© 2008 by Institut Mittag-Leffler. All rights reserved

Indefinite higher Riesz transforms

Toshiyuki Kobayashi and Andreas Nilsson

Abstract. Stein's higher Riesz transforms are translation invariant operators on $L^2(\mathbf{R}^n)$ built from multipliers whose restrictions to the unit sphere are eigenfunctions of the Laplace–Beltrami operators. In this article, generalizing Stein's higher Riesz transforms, we construct a family of translation invariant operators by using discrete series representations for hyperboloids associated to the indefinite quadratic form of signature (p,q). We prove that these operators extend to L^r -bounded operators for $1 < r < \infty$ if the parameter of the discrete series representations is generic.

1. Introduction and statement of main results

For a measurable bounded function m on \mathbf{R}^n , the multiplier operator $T_m \colon f \mapsto \mathcal{F}^{-1}(m\mathcal{F}f)$ defines a continuous, translation invariant operator on $L^2(\mathbf{R}^n)$, where \mathcal{F} is the Fourier transform.

Classic examples are the Riesz transforms

$$(R_j f)(x) := \lim_{\varepsilon \to 0} \frac{\Gamma((n+2)/2)}{\pi^{(n+2)/2}} \int_{|y| > \varepsilon} \frac{y_j}{|y|^{n+1}} f(x-y) \, dy, \quad 1 \le j \le n,$$

which are associated with the multipliers $m_j(\xi) := |\xi|^{-1} \xi_j$. One of the important properties of the Riesz transforms is that R_j extends to a continuous operator on the Banach space $L^r(\mathbf{R}^n)$ for any $1 < r < \infty$. From a group theoretic view point, the space $\mathcal{M}_2(\mathbf{R}^n)$ of all continuous, translation invariant operators on $L^2(\mathbf{R}^n)$ is naturally a representation space of the general linear group $\mathrm{GL}(n,\mathbf{R})$ by

$$\mathcal{M}_2(\mathbf{R}^n) \longrightarrow \mathcal{M}_2(\mathbf{R}^n), \quad T \longmapsto L_g \circ T \circ L_g^{-1}, \quad g \in \mathrm{GL}(n, \mathbf{R}),$$

The first author was partially supported by Grant-in-Aid for Scientific Research 18340037, Japan Society for the Promotion of Science.

The second author was partially supported by the Japan Society for the Promotion of Science.

where $(L_g f)(x) := f(g^{-1}x)$. Then, it is noteworthy that the Riesz transforms R_j , $1 \le j \le n$, span the simplest non-trivial representation (an irreducible *n*-dimensional representation) of the orthogonal group O(n).

More generally, E. M. Stein introduced a family of bounded translation invariant operators T_m (higher Riesz transforms) associated with multipliers m having the following two properties:

$$(1.1)$$
 m is a homogeneous function of degree 0,

$$(1.2) m|_{S^{n-1}} \in \mathcal{H}^k(\mathbf{R}^n).$$

The condition (1.1) is equivalent to the fact that m is constant on rays emanating from the origin. Thus, m is completely determined by its restriction to the unit sphere. The condition (1.2) concerns this restriction. Here, $\mathcal{H}^k(\mathbf{R}^n)$ denotes the space of spherical harmonics of degree k defined by

(1.3)
$$\mathcal{H}^k(\mathbf{R}^n) := \{ f \in C^{\infty}(S^{n-1}) : \Delta_{S^{n-1}} f = -k(k+n-2)f \},$$

where $\Delta_{S^{n-1}}$ is the Laplace–Beltrami operator on the unit sphere S^{n-1} . Then, we have the following consequence.

Fact 1.1. (See [6, Chapter II, Theorem 3]) Suppose $k \in \mathbb{N}$. Then, for any m satisfying (1.1) and (1.2), T_m extends to a continuous operator on the Banach space $L^r(\mathbb{R}^n)$ for any $1 < r < \infty$.

We note that T_m corresponds to the identity operator for k=0, and to the Riesz transforms for k=1. For general k, $\{T_m:m \text{ satisfies } (1.1) \text{ and } (1.2)\}$ forms an irreducible O(n) submodule in $\mathcal{M}_2(\mathbf{R}^n)$.

In the previous paper [4], we analyzed translation invariant operators from group theoretic view points, and found the following phenomenon: L^2 -bounded translation invariant operators with 'large symmetries' are mostly unbounded on $L^r(\mathbf{R}^n)$, $r \neq 2$, except for the cases when they are built from higher Riesz transforms, as far as 'large symmetries' are defined by *finite*-dimensional representations of affine subgroups (see e.g. [4, Theorem 9]).

The aim of this paper is to construct a family of L^r -bounded translation invariant operators, $1 < r < \infty$, with 'large symmetries' by using *infinite*-dimensional representations.

