14] had
some drawbacks – essentially, it was not monotonic with respect to its system of
poles (in an appropriate sense) [14, Proposition 4.3] and did not pass to the limit in
some very simple situations [13, Theorem 6.3]. We recall that monotonicity holds
when no multiplicities are present, or more generally when a subset of the original
set of poles is considered with the same indicators, see [17] and [14, Proposition 3.1]
for the convex case, and the more recent [8] for arbitrary domains and weighted
Lempert functions.

In Section 2, we successively define a class of indicators, a subclass which is
useful to produce “monomial” examples, a notion of multiplicity for values attained
by an analytic disk, and a generalization of Coman’s Lempert function to systems
of poles with indicators, different from [14]. In Section 3, we state our two main
results: monotonicity, and convergence under certain restrictive (but, we hope,
natural) conditions. Further sections are devoted to the proofs of those results.

Finally, in Section 7 we summarize the differences between our new definition
and that given in [14].
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2. Definitions

Definition 2.1. ([6]) Let Ψ∈PSH(Dn). We call Ψ a local indicator and write
Ψ∈I0 if

1. Ψ is bounded from above on Dn;
2. Ψ is circled, i.e. Ψ(z1, ..., zn) depends only on (|z1|, ..., |zn|);
3. for any c>0, Ψ(|z1|c, ..., |zn|c)=cΨ(|z1|, ..., |zn|).
As a consequence, (ddcΨ)n=τΨδ0 for some τΨ≥0.

Notice that if Ψ1∈PSH(Dn), Ψ2∈PSH(Dm), and they are both local indicators,
then

Ψ(z, z′) := max(Ψ1(z), Ψ2(z′))

defines a local indicator on Dn+m.
We need to remove the restriction to a single coordinate system in Defin-

ition 2.1.

Definition 2.2. We call Ψ a generalized local indicator, and we write Ψ∈I if
there exists a neighborhood U of 0, Ψ0∈I0 and a one-to-one linear map L of Cn to
itself such that L(U)⊂D

n and Ψ=Ψ0�L.

We will concentrate on a class of simple examples. Given two vectors z, w∈Cn,
their standard Hermitian product is denoted by z ·�w:=

∑n
j=1 zj�wj . We also write

‖z‖:=|z ·z̄|1/2.

Definition 2.3. We say that Ψ is an elementary local indicator if there exists
a basis {v1, ..., vn} of vectors of Cn and scalars mj∈R+, 1≤j≤n, such that for
z∈Dn,

Ψ(z)= max
1≤j≤n

mj log |z ·v̄j |.(2)

One easily checks that any elementary local indicator is a generalized local
indicator. The most interesting case is the one for which the basis is orthonormal.
In fact, it is essentially the only case.
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Lemma 2.4. Given an elementary local indicator Ψ as in Definition 2.3 there
exists an orthonormal basis {ṽ1, ..., ṽn} of Cn such that the associated indicator
Ψ̃(z):=max1≤j≤n mj log |z · ¯̃vj | satisfies Ψ̃−Ψ∈L∞(Dn).

As a consequence, we could have restricted the map L in Definition 2.2 to be
unitary, and it would not have changed things in any essential way.

The proof of Lemma 2.4 is given in Section 4 below.

Lemma 2.5. ([6, example in Section 3] and [10]) If Ψ is an elementary local
indicator, then τΨ=m1...mn.

We take the same definition of the generalized Green function as in [6].

Definition 2.6. Let Ω be a bounded domain in Cn. Given

S := {(aj, Ψj) : 1≤ j≤N}, where aj ∈Ω, aj �= ak for j �= k, and Ψj ∈I,

its Green function is

GS := sup{u∈PSH(Ω, R−) : u(z)≤Ψj(z)+Cj,

for z in a neighborhood of aj, j = 1, ..., N}.

To generalize the Lempert function, the first step is to quantify the way in
which an analytic disk, i.e. an element of Hol(D, Ω), meets a pole provided with
a generalized local indicator.

Definition 2.7. Let α∈D, a∈Ω and Ψ∈I. Then the multiplicity of ϕ∈Hol(D, Ω)
at α, with respect to a, is given by

mϕ,a,Ψ(α) :=

⎧⎨
⎩

min
(

τΨ, lim inf
ζ!0

Ψ(ϕ(α+ζ)−a)
log |ζ|

)
, if ϕ(α)=a,

0, if ϕ(α) �=a.

Notice that if Ψ1−Ψ2 is locally bounded near the origin, then mϕ,a,Ψ1(α)=
mϕ,a,Ψ2(α).

The quantity lim infζ!0 Ψ(ϕ(α+ζ)−a)/ log |ζ| is exactly the Lelong number
at 0 of the subharmonic function Ψ�ϕ, compare with [11, pp. 334–335]. Truncating
at the level of the local Monge–Ampère mass τΨ will turn out to be convenient in
Definition 2.10, and the proofs that use it.

It is useful to see what this means in the case of elementary local indicators.
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Elementary example. Suppose that α=0, a=0, and that

Ψ(z)= max
1≤j≤n

mj log |zj |.
We write

ϕ(ζ)= (ϕ1(ζ), ..., ϕn(ζ)),

and define the valuations

νj := νj(0, ϕ) := min
{

k :
(

d

dζ

)k

ϕj(0) �= 0
}

.

Then we have

mϕ,0,Ψ(0)= min
(

min
1≤j≤n

mjνj ,

n∏
j=1

mj

)
.(3)

Example 2.8. If mj=1 for all j, then

mϕ,0,Ψ(0)=

{
1, if ϕ(0)=0,

0, otherwise.

