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Schatten–von Neumann properties for Fourier
integral operators with non-smooth symbols, I

Francesco Concetti and Joachim Toft

Abstract. We consider Fourier integral operators with symbols in modulation spaces and

non-smooth phase functions whose second orders of derivatives belong to certain types of modu-

lation space. We prove continuity and Schatten–von Neumann properties of such operators when

acting on L2.

0. Introduction

In [5], A. Boulkhemair considers a certain class of Fourier integral operators
where the corresponding symbols are defined without any explicit regularity as-
sumptions and with only small regularity assumptions on the phase functions. The
symbol class here is, in the present paper, denoted by M∞,1 and contains S0

0,0, the
set of smooth functions which are bounded together with all their derivatives. In
time-frequency analysis, the set M∞,1 is known as a particular modulation space.
(See e.g. [9], [10] and [13], or the definition below.) Boulkhemair then proves that
such operators are uniquely extendible to continuous operators on L2. In partic-
ular it follows that pseudo-differential operators with symbols in M∞,1 are L2-
continuous, which was proved by J. Sjöstrand in [21], where it seems that M∞,1

was used for the first time in this context.
More recent contributions to the theory of Fourier integral operators with non-

smooth symbols are presented in [17], [18] and [19]. For example, in [18], Ruzhansky
and Sugimoto investigate, among other things, L2-estimates for Fourier integral
operators with symbol classes which contain non-smooth functions, e.g. Besov spaces
and local Sobolev–Kato spaces.

In this paper we consider Fourier integral operators where the symbol classes
are given by Mp,q, where p, q∈[1,∞], and with phase functions satisfying similar
conditions as in [5]. We discuss continuity of such operators when acting on mod-
ulation spaces, and prove Schatten–von Neumann properties when acting on L2.
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In order to be more specific we recall some definitions. Assume that p, q∈[1,∞].
Then the modulation space Mp,q(Rn) is the set of all f∈S′(Rn) such that

‖f‖Mp,q ≡
(∫

Rn

(∫
Rn

|F(fχ( · −x))(ξ)|p dx
)q/p

dξ

)1/q

<∞(0.1)

(with obvious modification when p=∞ or q=∞). Here F is the Fourier transform
on S′(Rn) which is given by

Ff(ξ)= f̂(ξ)≡ (2π)−n/2
∫
Rn

f(x)e−i〈x,ξ〉 dx

when f∈S(Rn), and χ∈S(Rn)\{0} is called a window function which is kept fixed.
During the last twenty years, modulation spaces have been an active field of

research (see e.g. [8], [9], [10], [11], [13], [16], [23] and [26]). They are rather similar
to Besov spaces (see [2], [22] and [26] for sharp embeddings) and it has turned out
that they are useful to have in background in time-frequency analysis and to some
extent also in pseudo-differential calculus.

Next we discuss the definition of Fourier integral operators. For convenience
we restrict ourselves to operators which belong to L(S(Rn),S′(Rn)). Here we let
L(V1, V2) denote the set of all linear and continuous operators from V1 to V2, when
V1 and V2 are topological vector spaces. For any appropriate a∈S′(R2n+m) (the
symbol) and real-valued ϕ∈C(R2n+m) (the phase function), the Fourier integral
operator Opϕ(a) is defined by the formula

Opϕ(a)f(x)= (2π)−n
∫∫

Rm+n

a(x, y, ζ)f(y)eiϕ(x,y,ζ) dy dζ,(0.2)

when f∈S(Rn). Here the integrals should be interpreted in distribution sense, if
necessary. By letting m=n, and choosing symbols and phase functions in appropri-
ate ways, it follows that the pseudo-differential operator

Op(a)f(x)= (2π)−n
∫∫

R2n

a(x, y, ζ)f(y)ei〈x−y,ζ〉 dy dζ

is a special case of Fourier integral operators. Furthermore, if t∈R is fixed, and a is
an appropriate function or distribution on R2n instead of R3n, then the definition
of the latter pseudo-differential operators cover the definition of pseudo-differential
operators of the form

at(x,D)f(x)= (2π)−n
∫∫

R2n

a((1−t)x+ty, ζ)f(y)ei〈x−y,ζ〉 dy dζ.(0.3)

On the other hand, in the framework of harmonic analysis it follows that the
map a �!at(x,D) from S(R2n) to L(S(Rn),S′(Rn)) is uniquely extendible to a bi-
jection from S′(R2n) to L(S(Rn),S′(Rn)).
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In the literature it is usually assumed that a and ϕ in (0.2) are smooth func-
tions. For example, if a∈S(R2n+m) and ϕ∈C∞(R2n+m) satisfy ϕ(α)∈S0