To be more precise, we take a quadratic form

$$Q(\xi) := \xi_1^2 + \ldots + \xi_p^2 - \xi_{p+1}^2 - \ldots - \xi_{p+q}^2$$

of a general signature (p,q), p>1, and work on the hyperboloid

$$X_{p,q} := \{ \xi \in \mathbf{R}^{p+q} : Q(\xi) = 1 \},$$

which is a (non-singular) submanifold in the open domain $\mathbf{R}_{+}^{p,q} := \{\xi \in \mathbf{R}^{p+q} : Q(\xi) > 0\}$ of \mathbf{R}^{p+q} . We endow $X_{p,q}$ with the standard pseudo-Riemannian structure of signature (p-1,q), and introduce a dense subspace of L^2 -eigenfunctions of the Laplace–Beltrami operator $\Delta \equiv \Delta_{X_{p,q}}$ as

$$\mathcal{H}^k(\mathbf{R}^{p,q}) := \{ f \in L^2(X_{p,q}) : \Delta f = -k(k+p+q-2)f \}_{K\text{-finite}}.$$

See Section 2 for more details. In the case (p,q)=(n,0), we note $X_{p,q}=S^{n-1}$, $\mathbf{R}_{+}^{p,q}=\mathbf{R}^{n}$, and $\mathcal{H}^{k}(\mathbf{R}^{p,q})=\mathcal{H}^{k}(\mathbf{R}^{n})$.

In our setting for general p and q, we replace (1.2) with

(1.4)
$$m|_{X_{p,q}} \in \mathcal{H}^k(\mathbf{R}^{p,q})$$
 and $\sup m \subset \overline{\mathbf{R}^{p,q}_+}$

Then, the following subspace of $\mathcal{M}_2(\mathbf{R}^{p+q})$:

$$\{T_m : m \text{ satisfies } (1.1) \text{ and } (1.4)\}$$

forms a dense subspace of an irreducible (infinite-dimensional) unitary representation of the indefinite orthogonal group O(p,q) if p>1 and q>0. Our L^r -boundedness theorem is now stated as follows:

Theorem 1. Suppose k>4, if p+q is even, or k>3, if p+q is odd. Then, for any m satisfying (1.1) and (1.4), the multiplier operator T_m extends to a continuous operator on $L^r(\mathbf{R}^{p+q})$ for any $1< r<\infty$.

Remark 1.2. In place of $X_{p,q} \subset \mathbf{R}^{p,q}_+$, we can also consider the open domain $\mathbf{R}^{p,q}_- := \{\xi \in \mathbf{R}^{p+q} : Q(\xi) < 0\}$ and L^2 -eigenfunctions on another hyperboloid $X'_{p,q} := \{\xi \in \mathbf{R}^{p+q} : Q(\xi) = -1\}$. Then, for m supported on $\overline{\mathbf{R}^{p,q}_-}$ an analogous result also holds by swapping p and q because $X'_{p,q} \simeq X_{q,p}$ and $\mathbf{R}^{p,q}_- \simeq \mathbf{R}^{p,q}_+$.

The operators T_m with m satisfying (1.1) and (1.4) may be regarded as a generalization of Stein's higher Riesz transforms in the following sense:

spherical harmonics on
$$S^{n-1} \Longrightarrow$$
 discrete series for $X_{p,q}$,
 $O(n) \Longrightarrow$ indefinite orthogonal group $O(p,q)$.

We shall call T_m indefinite Riesz transforms. Then, Theorem 1 for indefinite Riesz transforms is a generalization of Fact 1.1.

A distinguishing feature of our generalization is that the restriction of the multiplier m to the unit sphere is no more infinitely differentiable. Our multiplier m has the following property:

$$m(\xi) = 0 \quad \text{if } \xi_1^2 + \ldots + \xi_p^2 \leq \xi_{p+1}^2 + \ldots + \xi_{p+q}^2.$$

Unlike Fefferman's ball multiplier theorem [2] and its descendants [4] for multiplier operators with 'large symmetries', the indefinite Riesz transforms T_m remain L^r -bounded for any r, $1 < r < \infty$.

The crucial point of the proof of Theorem 1 is the asymptotic estimate of the multiplier $m(\xi)$ together with its differentials as ξ approaches the boundary of $\mathbf{R}^{p,q}_+$. This estimate is carried out by using techniques of infinite-dimensional representation theory of $\mathrm{O}(p,q)$ and non-commutative harmonic analysis (see e.g. [1], [5] and [7]).

Notation.
$$\mathbf{R}_{+} := \{x \in \mathbf{R} : x > 0\}, \ \mathbf{N} = \{0, 1, 2, ...\}, \ \text{and} \ \mathbf{N}_{+} := \{1, 2, ...\}.$$

2. Basic properties of discrete series for $X_{p,q}$

In this section, after a quick review of some of the fundamental facts concerning discrete series representations for hyperboloids $X_{p,q}$, we introduce the linear vector space \mathcal{V}_k^{∞} consisting of smooth functions on an open domain $\mathbf{R}_+^{p,q}$ satisfying a certain decay condition. This space \mathcal{V}_k^{∞} will bridge discrete series for $X_{p,q}$ and 'indefinite higher multipliers'.