This is the basic case where one just records whether a point has been hit by the
analytic disk or not.

Example 2.9. In more general cases, the use of an indicator will impose higher-
order differential conditions on the map ϕ. For instance, if m1=2 and mj=1,
2≤j≤n, then

mϕ,0,Ψ(0)=

⎧⎪⎨
⎪⎩

0, if ϕ(0) �=0,

1, if ϕ(0)=0 and ϕ′
j(0) �=0 for some j∈{2, ..., n},

2, if ϕ(0)=0 and ϕ′
j(0)=0 for any j∈{2, ..., n}.

Definition 2.10. Given a system S as in Definition 2.6, we write τj :=τΨj .
Let ϕ∈Hol(D, Ω) and Aj⊂D, 1≤j≤N . We say that (ϕ, {Aj}1≤j≤N ) is admis-

sible (for S and z) if

ϕ(0)= z; Aj ⊂ϕ−1(aj) and
∑

α∈Aj

mϕ,aj,Ψj (α)≤ τj , 1≤ j≤N.

In this case, we write (with the convention that 0·∞=0)

S(ϕ, {Aj}1≤j≤N ) :=
N∑

j=1

∑
α∈Aj

mϕ,aj ,Ψj(α) log |α|.

Then the generalized Lempert function is defined by

LΩ
S (z) :=LS(z) := inf{S(ϕ, {Aj}1≤j≤N ) : (ϕ, {Aj}1≤j≤N ) is admissible for S, z}.
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Notice that we allow any of the Aj to be the empty set (in which case the jth
term drops from the sum).

Consider the single poles case where

Ψj(z)= max
1≤l≤n

log |zl| or Ψj(z)= log ‖z‖ for each j(4)

– it is the same, since both functions differ by a bounded term near 0; in fact, one
could use any norm that is homogeneous under complex scalar multiplication.

In this case, τj =1 for every j. With a slight abuse of notation, we write
S={a1, ..., aN}. Then LS(z)=minS′⊂S �S′(z), where �S was defined in (1). And in
fact minS′⊂S �S′(z)=�S(z) [8] (see also [16] and [17] for the case when the domain Ω
is convex).

The Lempert function is different from the functionals considered by Poletsky
and others in that it is restricted to one pre-image per pole aj (thus the Lempert
function can fail to be equal to the corresponding Green function). In our definition,
the number of pre-images per pole is bounded above by the Monge–Ampère mass
at that pole of its generalized local indicator. In [14], each pole could only have
one pre-image, but (essentially) ϕ had to hit the pole with maximum multiplicity
at that pre-image.

Although Definition 2.10 may seem contrived, it is required to obtain the
reasonable convergence Theorem 3.3. See the discussion in Section 7.

We remark right away that the usual relationship holds between this generalized
Lempert function and the corresponding Green function.

Lemma 2.11. For a bounded domain Ω, for any system S as in Definition 2.6,
for any z∈Ω, GS(z)≤LS(z).

Proof. If ϕ∈Hol(D, Ω), and u∈PSH−(Ω) is a member of the defining family for
the Green function of S, then u�ϕ is subharmonic and negative on D. Furthermore,
if (ϕ, {Aj}1≤j≤N ) is admissible (for S and z) and α∈Aj , then given any ε>0, for
|ζ| small enough,

u �ϕ(α+ζ)≤Cj+Ψj(ϕ(α+ζ)−aj)≤Cj+(mϕ,aj,Ψj (α)−ε) log |ζ|.
So u�ϕ is a member of the defining family for the Green function on D with poles
α and weights mϕ,aj,Ψj (α)−ε at α. This implies that

u �ϕ(ζ)≤
N∑

j=1

∑
α∈Aj

(mϕ,aj ,Ψj (α)−ε) log
∣∣∣∣ α−ζ

1−ζ�α

∣∣∣∣.
Letting ε tend to 0 and setting ζ=0, we get u(z)≤S(ϕ, {Aj}1≤j≤N ).

Passing to the supremum over u, and then to the infimum over (ϕ, {Aj}1≤j≤N ),
we get the lemma. �
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3. Main results

We start with a remark.

Lemma 3.1. If S is as in Definition 2.6, 1≤N ′≤N , and

S′ := {(aj , Ψj) : 1≤ j ≤N ′},

then for any z∈Ω, LS′(z)≥LS(z).

Proof. If we take Aj =∅ for N ′+1≤j≤N , any member of the defining family
for LS′(z) becomes a member of the defining family for LS(z), and the sum remains
the same. �

The above lemma goes in the direction of monotonicity of the Lempert function
with respect to its system of poles. For the Green function, it is immediate that the
more poles there are, the more negative the function must be. More generally the
more negative the generalized local indicators are (removing a pole corresponds to
replacing a local indicator by 0), the more negative the function must be. This is
not immediately apparent in Definition 2.10, but it does hold for elementary local
indicators.

Theorem 3.2. Let Ω be a bounded domain in C
n,

S := {(aj, Ψj) : 1≤ j≤N}, S′ := {(aj, Ψ′
j) : 1≤ j ≤N}, where aj ∈Ω,

and Ψj and Ψ′
j are elementary local indicators such that Ψj≤Ψ′

j+Cj in a neigh-
borhood of 0, Cj∈R, 1≤j≤N . Then LS′(z)≥LS(z) for all z∈Ω.

The proof is given in Section 5.
Now we turn to a result about the convergence of some families of (ordinary)

Lempert functions with single poles, whose limits can be described naturally as
generalized Lempert functions. Note that the proof of this next theorem does not
require the relatively difficult Theorem 3.2, only the easy Lemma 3.1.