0,0(R
2n+m)

for all multi-indices α with |α|≥N for some integer N≥0, then it is easily seen that
Opϕ(a) is continuous on S(Rn) and extends to a continuous map from S′(Rn) to
S(Rn). In [1] it is proved that if ϕ(α)∈S0

0,0(R
2n+m) for all multi-indices α with

|α|=2 and satisfies

∣∣∣∣det
(
ϕ′′
x,y ϕ′′

x,ζ

ϕ′′
y,ζ ϕ′′

ζ,ζ

)∣∣∣∣≥ d(0.4)

for some d>0, then the definition of Opϕ extends uniquely to any a∈S0
0,0(R2n+m),

and then Opϕ(a) is continuous on L2(Rn). Next assume that ϕ instead satisfies
ϕ(α)∈M∞,1(R3n) for all multi-indices α with |α|=2 and that (0.4) holds for some
d>0. This implies that the condition on ϕ is relaxed since S0

0,0⊆M∞,1. Then
Boulkhemair improves the result in [1] by proving that the definition of Opϕ extends
uniquely to any a∈M∞,1(R2n+m), and that Opϕ(a) is still continuous on L2(Rn).

In Section 2 we discuss Schatten–von Neumann properties for Fourier integral
operators which are related to those which were considered by Boulkhemair. More
precisely, we prove that if p∈[1,∞] and a∈Mp,1(R2n+m) then Opϕ(a) belongs to
Ip, the set of Schatten–von Neumann operators of order p∈[1,∞] on L2(Rn). Recall
that an operator T on L2(Rn) is a Schatten–von Neumann operator of order p if it
is linear and continuous on L2(Rn), and satisfies

‖T ‖Ip ≡ sup
( ∞∑
j=1

|(Tfj, gj)|p
)1/p

<∞.

Here the supremum should be taken over all orthonormal sequences {fj}∞j=1 and
{gj}∞j=1 in L2(Rn).

Furthermore, if 1≤q≤min(p, p′), m=n and instead a(x, y, ζ)=b(x, ζ) for some
b∈Mp,q(R2n), and in addition

|det(ϕ′′
y,ζ)| ≥ d(0.5)

for some constant d>0, then we prove that Opϕ(a)∈Ip. Here and in what follows we
let p′∈[1,∞] denote the conjugate exponent of p∈[1,∞], i.e. 1/p+1/p′=1. When
proving these results we first prove that they hold in the case p=1. The remaining
cases are then consequences of Boulkhemair’s result, interpolation and duality.

Finally we remark that a continuation of the present paper, which involves
discussions of Fourier integral operators in the context of weighted modulation
spaces, is under preparation by the authors.
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1. Preliminaries

In this section we discuss the basic properties for modulation spaces. The
proofs are in many cases omitted since they can be found in [6], [7], [8], [9], [10],
[11], [12], [13], [24], [25] and [26].

We start by discussing notation. The duality between a topological vector
space and its dual is denoted by 〈 · , · 〉. For admissible a and b in S′(Rn), we set
(a, b)=〈a, b〉, and it is obvious that ( · , · ) on L2 is the usual scalar product.

Next assume that B1 and B2 are topological spaces. Then B1 ↪!B2 means that
B1 is continuously embedded in B2. In the case that B1 and B2 are Banach spaces,
B1 ↪!B2 is equivalent to B1⊆B2 and ‖x‖B2≤C‖x‖B1, for some constant C>0 which
is independent of x∈B1.

Assume that p, q∈[1,∞], and that χ∈S(Rn)\{0}. Then recall that the (clas-
sical) modulation space Mp,q(Rn) is the set of all f∈S′(Rn) such that (0.1) holds.
We note that the definition of Mp,q(Rn) is independent of the choice of window χ,
and that different choices of χ give rise to equivalent norms. (See Proposition 1.1
below.) For conveniency we also set Mp=Mp,p.

The following proposition is a consequence of well-known facts in [9] and [13].
Recall that we let p′ denote the conjugate exponent of p, i.e. 1/p+1/p′=1 should
be fulfilled.

Proposition 1.1. Assume that p, q, pj, qj∈[1,∞] for j=1, 2. Then the follow-
ing are true:

(1) If χ∈M1(Rn)\{0}, then f∈Mp,q(Rn) if and only if (0.1) holds, that is
Mp,q(Rn) is independent of the choice of χ. Moreover, Mp,q is a Banach space
under the norm in (0.1), and different choices of χ give rise to equivalent norms;

(2) If p1≤p2 and q1≤q2 then

S(Rn) ↪−!Mp1,q1(Rn) ↪−!Mp2,q2(Rn) ↪−!S′(Rn);

(3) The L2-product ( · , · ) on S extends to a continuous map from Mp,q(Rn)×
Mp′,q′(Rn) to C. On the other hand, if ‖a‖=sup |(a, b)|, where the supremum is
taken over all b∈Mp′,q′(Rn) such that ‖b‖Mp′,q′ ≤1, then ‖ · ‖ and ‖ · ‖Mp,q are
equivalent norms;

(4) If p, q<∞, then S(Rn) is dense in Mp,q(Rn). The dual space of Mp,q(Rn)
can be identified with Mp′,q′(Rn) through the form ( · , · ). Moreover, S(Rn) is
weakly dense in M∞(Rn).