In what follows, we shall use the notation

$$\begin{split} \xi &= (\xi', \xi'') \in \mathbf{R}^{p+q}, \\ Q(\xi) &= |\xi'|^2 - |\xi''|^2 = \xi_1^2 + \ldots + \xi_p^2 - \xi_{p+1}^2 - \ldots - \xi_{p+q}^2, \\ |\xi|^2 &= |\xi'|^2 + |\xi''|^2 = \xi_1^2 + \ldots + \xi_p^2 + \xi_{p+1}^2 + \ldots + \xi_{p+q}^2. \end{split}$$

Then, the indefinite orthogonal group

$$O(p,q) := \{ g \in GL(p+q; \mathbf{R}) : Q(g\xi) = Q(\xi) \text{ for any } \xi \in \mathbf{R}^{p+q} \}$$

is non-compact if p, q>0. Throughout this paper, we shall write G:=O(p,q), and denote by \mathfrak{g} the Lie algebra $\mathfrak{o}(p,q)$ of G. The group G contains

$$K := \left\{ \begin{pmatrix} A & 0 \\ 0 & B \end{pmatrix} : A \in \mathcal{O}(p) \text{ and } B \in \mathcal{O}(q) \right\} \simeq \mathcal{O}(p) \times \mathcal{O}(q)$$

as a maximal compact subgroup. We note that in the case q=0, G=K is nothing but the orthogonal group O(p).

We denote by $\mathbf{R}^{p,q}$ the Euclidean space \mathbf{R}^{p+q} equipped with the flat pseudo-Riemannian structure $ds^2 = d\xi_1^2 + ... + d\xi_p^2 - d\xi_{p+1}^2 - ... - d\xi_{p+q}^2$. Then, ds^2 is non-degenerate when restricted to the submanifold $X_{p,q}$, and defines a pseudo-Riemannian structure $g_{X_{p,q}}$ of signature (p-1,q) on $X_{p,q}$. Obviously, the group O(p,q) acts on $\mathbf{R}^{p,q}$ and $X_{p,q}$, respectively, as isometries.

The action of O(p,q) on $X_{p,q}$ is transitive, and the isotropy subgroup at $^t(1,0,...,0)$ is identified with O(p-1,q). Thus, $X_{p,q}$ is realized as a homogeneous space:

$$O(p,q)/O(p-1,q) \simeq X_{p,q}$$
.

The group G acts on the space of functions on $\mathbf{R}^{p,q}$, $\mathbf{R}^{p,q}_+$ and also on $X_{p,q}$ by translations:

$$\pi(g): f \longmapsto f(g^{-1}\cdot)$$

In particular, G acts unitarily on the Hilbert space $L^2(X_{p,q})$ consisting of square integrable functions on $X_{p,q}$ with respect to the measure induced by $g_{X_{p,q}}$.

The differential of π , denoted by $d\pi$, is formally defined by

$$d\pi(Y)f := \frac{d}{dt}\Big|_{t=0} f(e^{-tY} \cdot) \text{ for } Y \in \mathfrak{g}.$$

Next, we consider L^2 -eigenfunctions of the Laplace–Beltrami operator $\Delta \equiv \Delta_{X_{p,q}}$ on $X_{p,q}$:

$$L^2_k(X_{p,q}) := \{ f \in L^2(X_{p,q}) : \Delta f = -k(k+p+q-2)f \}.$$

Here, the differential equation is interpreted as that of distributions. Then, $L_k^2(X_{p,q})$ is a closed subspace of the Hilbert space $L^2(X_{p,q})$ (possibly, equal to zero). Since Δ commutes with the G-action, $L_k^2(X_{p,q})$ is a G-invariant subspace.

Suppose $f \in L^2_k(X_{p,q})$. We say that f is K-finite if \mathbb{C} -span $\{\pi(k)f:k \in K\}$ is finite-dimensional. We set the vector space consisting of K-finite vectors as

(2.1)
$$\mathcal{H}^k(\mathbf{R}^{p,q}) := L_k^2(X_{p,q})_{K\text{-finite}}.$$

We note that any function of $\mathcal{H}^k(\mathbf{R}^{p,q})$ is real-analytic although the differential operator Δ is not elliptic. We also note that if q=0 then G=K and $\mathcal{H}^k(\mathbf{R}^{p,0})=L_k^2(S^{p-1})_{K\text{-finite}}=L_k^2(S^{p-1})$.

We set

$$\rho := \frac{p + q - 2}{2} \quad \text{and} \quad \Lambda_{+}(p, q) := \begin{cases} \{k \in \mathbf{Z} : k > -\rho\}, & q \neq 0, \\ \{k \in \mathbf{Z} : k \geq 0\}, & q = 0. \end{cases}$$

We collect below some known results on discrete series representations for hyperboloids $X_{p,q}$. See [1] and [7] for the pioneering work. See also [5, Fact 5.4] for a survey on algebraic, geometric, and analytic aspects of these representations from modern representation theory.

Fact 2.1. Suppose p>1.

- (1) If $k \in \Lambda_+(p,q)$ then $L_k^2(X_{p,q})$ is non-zero. It is irreducible as a representation of G. Conversely, any (non-zero) irreducible closed subspace of $L^2(X_{p,q})$ is of the form $L_k^2(X_{p,q})$ for some $k \in \Lambda_+(p,q)$.
- (2) $\mathcal{H}^k(\mathbf{R}^{p,q})$ is a K-invariant dense subspace of $L^2_k(X_{p,q})$. As a representation of K,

$$\mathcal{H}^{k}(\mathbf{R}^{p,q}) \simeq \begin{cases} \bigoplus_{\substack{a,b \in \mathbf{N} \\ a-b \geq k+q \\ a-b \equiv k+q \bmod 2}} \mathcal{H}^{a}(\mathbf{R}^{p}) \otimes \mathcal{H}^{b}(\mathbf{R}^{q}), & q > 0, \end{cases}$$

(3) Suppose further that q>0. If $f\in\mathcal{H}^k(\mathbf{R}^{p,q})$, then there exists a function $a(\omega,\eta)\in C^{\infty}(S^{p-1}\times S^{q-1})$ such that

$$f(\omega \cosh t, \eta \sinh t) = a(\omega, \eta)e^{-(k+2\rho)t}(1+e^{-2t}O(t)), \text{ as } t \to \infty.$$

(4)
$$d\pi(Y)\mathcal{H}^k(\mathbf{R}^{p,q})\subset\mathcal{H}^k(\mathbf{R}^{p,q})$$
 for any $Y\in\mathfrak{g}$.