For z∈C
n\{0}, we denote by [z] the equivalence class of z in the complex

projective space P
n−1.

Theorem 3.3. Let Ω be a bounded and convex domain in Cn. Let 0≤M≤N

be integers. For ε belonging to a neighborhood of 0 in C, using the simplified no-
tation of the single pole case (4), let

S(ε) := {aj(ε) : 1≤ j ≤M}∪{a′
j(ε), a

′′
j (ε) : M +1≤ j≤N}⊂Ω.
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Suppose that all the points of S(ε) are distinct for any fixed ε, that

lim
ε!0

aj(ε)= aj ∈Ω, 1≤ j ≤M,

lim
ε!0

a′
j(ε)= lim

ε!0
a′′

j (ε)= aj ∈Ω, M +1≤ j≤N,

and that

lim
ε!0

[a′′
j (ε)−a′

j(ε)] = [vj ],(5)

where the limit is with respect to the distance in Pn−1 and the representative vj is
chosen of unit norm. Let Ψj(z):=log‖z‖, 1≤j≤M . Denote by πj the orthogonal
projection onto {vj}⊥, M +1≤j≤N , and by Ψj the generalized local indicator

Ψj(z) := max(log ‖πj(z)‖, 2 log |z ·v̄j |), M +1≤ j≤N.

Set S :={(aj, Ψj):1≤j≤N}. Then

lim
ε!0

�S(ε)(z)= lim
ε!0

LS(ε)(z)=LS(z) for all z ∈Ω.

Remarks. (a) As in the comments after (4), one could replace Ψj by an elem-
entary local indicator; (b) The convexity requirement is imposed by Lemma 6.1,
and we conjecture that it is not essential.

Note that in the case where a′
j(ε)=aj does not depend on ε, the hypothesis (5)

means that the point a′′
j (ε) converges to a limit in the blow-up of C

n around the
point aj .

It seems to us that this is the only reasonable convergence result that can
be obtained for a family of ordinary Lempert functions. If (5) is not satisfied,
one can find two distinct limit points for our family of Lempert functions. Thus
hypothesis (5) is required.

We are restricting ourselves to the case where no more than two points converge
to the same point: examples where three points converge to the origin in the bidisk
are explicitly studied in [12], and show that the situation leads to results that
probably cannot be described in terms of our generalized local indicators.

The proof is given in Section 6.

4. Proof of Lemma 2.4

Multiplying one of the vectors vj by a scalar only modifies the function Ψ by
a bounded additive term, so it will be enough to exhibit an orthogonal basis of
vectors complying with the conclusion of the lemma.
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Renumber the vectors vj so that we have 0≤m1≤...≤mn. Using the Gram–
Schmidt orthogonalization process, we produce an orthogonal system of vectors ṽk

such that Span(ṽ1, ..., ṽk)=Span(v1, ..., vk) for any k, 1≤k≤n.
We proceed by induction on the dimension n. When n=1 the property is

immediate. Assume that the result holds up to dimension n−1. Write

Ψ1(z) := max
1≤j≤n−1

mj log |z ·v̄j | and Ψ̃1(z) := max
1≤j≤n−1

mj log |z · ¯̃vj |.

Set zn :=z · ¯̃vn.
It is enough to obtain the estimates on a neighborhood U of 0. We choose it

so that Ψ1(z)≤0 and Ψ̃1(z)≤0 for z∈U with |zn|≤1. Since vn=ṽn−w, where w∈
Span(v1, ..., vn−1), we have

Ψ(z)= max(Ψ1(z′), mn log |zn−z′ ·�w|), Ψ̃(z)= max(Ψ̃1(z′), mn log |zn|),(6)

where z′ is the orthogonal projection of z onto Span(v1, ..., vn−1)=Span(ṽ1, ..., ṽn−1).
By the induction hypothesis, Ψ1=Ψ̃1+O(1), so it is enough to prove that

Ψ′(z) := max(Ψ1(z′), mn log |zn|)
differs from Ψ(z) by a bounded additive term.

There is a constant C0>0 such that Ψ1(z′)≥mn−1 log ‖z′‖−logC0, for z′∈U .
Choose a constant A>1 large enough so that ‖w‖(C0/A)1/mn−1 < 1

2 .
Then, since Ψ1(z)≤0 and mn−1≤mn,

|z′ ·�w| ≤ ‖w‖C1/mn−1
0 exp

(
Ψ1(z′)
mn−1

)
≤‖w‖C1/mn−1

0 exp
(

Ψ1(z′)
mn

)
.(7)

Case 1. Ψ1(z′)≥mn log |zn|−logA.

By the inequality above, Ψ′(z)≤Ψ1(z′)+log a ≤Ψ(z)+logA. On the other
hand, using (7), we get

|zn−z′·�w|mn ≤ (A1/mn +‖w‖C1/mn−1
0 )mn exp(Ψ1(z′)),

so Ψ(z)≤Ψ1(z′)+O(1)≤Ψ′(z)+O(1).

Case 2. Ψ1(z′)≤mn log |zn|−logA.

Then (7) and the choice of A imply that

|z′ ·�w| ≤ ‖w‖C1/mn−1
0 exp

(
log |zn|− log A

mn−1

)
≤ 1

2
|zn|,

and thus (6) implies that

Ψ′(z)+mn log 1
2 ≤Ψ(z)≤Ψ′(z)+mn log 3

2 .
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5. Proof of Theorem 3.2

Without loss of generality, we may assume that τ ′
j >0 for all j. We have Ψj≤

Ψ′
j+Cj in a neighborhood of 0 and

supp(ddcΨj)n ⊂{0} and supp(ddcΨ′
j)

n ⊂{0}.