Proposition 1.1(1) permits us to be rather vague concerning the choice of χ∈
M1\{0} in (0.1). For example, if C>0 is a constant and Ω is a subset of S′,
then ‖a‖Mp,q≤C for every a∈Ω, means that the inequality holds for some choice of
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χ∈M1\{0} and every a∈Ω. Evidently, for any other choice of χ∈M1\{0}, a similar
inequality is true although C may have to be replaced by a larger constant, if
necessary.

It is also convenient to let Mp,q(Rn) be the completion of S(Rn) under the
norm ‖ · ‖Mp,q . Then Mp,q⊆Mp,q with equality if and only if p<∞ and q<∞.
It follows that most of the properties which are valid for Mp,q(Rn) also hold for
Mp,q(Rn).

We also need to use multiplication properties of modulation spaces. The proof
of the following proposition is omitted since the result can be found in [9], [10], [25]
and [26].

Proposition 1.2. Assume that p, pj, qj∈[1,∞] for j=0, ..., N satisfy

1
p1

+...+
1
pN

=
1
p0

and
1
q1

+...+
1
qN

=N−1+
1
q0
.

Then (f1, ..., fN ) �!f1...fN from S(Rn)×...×S(Rn) to S(Rn) extends uniquely to
a continuous map from Mp1,q1(Rn)×...×MpN ,qN (Rn) to Mp0,q0(Rn), and

‖f1...fN‖Mp0,q0 ≤C‖f1‖Mp1,q1 ...‖fN‖MpN ,qN

for some constant C which is independent of fj∈Mpj,qj (Rn), j=1, ..., N .
Furthermore, if u0=0 when p<∞, f∈Mp,1(Rn), and u and v are entire func-

tions on C with expansions

u(z)=
∞∑
k=0

ukz
k and v(z)=

∞∑
k=0

|uk|zk,

then u(f)∈Mp,1(Rn), and

‖u(f)‖Mp,1 ≤Cv(C‖f‖Mp,1),

for some constant C which is independent of f∈Mp,1(Rn).

Remark 1.3. Assume that p, q, q1, q2∈[1,∞]. Then the following properties for
modulation spaces hold:

(1) If q1≤min(p, p′) and q2≥max(p, p′), then Mp,q1⊆Lp⊆Mp,q2 . In particular,
M2=L2;

(2) Mp,q(Rn)↪!C(Rn) if and only if q=1;
(3) M1,∞ is a convolution algebra which contains all measures on Rn with

bounded mass;
(4) Mp,q∩E ′=FLq∩E ′. Furthermore, if B is a ball with radius r, then

C−1
r,n‖f̂‖Lq ≤‖f‖Mp,q ≤Cr,n‖f̂‖Lq , f ∈E ′(B),

for some constant Cr,n which only depends on r and n;
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(5) Mp is invariant under Fourier transformation. A similar fact holds for
partial Fourier transforms.

(See e.g. [6], [7], [9], [10], [11], [12], [13] and [26].)

For future references we note that the constant Cr,n is independent of the center
of the ball B in (4) in Remark 1.3.

In our investigations we need the following characterization of modulation
spaces.

Proposition 1.4. Let {xα}α∈I be a lattice in Rn, Bα=xα+B where B⊆Rn

is an open ball, and assume that fα∈E ′(Bα) for every α∈I. Also assume that
p, q∈[1,∞]. Then the following are true:

(1) if

f =
∑
α∈I

fα and F (ξ)≡
(∑
α∈I

|f̂α(ξ)|p
)1/p

∈Lq(Rn),(1.1)

then f∈Mp,q, and f �!‖F‖Lq defines a norm on Mp,q which is equivalent to ‖ · ‖Mp,q

in (0.1);
(2) if in addition

⋃
α∈I Bα=Rn, χ∈C∞

0 (B) satisfies
∑
α∈I χ( · −xα)=1, f∈

Mp,q(Rn), and fα=fχ( · −xα), then fα∈E ′(Bα) and (1.1) is fulfilled.