The irreducible unitary representation of G realized on a closed subspace of $L^2(X_{p,q})$ is called a discrete series representation for the hyperboloid $X_{p,q}$. Discrete series representations for $X_{p,q}$ exist if p>1. By Fact 2.1 (1), $\Lambda_+(p,q)$ is the parameter space of discrete series representations for $X_{p,q}$.

Remark 2.2. (1) In the literature, the normalization of the parameter is often taken to be

$$\lambda := k + \rho \left(= k + \frac{p + q - 2}{2} \right).$$

Then, for p>1 and q>0, $k\in\Lambda_+(p,q)$ if and only if

$$\lambda > 0$$
 and $\lambda \in \mathbf{Z} + \frac{p+q}{2}$.

(2) If $f \in \mathcal{H}^k(\mathbf{R}^{p,q})$ belongs to the K-type $\mathcal{H}^a(\mathbf{R}^p) \otimes \mathcal{H}^b(\mathbf{R}^q)$ (see Fact 2.1 (2)), then we have an explicit formula of f as follows:

$$(2.2) f(\omega \cosh t, \eta \sinh t) = h_a(\omega)h_b(\eta)(\cosh t)^a(\sinh t)^b\varphi_{i\lambda}^{(b+q/2-1,a+p/2-1)}(t),$$

for some functions $h_a \in \mathcal{H}^a(\mathbf{R}^p)$ and $h_b \in \mathcal{H}^b(\mathbf{R}^q)$. Here $\lambda = k + \rho$, and $\varphi_{i\lambda}^{(\lambda'',\lambda')}(t)$, $\lambda'' \neq -1, -2, ...$, is the Jacobi function which is the unique solution to the following differential equation:

$$(L+(\lambda'+\lambda''+1)^2-\lambda^2)\varphi=0, \quad \varphi(0)=1,$$

if we set $L:=d^2/dt^2+((2\lambda'+1)\tanh t+(2\lambda''+1)\coth t)d/dt$. Equivalently, in terms of the hypergeometric function ${}_2F_1$, we have

$$\varphi_{i\lambda}^{(\lambda^{\prime\prime},\lambda^\prime)}(t) = {}_2F_1\bigg(\frac{\lambda^\prime\!+\!\lambda^{\prime\prime}\!+\!1\!-\!\lambda}{2},\frac{\lambda^\prime\!+\!\lambda^{\prime\prime}\!+\!1\!+\!\lambda}{2};\lambda^{\prime\prime}\!+\!1;-\sinh^2t\bigg).$$

With these preparations, let us investigate the asymptotic behavior of the multiplier m near the boundary of $\mathbf{R}_{+}^{p,q}$. For this, we fix $\boldsymbol{\varkappa} \in \mathbf{R}_{+}$ and let

 $\mathcal{V}_{\varkappa} := \left\{ f \in C^{\infty}(\mathbf{R}^{p,q}_+) : (1) \ f \text{ is a homogeneous function of degree } 0, \right\}$

$$(2.3) \qquad \qquad (2) \sup_{\xi \in \mathbf{R}^{p,q}_{+}} |f(\xi)| \left(\frac{Q(\xi)}{|\xi|^2}\right)^{-\varkappa} < \infty \right\}.$$

Remark 2.3. Obviously, $\mathcal{V}_{\varkappa} \subset \mathcal{V}_{\varkappa'}$ if $\varkappa > \varkappa'$.

For any $g \in G$, we set $c := \max(\|g\|, \|g^{-1}\|)$, where $\|g\|$ denotes the operator norm of g. This means that

$$c^{-1}|\xi| \le |g\xi| \le c|\xi|, \quad \xi \in \mathbf{R}^{p+q}.$$

Further, $Q(g\xi)=Q(\xi)$. Hence, \mathcal{V}_{\varkappa} is a G-invariant subspace of $C^{\infty}(\mathbf{R}^{p,q}_+)$. We define

$$\mathcal{V}_{\varkappa}^{\infty}:=\{f\in\mathcal{V}_{\varkappa}:d\pi(X_1)\circ\dots\circ d\pi(X_l)f\in\mathcal{V}_{\varkappa}\text{ for any }l=0,1,\dots\text{ and }X_1,\dots,X_l\in\mathfrak{g}\}.$$

Lemma 2.4. Let m be as in Theorem 1. Then $m|_{\mathbf{R}^{p,q}_{\perp}} \in \mathcal{V}^{\infty}_{(k/2)+\rho}$.