Thus it follows from Bedford and Taylor’s comparison theorem [1], [5, p. 126, The-
orem 3.7.1], that τj≥τ ′

j>0. For any α and aj ,

mϕ,aj,Ψj (α)≥mϕ,aj ,Ψ′
j
(α).(8)

Therefore

N∑
j=1

∑
α∈Aj

mϕ,aj,Ψj (α) log |α| ≤
N∑

j=1

∑
α∈Aj

mϕ,aj,Ψ′
j
(α) log |α|.(9)

To finish the proof, it suffices to show that the family over which we take the
infimum is smaller for LS′(z) than the one for LS(z). This can be checked for
each j separately, hence we drop the index j.

Lemma 5.1. Let Ω be a bounded domain in Cn. If Ψ and Ψ′ are ele-
mentary local indicators such that Ψ≤Ψ′+C and τ ′ :=τΨ′ >0, if A⊂D, a∈Ω and
ϕ∈Hol(D, Ω) satisfy

∑
α∈A

mϕ,a,Ψ′(α)≤ τ ′,

then
∑
α∈A

mϕ,a,Ψ(α)≤ τ := τΨ.

Proof. Since the point a plays no role, we assume a=0 and write mϕ,0,Ψ(α)=
mϕ,Ψ(α). By (8), we may assume that mϕ,Ψ(α)>0 and the sums in (9) will not
change.

Using Lemma 2.4, we reduce ourselves to the case where the elementary local
indicators are given by orthonormal systems of vectors. We use the same “valu-
ations” as in the elementary example:

νj(α) := νj(α, ϕ) := min
{

k :
(

d

dζ

)k

(ϕ(ζ)·v̄j)(α) �= 0
}

,

and ν′
j(α) is defined analogously using the vectors v′j .
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Case 1. There exists α0 such that mϕ,Ψ′(α0)=τ ′.

Then the hypothesis of Lemma 5.1 implies that for all α∈A\{α0}, mϕ,Ψ′(α)=0,
so that min1≤k≤n m′

kν′
k(α)=0. Since τ ′>0, we have m′

k>0 for all k, so there must
exist k such that ν′

k(α)=0. Then ϕ(α) �=0, which implies that mϕ,Ψ(α)=0, and
∑
α∈A

mϕ,Ψ(α)= mϕ,Ψ(α0)≤ τ,

by definition of the multiplicity.

Case 2. For all α∈A, mϕ,Ψ′(α)<τ ′.

Therefore mϕ,Ψ′(α)=min1≤k≤n m′
kν′

k(α), and since we always have mϕ,Ψ(α)≤
min1≤k≤n mkνk(α), it becomes enough to work with the quantities in (9). By div-
iding by τ and τ ′, respectively, it will be enough to prove the following lemma. �

Lemma 5.2. Under the hypotheses of Lemma 5.1 and Case 2 above, for each
α∈A,

min1≤k≤n m′
kν′

k(α)∏n
k=1 m′

k

≥ min1≤k≤n mkνk(α)∏n
k=1 mk

.

Proof. Since we are now dealing with a single α, we also drop it from the
notation.

We introduce a binary relation on the index set {1, ..., n}.

Definition 5.3. Given k, l∈{1, ..., n}, we say that kRl if and only if vk ·v̄′l �=0.

Lemma 5.4. If Ψ′+C≥Ψ and kRl, then mk≥m′
l.

Proof. For any nonzero λ∈C,

Ψ′(λv′l)= m′
l log |λ|+m′

l log ‖v′l‖2,

while, for |λ| small enough,

Ψ(λv′l)= max
1≤j≤n

(mj(log |λ|+log |vj ·v̄′l|))=
(
min
kRl

mk

)
log |λ|+O(1),

therefore by letting λ tend to 0 we see that minkRl mk≥m′
l. �

Lemma 5.5. If Ψ′+C≥Ψ, then
1. ν′

l≥min{νk :kRl},
2. νk≥min{ν′

l :kRl}.
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Proof. We will use and prove Part 1 only. Part 2 has a similar proof.
Since v′l is orthogonal to vk unless kRl, we must have complex scalars ck such

that v′l=
∑

kRl ckvk. Thus for ϕ as in Lemma 5.1,

ϕ(ζ)·v̄′l =
∑
kRl

c̄kϕ(ζ)·v̄k.

Now take m<νk=νk(α, ϕ) for all k such that kRl. Then
(

d

dζ

)m

(ϕ·v̄′l)(α)=
∑
kRl

c̄k

(
d

dζ

)m

(ϕ(ζ)·v̄k)(α)= 0,

so we must have ν′
l >m, which proves the result. �

Now renumber the vectors v′l so that min1≤k≤n(m′
kν′

k)=m′
1ν

′
1. Pick an index

k0 such that k0R1 and νk0 =min1≤k≤n{νk :kR1}. By renumbering the vectors vk,
we may assume that k0=1. By Lemma 5.5, we may assume that ν′

1≥ν1.
The conclusion of Lemma 5.2 thus reduces to

ν′
1∏n

k=2 m′
k

≥ ν1∏n
k=2 mk

.(10)

This is a consequence of the next result.

Lemma 5.6. There exists a bijection σ from {2, ..., n} onto itself such that for
any l∈{2, ..., n}, σ(l)Rl.