Proof. Suppose $\xi \in \mathbb{R}^{p,q}_+$. Then, $Q(\xi) > 0$ and $Q(\xi)^{-1/2} \xi \in X_{p,q}$. Hence, we can find $\omega \in S^{p-1}$, $\eta \in S^{q-1}$ and $t \in \mathbb{R}$ such that

$$Q(\xi)^{-1/2}\xi = (\omega \cosh t, \eta \sinh t).$$

This means that

$$Q(\xi)^{-1}|\xi|^2 = \cosh^2 t + \sinh^2 t = \cosh 2t.$$

If m satisfies (1.1), then $m(\xi) = m(Q(\xi)^{-1/2}\xi) = m(\omega \cosh t, \eta \sinh t)$. Therefore, we have

$$\sup_{\xi \in \mathbf{R}^{p,q}} \left(\frac{|\xi|^2}{Q(\xi)} \right)^{\!\! k/2 + \rho} \! m(\xi) < \infty$$

by Fact 2.1 (3). Hence $m|_{\mathbf{R}^{p,q}_+} \in \mathcal{V}_{k/2+\rho}$. Hence, the lemma follows by iterating Fact 2.1 (4). \square

3. Proof of L^p -boundedness

For an open subset V in \mathbb{R}^n , we write $C^k(V)$ for the space of functions on V with continuous derivatives up to order k.

We recall from [6, Section IV, Theorem 3] the Hörmander–Mikhlin condition for L^r -multipliers:

Fact 3.1. Suppose $m \in C^{[n/2]+1}(\mathbf{R}^n \setminus \{0\})$ satisfies

(3.1)
$$\sup_{\xi \in \mathbf{R}^n \setminus \{0\}} |\xi|^{|\alpha|} \left| \frac{\partial^{\alpha} m(\xi)}{\partial \xi^{\alpha}} \right| < \infty$$

for all multi-indices α such that $|\alpha| \leq [n/2] + 1$. Then, the multiplier operator T_m extends to a continuous operator on $L^r(\mathbf{R}^n)$ for any r, $1 < r < \infty$.

In Section 5, we shall show the following result.

Proposition 3.2. If $f \in \mathcal{V}_{\kappa}^{\infty}$, then

(3.2)
$$\sup_{\xi \in \mathbf{R}_{2}^{p,q}} |\xi|^{|\alpha|} \left| \frac{\partial^{\alpha} f}{\partial \xi^{\alpha}} \right| < \infty$$

for any multi-index $\alpha \in \mathbb{N}^{p+q}$ with $|\alpha| \leq \varkappa$.

Proposition 3.3. For $f \in \mathcal{V}_{\varkappa}^{\infty}$ let F be the extension by zero of f to all of \mathbf{R}^n . Let N be any non-negative integer such that $N < \varkappa$. Then $F \in C^N(\mathbf{R}^n \setminus \{0\})$. In particular, F satisfies (3.1) for any α with $|\alpha| < \varkappa$.

Admitting Propositions 3.2 and 3.3 for a while, let us complete the proof of Theorem 1.

Proof of Theorem 1. Suppose m is as in Theorem 1. Then $m|_{\mathbf{R}^{p,q}_+} \in \mathcal{V}^{\infty}_{k/2+\rho}$ by Lemma 2.4. Hence, m satisfies (3.1) for any multi-index α with $|\alpha| < k/2 + \rho$ by Proposition 3.3.

Since the assumption k>4, if p+q is even, or k>3, if p+q is odd, implies that

$$\frac{k}{2} + \rho > \left\lceil \frac{p+q}{2} \right\rceil + 1$$

the Hörmander–Mikhlin condition for m is fulfilled. Therefore, the operator is bounded on $L^r(\mathbf{R}^n)$ by Fact 3.1. \square

4. Differential operators along O(p,q)-orbits

The vector space $\mathcal{V}_{\varkappa}^{\infty}$ in which our multiplier lives (see Lemma 2.4) is stable under the action of the Lie algebra \mathfrak{g} and the Euler operator $E = \sum_{i=1}^{p+q} \xi_i \, \partial/\partial \xi_i$. In

this section, we shall give a formula for the standard derivatives $\partial/\partial \xi_i$, $1 \le i \le p+q$, by means of $d\pi(Y)$, $Y \in \mathfrak{g}$, and E. The main result of this section is Proposition 4.3, and we shall study the space H_1 of coefficients (or more generally H_N ; see (4.11)) in Section 5.

In the polar coordinate for the first p-factor

$$(4.1) \mathbf{R}_{+} \times S^{p-1} \times \mathbf{R}^{q} \longrightarrow \mathbf{R}^{p+q}, \quad (r, \omega, \xi'') \longmapsto (r\omega, \xi''),$$

an easy computation shows that

(4.2)
$$\frac{\partial}{\partial \xi_i} = a_i(\omega) \frac{\partial}{\partial r} + \frac{1}{r} Y_i(\omega), \quad 1 \le i \le p,$$

where $a_i(\omega) \in C^{\infty}(S^{p-1})$ and Y_i is a smooth vector field on S^{p-1} .