This lemma will be proved below. It implies that
n∏

k=2

mk =
n∏

l=2

mσ(l) ≥
n∏

l=2

m′
l,

by Lemma 5.4, so (10) holds and this concludes the proof of Lemma 5.2. �

Proof of Lemma 5.6. Set A:={akl}2≤k,l≤n :={vk ·v̄′
l}2≤k,l≤n. First we prove

that this matrix is non-singular. Let π be the orthogonal projection on {v′1}⊥.
If rank{π(vk):2≤k≤n}<n−1, there exists w∈{v′1}⊥, w �=0, such that w⊥π(vk),
2≤k≤n. This implies that w⊥vk, 2≤k≤n. Since we have orthogonal bases, v1=λw

for some λ∈C. So v1 ·v̄′
1=0, which contradicts the fact that 1R1.

We construct the bijection σ by induction on n. For n=2 it is obvious. Suppose
that the property holds for n−1. Then

0 �= detA=
n∑

k=2

(−1)kak2 detAk,
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where Ak stands for the minor matrix with the first column and the kth row re-
moved. There must be some k for which ak2 det Ak �=0. Let σ(2)=k; the induction
hypothesis gives us a bijection σ′ from {3, ..., n} to {2, ..., n}\{k} such that aσ′(l)l �=0,
and this finishes the proof. �

6. Proof of Theorem 3.3

First observe that we can relax the conditions used in Definition 2.10.

Lemma 6.1. Let Ω be a convex bounded domain in Cn containing the origin,
and let z∈Ω.

(i) Let aj∈Ω, Ψj∈I and, as in Definition 2.6,

S := {(aj , Ψj) : 1≤ j ≤N}.

Suppose that for any δ>0, there exists a map ϕδ holomorphic from D to (1+δ)Ω
and sets {Aj(δ)}1≤j≤N such that (ϕδ, {Aj(δ)}1≤j≤N ) is admissible for S and z with
respect to (1+δ)Ω and

S(ϕδ, {Aj(δ)}1≤j≤N )≤ �+h(δ),

where h(δ)≥0 and limδ!0 h(δ)=0. Then LΩ
S (z)≤�.

(ii) For ε in a neighborhood V of 0 in C, let aj(ε)∈Ω, 1≤j≤N , and

S(ε) := {(aj(ε), Ψj) : 1≤ j ≤N}.

Let g : V!R∗
+ be such that limε!0 g(ε)=0. Then

lim sup
ε!0

LΩ
S(ε)(z)≤ lim sup

ε!0
L(1+g(ε))Ω

S(ε) (z).

Proof. Without loss of generality, we may assume that z=0. Let

Ωr := {ϕ(ζ) : ϕ∈Hol(D, Ω), ϕ(0)= 0 and |ζ|< r}.

A bounded convex domain is Kobayashi complete hyperbolic [4, Proposition 6.9(b),
p. 88], so Ωr is relatively compact in Ω. Let ρΩ stand for the Minkowski function
of Ω:

ρΩ(z) := inf
{

r > 0 :
z

r
∈Ω

}
.

We set γ(r):=supΩr
ρΩ. The function γ is increasing and continuous from (0, 1) to

itself.
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For any µ∈(0, 1) and φ∈Hol(D, Cn), set φµ(ζ):=φ(µζ). Note that for any
points and indicators, mφµ,a,Ψ(α/µ)=mφ,a,Ψ(α).

Take ϕδ as in Part (i) of the lemma, in particular ϕδ(0)=0, so by the construc-
tion of γ,

1
(1+δ)

ϕδ
µ(D)⊂ γ(µ)Ω.

Choose some µ(δ) such that γ(µ(δ))=(1+δ)−1, and set ϕ̃δ :=ϕδ
µ(δ), then ϕ̃δ∈

Hol(D, Ω). Note that limδ!0 µ(δ)=1, by the relative compactness of each Ωr.
Let

Ãj(δ) :=
{

α

µ(δ)
: α∈Aj(δ) and |α|< µ(δ)

}
.

Then

(11)

|S(ϕ̃δ , {Ãj(δ)}1≤j≤N )−S(ϕδ, {Aj(δ)}1≤j≤N )|

=
∣∣∣∣

N∑
j=1

∑
α∈Aj

|α|<µ(δ)

mϕδ,aj ,Ψj
(α)|log µ(δ)|−

N∑
j=1

∑
α∈Aj

|α|≥µ(δ)

mϕδ,aj ,Ψj
(α) log |α|

∣∣∣∣

≤ 2
( N∑

j=1

τΨj

)
|log µ(δ)|,

and this last quantity tends to 0, which concludes the proof of (i).
To prove (ii), take maps ϕε and systems of points {Aj(ε)}1≤j≤N , admissible

for S(ε), such that

lim
ε!0

S(ϕε, {Aj(ε)}1≤j≤N )= lim sup
ε!0

L(1+g(ε))Ω
S(ε) (0).

Use the above proof with δ=g(ε) to construct maps ϕ̃ε into Ω and systems of points
{Ãj(ε)}1≤j≤N , admissible for S(ε), such that

|S(ϕ̃ε, {Ãj(ε)}1≤j≤N )−S(ϕε, {Aj(ε)}1≤j≤N )| ≤ 2
( N∑

j=1

τΨj

)
|log µ(g(ε))|,

and by definition S(ϕ̃ε, {Ãj(ε)}1≤j≤N )≥LΩ
S(ε)(0). �

Consider as in Theorem 3.3 a bounded convex domain Ω, and distinct points
aj∈Ω, 1≤j≤N . Let z∈Ω\{aj :1≤j≤N} (otherwise the property is trivially true).
Again we may assume that z=0. By Lemma 6.1 applied to S(δ)=S for any δ, to



Convergence and multiplicities for the Lempert function 197

show that

LS(z)≤ lim inf
ε!0

LS(ε)(z)=: �,(12)

it will be enough to provide: some increasing function g such that g(0)=0 and,
for any δ>0, maps ϕδ∈Hol(D, (1+g(δ))Ω) and subsets {Aδ

j}1≤j≤N of Ω such that
(ϕδ, {Aδ

j}1≤j≤N ) is admissible for S and z, and that

S(ϕδ, {Aδ
j}1≤j≤N )= �.