In order to rewrite (4.2) by using the Lie algebra action $d\pi$, we note that $\mathfrak{g} = \mathfrak{o}(p,q)$ is given by matrices as

$$\begin{split} \mathfrak{g} &\simeq \left\{ \begin{pmatrix} A & B \\ {}^t\!B & C \end{pmatrix} : {}^t\!A = -A, \ {}^t\!C = -C \text{ and } B \in M(p,q;\mathbf{R}) \right\} \\ &= (\mathfrak{o}(p) + \mathfrak{o}(q)) + \mathfrak{p} \quad \text{(Cartan decomposition)}, \end{split}$$

where we set

$$\mathfrak{p} := \left\{ \begin{pmatrix} 0 & B \\ {}^t\!B & 0 \end{pmatrix} : B \in M(p,q;\mathbf{R}) \right\}.$$

Let $\mathfrak{X}(S^{p-1})$ be the vector space consisting of smooth vector fields on S^{p-1} . Since O(p) acts transitively on S^{p-1} , the map

$$C^{\infty}(S^{p-1}) \otimes \mathfrak{o}(p) \longrightarrow \mathfrak{X}(S^{p-1}), \quad (b, X) \longmapsto b \, d\pi(X),$$

is surjective. Let $\{K_h: 1 \le h \le \frac{1}{2}p(p-1)\}$ be a basis of the Lie algebra $\mathfrak{o}(p)$. Then, we can find $b_i^h \in C^{\infty}(S^{p-1})$ such that

(4.3)
$$Y_i(\omega) = \sum_h b_i^h(\omega) d\pi(K_h).$$

Next, we set

$$Y_{ij} := E_{i,p+j} + E_{p+j,i}, \quad 1 \le i \le p, \ 1 \le j \le q.$$

Here, E_{ij} are matrix units in $M(p+q, \mathbf{R})$. By definition, Y_{ij} spans \mathfrak{p} and $d\pi(Y_{ij})$ is the vector field on \mathbf{R}^{p+q} given as

(4.4)
$$d\pi(Y_{ij}) = \xi_{p+j} \frac{\partial}{\partial \xi_i} + \xi_i \frac{\partial}{\partial \xi_{p+j}}.$$

Lemma 4.1. For $1 \le i \le p$ we have

$$(4.5) \qquad \frac{\partial}{\partial \xi_i} = \frac{a_i(\omega)}{rQ(\xi)} \left(r^2 E - \sum_{k=1}^p \sum_{j=1}^q \xi_k \xi_{p+j} \, d\pi(Y_{kj}) \right) + \frac{1}{r} \sum_h b_i^h(\omega) \, d\pi(K_h),$$

and for $1 \le j \le q$

(4.6)
$$\frac{\partial}{\partial \xi_{p+j}} = \frac{1}{r^2} \left(\sum_{i=1}^p \xi_i \, d\pi(Y_{ij}) - \frac{\xi_{p+j}}{Q(\xi)} \left(r^2 E - \sum_{i=1}^p \sum_{k=1}^q \xi_i \xi_{p+k} \, d\pi(Y_{ik}) \right) \right).$$

Proof. By multiplying (4.4) by ξ_i and summing over $i, 1 \le i \le p$, we get

(4.7)
$$\frac{\partial}{\partial \xi_{p+j}} = \frac{1}{r^2} \left(\sum_{i=1}^p \xi_i \, d\pi(Y_{ij}) - \xi_{p+j} r \frac{\partial}{\partial r} \right),$$

where we have used that $r \partial/\partial r = \sum_{i=1}^{p} \xi_i \partial/\partial \xi_i$.

Next, we multiply (4.7) by ξ_{p+j} and sum over j, $1 \le j \le q$, we obtain the identity for the Euler operator $E_{\xi''} = \sum_{j=1}^{q} \xi_{p+j} \, \partial/\partial \xi_{p+j}$:

$$E_{\xi''} = \frac{1}{r^2} \sum_{i=1}^{p} \sum_{i=1}^{q} \xi_i \xi_{p+j} \, d\pi(Y_{ij}) - \frac{|\xi''|^2}{r^2} r \frac{\partial}{\partial r}.$$

Combining with the identity

$$E_{\xi''} + r \frac{\partial}{\partial r} = E$$

we get

(4.8)
$$r\frac{\partial}{\partial r} = \frac{1}{Q(\xi)} \left(r^2 E - \sum_{i=1}^p \sum_{j=1}^q \xi_i \xi_{p+j} \, d\pi(Y_{ij}) \right).$$

By (4.7), this proves (4.6).

To prove (4.5) we insert into (4.2) the expressions for $Y_i(\omega)$ and $\partial/\partial r$ obtained in (4.3) and (4.8), respectively. \square

To handle the coefficients of (4.5) and (4.6), we introduce the subspace, denoted by $H_{a,b,c}$, of $C^{\infty}(\mathbf{R}^{p,q}_+)$ for $(a,b,c) \in \mathbf{N}^3$ that consists of finite linear combinations of functions of the form

(4.9)
$$\frac{A(\omega)P_a(\xi'')}{r^{b-c}Q(\xi)^c} = \frac{A(\omega)P_a(\xi'')}{r^{b-c}(r^2 - |\xi''|^2)^c},$$

where P_a is a homogeneous polynomial of $\xi'' = (\xi_{p+1}, ..., \xi_{p+q}) \in \mathbf{R}^q$ of degree a and $A \in C^{\infty}(S^{p-1})$. If $f \in H_{a,b,c}$ and $g \in H_{a',b',c'}$ then $fg \in H_{a+a',b+b',c+c'}$, and likewise for finite linear combinations of such terms. We state this as

$$(4.10) H_{a,b,c}H_{a',b',c'} \subset H_{a+a',b+b',c+c'}.$$

We also define the space

(4.11)
$$H_N := \bigoplus_{\substack{a,b,c \in \mathbf{N} \\ a \le 2N, c \le N \\ b-a+c=N}} H_{a,b,c}.$$

The following lemma is an immediate consequence of (4.10).

Lemma 4.2. $H_N H_{N'} \subset H_{N+N'}$.

We write $H_N d\pi(\mathfrak{g})$ for the vector space consisting of differential operators on $\mathbf{R}^{p,q}_+$ which are of the form $\sum_j f_j d\pi(X_j)$ (a finite sum) for some $f_j \in H_N$ and $X_j \in \mathfrak{g}$. The point of the definition of H_N is that we have the following result.

Proposition 4.3. On $\mathbb{R}^{p,q}_+$,

$$\frac{\partial}{\partial \xi_i} \in H_1 d\pi(\mathfrak{g}) + C^{\infty}(\mathbf{R}_+^{p,q})E, \quad 1 \le i \le p+q.$$

Proof. In light of the formulas (4.5) and (4.6), it is sufficient to show that the coefficients

$$\frac{a_i(\omega)\xi_l\xi_{p+j}}{rQ(\xi)}, \frac{b_i^h(\omega)}{r}, \frac{\xi_i}{r^2}, \frac{\xi_i\xi_{p+j}\xi_{p+k}}{r^2Q(\xi)} \in H_1$$

for any $1 \le i, l \le p$ and $1 \le j, k \le q$. In fact, these coefficients belong to

$$H_{1.1.1}, H_{0.1.0}, H_{0.1.0}, H_{2.2.1},$$

respectively, by definition. \square

5. Proof of Propositions 3.2 and 3.3

Lemma 5.1. For $1 \le i \le p+q$,

$$\frac{\partial}{\partial \xi_i} H_N \subset H_{N+1}.$$

Proof. Since $H_{a,b,c}$ is spanned by functions of the form (4.9), we get

$$a_i(\omega)\frac{\partial}{\partial r}(H_{a,b,c}) \subset H_{a,b+1,c} \oplus H_{a,b,c+1},$$

$$\frac{1}{r}Y_i(\omega)H_{a,b,c} \subset H_{a,b+1,c}.$$

Thus, by using (4.2) we have

$$\frac{\partial}{\partial \xi_i} H_{a,b,c} \subset H_{a,b+1,c} \oplus H_{a,b,c+1}, \quad 1 \le i \le p.$$

For the variables $\xi'' = (\xi_{p+1}, ..., \xi_{p+q})$, we obtain directly

$$\frac{\partial}{\partial \xi_{j+p}} H_{a,b,c} \subset H_{a-1,b,c} \oplus H_{a+1,b+1,c+1}, \quad 1 \le j \le q.$$

The lemma now follows from the definition (4.11) of H_N . \square

We denote by $H_N \cdot \mathcal{V}_{\kappa}^{\infty}$ the subspace of $C^{\infty}(\mathbf{R}_{+}^{p,q})$ consisting of finite linear combinations of products of elements from H_N and $\mathcal{V}_{\kappa}^{\infty}$. We then have the following result.

Lemma 5.2.

$$\frac{\partial}{\partial \xi_i} \mathcal{V}_{\varkappa}^{\infty} \subset H_1 \cdot \mathcal{V}_{\varkappa}^{\infty}, \quad 1 \le i \le p + q.$$

Proof. Since the Euler operator E acts on $\mathcal{V}_{\varkappa}^{\infty}$ by zero and $d\pi(X)\mathcal{V}_{\varkappa}^{\infty}\subset\mathcal{V}_{\varkappa}^{\infty}$, $X\in\mathfrak{g}$, the lemma follows from Proposition 4.3. \square

Proposition 5.3. For any multi-index $\alpha \in \mathbb{N}^{p+q}$

(5.1)
$$\frac{\partial^{\alpha}}{\partial \xi^{\alpha}} \mathcal{V}_{\varkappa}^{\infty} \subset H_{|\alpha|} \cdot \mathcal{V}_{\varkappa}^{\infty}.$$

Proof. We have already proved (5.1) for $|\alpha|=1$ in Lemma 5.2. Suppose we have proved (5.1) for $|\alpha| \le N$. Then,

$$\begin{split} \frac{\partial}{\partial \xi_i} \frac{\partial^{\alpha}}{\partial \xi^{\alpha}} \mathcal{V}_{\varkappa}^{\infty} &\subset \frac{\partial}{\partial \xi_i} (H_{|\alpha|} \cdot \mathcal{V}_{\varkappa}^{\infty}) \\ &\subset \left(\frac{\partial}{\partial \xi_i} H_{|\alpha|} \right) \cdot \mathcal{V}_{\varkappa}^{\infty} + H_{|\alpha|} \cdot \left(\frac{\partial}{\partial \xi_i} \mathcal{V}_{\varkappa}^{\infty} \right) \\ &\subset H_{|\alpha|+1} \cdot \mathcal{V}_{\varkappa}^{\infty} + H_{|\alpha|} (H_1 \cdot \mathcal{V}_{\varkappa}^{\infty}), \end{split}$$

by Lemmas 5.1 and 5.2. Since $H_{|\alpha|}H_1 \subset H_{|\alpha|+1}$ by Lemma 4.2, (5.1) holds for $|\alpha|=N+1$. Hence, Proposition 5.3 is proved by induction on $|\alpha|$.