The systems S(ε) all have single poles, so the definition of � means that there
exist ϕm∈Hol(D, Ω), εm!0, and points αj,m, α′

j,m, α′′
j,m∈D such that ϕm(αj,m)=

aj(εm), 1≤j≤M , and ϕm(α′
j,m)=a′

j(εm), ϕm(α′′
j,m)=a′′

j (εm), M +1≤j≤N ; and
they satisfy

M∑
j=1

log |αj,m|+
N∑

j=M+1

(log |α′
j,m|+log |α′′

j,m|)= �+δ(m),

with limm!∞ δ(m)=0.
Passing to a subsequence, for which we keep the same notation, we may as-

sume that αj,m!αj∈D, α′
j,m!α′

j∈D, α′′
j,m!α′′

j ∈D as m!∞, and that ϕm!ϕ̃∈
Hol(D, Ω) uniformly on compact subsets of D. Furthermore, by compactness of the
unit circle, there exists ṽj∈[vj ]∩S2n−1 such that, taking a further subsequence,

lim
m!∞

a′′
j (εm)−a′

j(εm)
‖a′′

j (εm)−a′
j(εm)‖ = ṽj .

By renumbering the points and exchanging a′
j and a′′

j as needed, we may assume
that there are integers M ′≤M≤N1≤N2≤N3≤N such that

αj ∈D for 1≤ j≤M ′,

αj ∈ ∂D for M ′+1≤ j≤M,

α′
j = α′′

j ∈D for M +1≤ j≤N1,

|α′
j |< |α′′

j |< 1 for N1+1≤ j≤N2,

|α′
j |< 1, |α′′

j |= 1 for N2+1≤ j≤N3,

|α′
j |= |α′′

j |= 1 for N3+1≤ j≤N.

Then

� = lim
m!∞

( M∑
j=1

log |αj,m|+
N∑

j=M+1

(log |α′
j,m|+log |α′′

j,m|)
)

=
M ′∑
j=1

log |αj |+
N1∑

j=M+1

2 log |α′
j |+

N2∑
j=N1+1

(log |α′
j |+log |α′′

j |)+
N3∑

j=N2+1

log |α′
j |.
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Now we choose

Aj = {αj} for 1≤ j ≤M ′,

Aj = ∅ for M ′+1≤ j≤M,

Aj = {α′
j} for M +1≤ j≤N1,

Aj = {α′
j, α

′′
j } for N1+1≤ j≤N2,

Aj = {α′
j} for N2+1≤ j≤N3,

Aj = ∅ for N3+1≤ j≤N.

Notice that (ϕ̃, {Aj}1≤j≤N ) hits the correct points but does not necessarily produce
an admissible choice, because for some j, N1+1≤j≤N2, we could have

mϕ̃,aj,Ψj
(α′

j)+mϕ̃,aj ,Ψj
(α′′

j )> 2 = τj.

So, in order to apply Lemma 6.1 with δ!0, we set Aδ
j =Aj for any δ>0 and

ϕ̃δ(ζ) := ϕ̃(ζ)+δζ

[ M ′∏
j=1

(ζ−αj)
N1∏

j=M+1

(ζ−α′
j)

2
N2∏

j=N1+1

(ζ−α′
j)(ζ−α′′

j )
N3∏

j=N2+1

(ζ−α′
j)

]
v,

where v∈Cn is a unit vector chosen such that πj(v) �=0, N1+1≤j≤N3. For any α∈⋃N
j=1 Aj , ϕ̃δ(α)=ϕ̃(α). There is a constant C>0 such that ϕ̃δ(D)⊂Ω+CδB(0, 1).

All the following considerations apply when δ is small enough.
For 1≤j≤M ′, mϕ̃δ,aj,Ψj

(αj)=1, because ϕ̃δ takes the correct value, and the
multiplicity cannot be more than 1=τj in these cases.

For N1+1≤j≤N3, we have

πj((ϕ̃δ)′(α′
j))= πj((ϕ̃)′(α′

j))+δpjπj(v),

where pj is some complex scalar which does not depend on δ, so for δ>0 small
enough, this projection does not vanish and we have mϕ̃δ,aj ,Ψj

(α′
j)=1. An analogous

reasoning shows that mϕ̃δ,aj ,Ψj
(α′′

j )=1 for N1+1≤j≤N2.
For M +1≤j≤N1, we have

(ϕ̃δ)′(α′
j)= (ϕ̃)′(α′

j),

and by the uniform convergence on compact sets,

(ϕ̃)′(α′
j)= lim

m!∞
ϕm(α′

j,m)−ϕm(α′′
j,m)

α′
j,m−α′′

j,m

= lim
m!∞

a′
j(εm)−a′′

j (εm)
α′

j,m−α′′
j,m

,

which must be colinear to vj by definition. Therefore mϕ̃δ,aj ,Ψj
(α′

j)=2 for M +1≤
j≤N1.
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Thus (ϕ̃δ, {Aj}1≤j≤N ) is admissible for S and 0, and S(ϕ̃δ, {Aj}1≤j≤N )=�,
which proves (12).