Lemma 5.4. Let $f \in \mathcal{V}_{\varkappa}$ and $g \in H_{a,b,c}$. Then

$$|f(\xi)g(\xi)| \leq \frac{C}{|\xi|^{b-a+c}} \left(\frac{Q(\xi)}{|\xi|^2}\right)^{\varkappa-c}, \quad \xi \in \mathbf{R}^{p,q}_+.$$

In particular, if $f \in \mathcal{V}_{\varkappa}$ and $g \in H_N$ are such that $N \leq \varkappa$, then we have

$$|f(\xi)g(\xi)| \le C|\xi|^{-N}, \quad \xi \in \mathbf{R}^{p,q}_+.$$

Proof. By the definition (2.3) of \mathcal{V}_{\varkappa} , f satisfies

$$|f(\xi)| \le C_1 \left(\frac{Q(\xi)}{|\xi|^2}\right)^{\varkappa} \quad \text{for } \xi \in \mathbf{R}^{p,q}_+,$$

for some constant $C_1>0$. Hence, in view of (4.9), there exists C'>0 such that

$$|f(\xi)g(\xi)| \le C' \frac{1}{r^{b-c}} \frac{|\xi''|^a}{Q(\xi)^c} \left(\frac{Q(\xi)}{|\xi|^2}\right)^{\varkappa}.$$

We note that for $\xi \in \mathbb{R}^{p,q}_+$, we have $r > |\xi''|$ and therefore $|\xi| = (r^2 + |\xi''|^2)^{1/2}$ satisfies

$$r < |\xi| < \sqrt{2}r$$
.

Hence the first factor of (5.2) is bounded by

$$\frac{1}{r^{b-c}} \le \frac{C'''}{|\xi|^{b-c}}.$$

The last two factors of (5.2) are estimated as

$$\frac{|\xi''|^a}{Q(\xi)^c} \left(\frac{Q(\xi)}{|\xi|^2}\right)^{\varkappa} \le \frac{1}{|\xi|^{2c-a}} \left(\frac{Q(\xi)}{|\xi|^2}\right)^{\varkappa-c}.$$

Combining these estimates, we have proved that

$$|f(\xi)g(\xi)| \le \frac{C'C''}{|\xi|^{b-a+c}} \left(\frac{Q(\xi)}{|\xi|^2}\right)^{\varkappa-c}. \quad \Box$$

Proof of Proposition 3.2. Suppose $f \in \mathcal{V}_{\varkappa}^{\infty}$. Then $\partial^{\alpha} f/\partial \xi^{\alpha} \in H_{|\alpha|} \cdot \mathcal{V}_{\varkappa}^{\infty}$ by Proposition 5.3. If $|\alpha| \leq \varkappa$ then $|\partial^{\alpha} f/\partial \xi^{\alpha}| \leq C|\xi|^{-|\alpha|}$ for $\xi \in \mathbf{R}_{+}^{p,q}$ by Lemma 5.4. Hence, Proposition 3.2 is proved. \square

Proof of Proposition 3.3. Let $f \in \mathcal{V}_{\varkappa}^{\infty}$. It is sufficient to prove that if $|\alpha| < \varkappa$ then

$$\frac{\partial^{\alpha} f}{\partial \xi^{\alpha}}(\xi) \to 0$$

as $\xi \in \mathbf{R}^{p,q}_+$ approaches the boundary of $\mathbf{R}^{p,q}_+$ in $\mathbf{R}^{p+q} \setminus \{0\}$, namely, the isotropic cone $\{\xi \in \mathbf{R}^{p+q} \setminus \{0\}: Q(\xi)=0\}$. This follows again from Lemma 5.4. Hence, Proposition 3.3 is also proved. \square

Thus, the proof of Theorem 1 is completed.

References

- FARAUT, J., Distributions sphériques sur les espaces hyperboliques, J. Math. Pures Appl. 58 (1979), 369–444.
- 2. Fefferman, C., The multiplier problem for the ball, Ann. of Math. 94 (1971), 330–336.
- HÖRMANDER, L., Estimates for translation invariant operators in L^p spaces, Acta Math. 104 (1960), 93–140.
- 4. Kobayashi, T. and Nilsson, A., Group invariance and L^p -bounded operators, $Math.\ Z.$, DOI 10.1007/s00209-007-0277-2.
- 5. Kobayashi, T. and Ørsted, B., Analysis on the minimal representation of O(p,q). II. Branching laws, $Adv.\ Math.\ 180\ (2003),\ 513-550.$
- Stein, E. M., Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series 30, Princeton University Press, Princeton, NJ, 1970.
- STRICHARTZ, R. S., Harmonic analysis on hyperboloids, J. Funct. Anal. 12 (1973), 341–383.

Toshiyuki Kobayashi Research Institute for Mathematical Sciences Kyoto University Kyoto 606-8502 Japan toshi@kurims.kyoto-u.ac.jp

Current Address:
Department of Mathematics
Harvard University
1 Oxford Street
Cambridge, MA 02138
U.S.A.

Received April 2, 2007 published online March 3, 2008 Andreas Nilsson
Saab AB
Saab Aerosystems
TDAA-AN
SE-581 88 Linköping
Sweden
andreas.nilsson@saabgroup.com