Now we need to show that

LS(z)≥ lim sup
ε!0

LS(ε)(z).(13)

We use Lemma 6.1(ii). For any δ>0, we need to construct a positive function g

such that limε!0 g(ε)=0, and, for ε small enough, ϕε∈Hol(D(1+g(ε))Ω) and sets
{Aj(ε)}1≤j≤N such that (ϕε, {Aj(ε)}1≤j≤N ) is admissible for S(ε) and 0 and

S(ϕε, {Aj(ε)}1≤j≤N )≤LS(z)+δ.

We start with an admissible choice (ϕ, {Aj}1≤j≤N ) for S, such that

S(ϕ, {Aj}1≤j≤N )≤LS(z)+
δ

2
.

To fix notation, suppose that, after renumbering and exchanging the points as
needed, there exist integers M ′≤M and N1, N2, N3∈{M, ..., N} such that

Aj = {αj} for 1≤ j ≤M ′,

Aj = ∅ for M ′+1≤ j≤M,

Aj = {α′
j}, mϕ,aj,Ψj (α

′
j)= 2 for M +1≤ j≤N1,

Aj = {α′
j, α

′′
j }, α′

j �= α′′
j for N1+1≤ j≤N2,

Aj = {α′
j}, mϕ,aj,Ψj (α

′
j)= 1 for N2+1≤ j≤N3,

Aj = ∅ for N3+1≤ j≤N.

The definition of Ψj (see the computations performed in the elementary ex-
ample) implies that, for M +1≤j≤N1, ϕ′(α′

j)·�w=0 for any w∈v⊥j . We perturb ϕ

to make sure that, on the other hand, ϕ′(α′
j)·v̄j �=0 in the same index range. For

η(ε)∈C to be chosen later, set

ϕ̃(ζ) := ϕ(ζ)+η(ε)
[
ζ

M ′∏
j=1

(ζ−αj)
N2∏

j=N1+1

(ζ−α′
j)(ζ−α′′

j )
N3∏

j=N2+1

(ζ−α′
j)

]

×
( N1∑

j=M+1

[
(ζ−α′

j)
∏

M+1≤k≤N1
k 	=j

(ζ−α′
k)2

]
vj

)
.

The map ϕ̃ depends on ε and is again admissible.
We have positive constants C1, C2 and C3 such that
1. ϕ̃′(α′

j)=λjvj , with C−1
1 |η(ε)|≤|λj|≤C1|η(ε)|,

2. ‖ϕ̃−ϕ‖∞≤C2|η(ε)|,
3. ϕ̃(D)⊂(1+C3|η(ε)|)Ω;
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in particular ϕ̃ will be bounded by constants independent of ε, along with all its
derivatives on any given compact subset of D.

For M +1≤j≤N and ε in a neighborhood of 0, a′′
j (ε)−a′

j(ε)=nj(ε)vj(ε), where
‖vj(ε)‖=1, limε!0 vj(ε)=vj and nj(ε)∈C.

For |ε| small enough, we now may define

Aj(ε) := Aj for 1≤ j ≤M and N1+1≤ j≤N,

Aj(ε) :=
{

α′
j , α

′
j +

nj(ε)
λj

}
for M +1≤ j≤N1.

We shall need to add to ϕ̃ a vector-valued correcting term obtained by Lagrange in-
terpolation. To this end, we write B(ε):=

⋃N
j=1 Aj(ε), and values to be interpolated,

w(α), for α∈B(ε). Let

w(αj) := aj(ε)−aj = aj(ε)−ϕ̃(αj) for 1≤ j ≤M ′,

w(α′
j) := a′

j(ε)−aj = a′
j(ε)−ϕ̃(α′

j) for M +1≤ j≤N1,

w

(
α′

j +
nj(ε)
λj

)
:= a′′

j (ε)−ϕ̃

(
α′

j +
nj(ε)
λj

)
for M +1≤ j≤N1,

w(α′
j) := a′

j(ε)−aj = a′
j(ε)−ϕ̃(α′

j) for N1+1≤ j≤N2,

w(α′′
j ) := a′′

j (ε)−aj = a′′
j (ε)−ϕ̃(α′′

j ) for N1+1≤ j≤N2,

w(α′
j) := a′

j(ε)−aj = a′
j(ε)−ϕ̃(α′

j) for N2+1≤ j≤N3.

We denote by Pε the solution to the interpolation problem

{P (α)= w(α) : α∈B(ε)}.

Let ϕε :=ϕ̃+Pε∈Hol(D, Ωε). The domain Ωε will be specified below. By construc-
tion (ϕε, {Aj(ε)}1≤j≤N ) is admissible for S(ε), and for |ε| small enough,

S(ϕε, {Aj(ε)}1≤j≤N )≤LS(z)+δ,

provided that, for M +1≤j≤N1,

lim
ε!0

nj(ε)
λj

= 0.(14)

Now we need to show that the correction is small, more precisely that we can
choose η(ε) so that the above condition is satisfied and limε!0 ‖Pε‖∞=0. Then we
can choose a function g tending to 0 such that

Ωε = (1+g(ε))Ω⊃ (1+C3|η(ε)|)Ω+B(0, ‖Pε‖∞).
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Write Πα for the unique (scalar) polynomial of degree less or equal to d:=
#B(ε)−1 (d does not depend on ε) such that

Πα(α)= 1 and Πα(β)= 0 for any β ∈B(ε)\{α}.
Then

Pε =
∑

α∈B(ε)

Παw(α).

For α∈⋃
1≤j≤M,N1+1≤j≤N Aj , the supremum norm ‖Πα‖∞ is uniformly bounded,

because dist(α, B(ε)\{α})≥γ>0 with γ independent of ε. It also follows from the
hypotheses of the theorem and the choice of w that

lim
ε!0

max
{
‖w(α)‖ : α∈

⋃
1≤j≤M

N1+1≤j≤N

Aj

}
= 0.

For M +1≤j≤N1, we need an elementary lemma about Lagrange interpolation.

Lemma 6.2. Let x0, ..., xd∈D and w0, w1∈Cn. Suppose that there exists γ>0
such that |x0−x1|≤γ and dist([x0, x1], {x2, ..., xd})≥2γ, where [x0, x1] is the real
line segment from x0 to x1.

Let P be the unique (Cn-valued) polynomial of degree less or equal to d such
that

P (x0)= w0, P (x1)= w1 and P (xj)= 0, 2≤ j ≤ d.

Then there exist constants L1 and L0 depending only on γ and d such that

sup
ζ∈D

‖P (ζ)‖≤L1

∥∥∥w1−w0

x1−x0

∥∥∥+L0‖w0‖.

We will prove this lemma a little later. It yields, for M +1≤j≤N1,

sup
ζ∈D

∥∥∥∥Πα′
j
(ζ)w(α′

j)+Πα′
j+nj(ε)/λj

(ζ)w
(

α′
j +

nj(ε)
λj

)∥∥∥∥
≤L1

∣∣∣∣ λj

nj(ε)

∣∣∣∣
∥∥∥∥a′′

j (ε)−ϕ̃

(
α′

j +
nj(ε)
λj

)
−(a′

j(ε)−ϕ̃(α′
j))

∥∥∥∥+L0‖a′
j(ε)−aj‖.

We now estimate the first term in the last sum above. By the Taylor formula,

a′′
j (ε)−ϕ̃

(
α′

j +
nj(ε)
λj

)
−(a′

j(ε)−ϕ̃(α′
j))= a′′

j (ε)−a′
j(ε)−nj(ε)vj +R2(ε)

= nj(ε)(vj(ε)−vj)+R2(ε),
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where ‖R2(ε)‖≤C|nj(ε)|2|λj |−2 with a constant C independent of ε by the bounded-
ness of the derivatives of ϕ̃. Finally

sup
ζ∈D

∥∥∥∥Πα′
j
(ζ)w(α′

j)+Πα′
j+nj(ε)/λj

(ζ)w
(

α′
j+

nj(ε)
λj

)∥∥∥∥
≤C(‖vj(ε)−vj‖|η(ε)|+|nj(ε)| |η(ε)|−1+‖a′

j(ε)−aj‖).

To satisfy (14), we need to have limε!0 nj(ε)/η(ε)=0; to make sure, in addition,
that the whole sum above tends to 0 as ε tends to 0, it will be enough to choose
η(ε) going to zero, but more slowly than |nj(ε)|=‖a′′

j (ε)−a′
j‖ for M +1≤j≤N1.

Proof of Lemma 6.2. Let

Q(X, Y ) :=
d∏

k=2

X−xk

Y −xk
.

Then Q and all of its derivatives are bounded for X∈D and Y ∈[x0, x1], and

P (X)=
X−x0

x1−x0
Q(X, x1)w1+

X−x1

x0−x1
Q(X, x0)w0

=
w1−w0

x1−x0
(X−x0)Q(X, x1)+

(
−Q(X, x1)+(X−x1)

Q(X, x1)−Q(X, x0)
x0−x1

)
w0.

Then the conclusion follows from the boundedness of Q and Q′ and the mean-value
theorem. �

7. Comparison with previous results

Denote by LS the old-style generalized Lempert function defined in [14]. Since
it was not monotonic, we also needed the following definition.

Definition 7.1. Let

S := {(aj, Ψj) : 1≤ j≤N} and S1 := {(aj, Ψ1
j) : 1≤ j≤N},

where aj∈Ω and Ψj and Ψ1
j are local indicators. We define

L̃S(z) := inf{LS1(z) : Ψ1
j ≥Ψj+Cj , 1≤ j≤N}.

Lemma 7.2. If S={(aj, Ψj):1≤j≤N}, where the Ψj are elementary local
indicators, then for any z∈Ω, LS(z)≤L̃S(z).
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We skip the easy proof, which makes use of Theorem 3.2.
We now return to the study of the example presented in [14]. Let us recall the

notation. For z∈D2,

Ψ0(z) := max(log |z1|, log |z2|) and ΨV (z) := max(log |z1|, 2 log |z2|).

For a, b∈D and ε∈C, let

Sε := {((a, 0), Ψ0), ((b, 0), Ψ0), ((b, ε), Ψ0), ((a, ε), Ψ0)},
S := {((a, 0), ΨV ), ((b, 0), ΨV )}.

Here the Green functions are explicitly known and the following is proved in [14,
p. 397].

Proposition 7.3. If b=−a and |a|2<|γ|<|a|, then GS(0, γ)<L̃S(0, γ).

It follows from our Theorem 3.3 that for any z∈D2, limε!0 LSε(z)=LS(z).
It is a consequence of [14, Theorem 5.1] that for b=−a and |a|3/2<|γ|<|a|, then
LS(0, γ)>GS(0, γ); therefore LSε(0, γ)>GSε(0, γ) for |ε| small enough.

On the other hand, when |γ|<|a|3/2, the old generalized Lempert function does
not provide the correct limit of the single pole Lempert functions.

Proposition 7.4. For b=−a and |a|2<|γ|<|a|3/2, LS(0, γ)<L̃S(0, γ).

We omit the proof. We note that the mappings ϕ exhibiting the strict inequality
are obtained with #A1=2 and #A2=1, but ϕ has multiplicity 2 at the single point
of A2.

A complete computation can be found in [15].
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