Proof. (1) Assume that χ∈C∞
0 (Rn)\{0} is fixed. Since there is a bound of

overlapping supports of fα, we obtain

|F(fχ( · −x))(ξ)| ≤
∑
α∈I

|F(fαχ( · −x))(ξ)| ≤C

(∑
α∈I

|F(fαχ( · −x))(ξ)|p
)1/p

for some constant C. From the support properties of χ, it follows that for some
balls B′ and B′

α=xα+B′ we get
(∫

Rn

|F(fχ( · −x))(ξ)|p dx
)1/p

≤C1

(∑
α∈I

∫
B′

α

|F(fαχ( · −x))(ξ)|p dx
)1/p

≤C2

(∑
α∈I

∫
B′

α

(|f̂α|∗|χ̂|)(ξ)p dx
)1/p

≤C3

(∑
α∈I

(|f̂α|∗|χ̂|)(ξ)p
)1/p

≤C3(F ∗|χ̂|)(ξ)
for some constants C1, C2 and C3. Here we have used Minkowski’s inequality
in the last inequality. By applying the Lq-norm and using Young’s inequality we
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get

‖f‖Mp,q ≤C′′∥∥F ∗|χ̂|∥∥
Lq ≤C′′‖F‖Lq‖χ̂‖L1.

Hence, since we have assumed that F ∈Lq, it follows that ‖f‖Mp,q is finite. This
proves (1).

The assertion (2) follows immediately from the general theory of modulation
spaces. (See e.g. [13] and [14].) The proof is complete. �

Next we discuss (complex) interpolation properties for modulation spaces. Such
properties were carefully investigated in [9] for classical modulation spaces, and
thereafter extended in several directions in [11], where interpolation properties for
coorbit spaces were established. As a consequence of [11] we have the following
proposition.

Proposition 1.5. Assume that 0<θ<1 and that p, q, p1, p2, q1, q2∈[1,∞] sat-
isfy

1
p

=
1−θ
p1

+
θ

p2
and

1
q

=
1−θ
q1

+
θ

q2
.

Then

(Mp1,q1(Rn),Mp2,q2(Rn))[θ] =Mp,q(Rn).

Next we recall some facts from Chapter 18 in [15] concerning pseudo-differen-
tial operators. Assume that a∈S(R2n), and that t∈R is fixed. Then the pseudo-
differential operator at(x,D) in (0.3) is a linear and continuous operator on S(Rn),
as remarked in the introduction. For general a∈S′(R2n), the pseudo-differential
operator at(x,D) is defined as the continuous operator from S(Rn) to S′(Rn) with
distribution kernel

Kt,a(x, y)= (2π)−n/2(F−1
2 a)((1−t)x+ty, y−x).(1.2)

Here F2F is the partial Fourier transform of F (x, y)∈S′(R2n) with respect to y.
This definition makes sense, as the mappings F2 and F (x, y) �!F ((1−t)x+ty, y−x)
are homeomorphisms on S′(R2n). We also note that this definition of at(x,D)
agrees with the operator in (0.3) when a∈S(R2m).

Furthermore, for any fixed t∈R, the map a �!at(x,D) is bijective from S′(R2n)
to L(S(Rn),S′(Rn)) (see [15]).

In particular, if a∈S′(R2m) and s, t∈R, then there is a unique b∈S′(R2m)
such that as(x,D)=bt(x,D). By straightforward applications of Fourier’s inversion



302 Francesco Concetti and Joachim Toft

formula, it follows that

as(x,D)= bt(x,D) ⇐⇒ b(x, ζ)= ei(t−s)〈Dx,Dζ〉a(x, ζ)(1.3)

(cf. Section 18.5 in [15].)
We end this section by recalling some facts on Schatten–von Neumann opera-

tors from the introduction, and pseudo-differential operators.
The set Ip is a Banach space which increases with p∈[1,∞], and if p<∞,

then Ip is contained in the set of compact operators on L2. Furthermore, I1, I2

and I∞ agree with the set of trace-class operators, Hilbert–Schmidt operators and
continuous operators on L2, respectively, with the same norms.

Next we discuss complex interpolation properties of Schatten–von Neumann
classes. Let p, p1, p2∈[1,∞] and let 0≤θ≤1. Then

Ip = (Ip1 , Ip2)[θ], when
1
p

=
1−θ
p1

+
θ

p2
.(1.4)

We refer to [20] for a brief discussion of Schatten–von Neumann operators.
We also recall some facts on Schatten–von Neumann properties in the calculus

of pseudo-differential operators. For any t∈R and p∈[1,∞], let st,p(R2n) be the set
of all a∈S′(R2n) such that at(x,D)∈Ip. Also set ‖a‖st,p≡‖at(x,D)‖Ip . By using
the fact that a �!at(x,D) is a bijective map from S′(R2n) to L(S(Rn),S′(Rn)), it
follows that the map a �!at(x,D) restricts to an isometric bijection from st,p(R2n)
to Ip.

The proof of the following proposition is omitted since it can be found in [26],
and to some extent in [14].

Proposition 1.6. Assume that p, q1, q2∈[1,∞] are such that q1≤min(p, p′)
and q2≥max(p, p′). Then the following are true:

(1) Mp,q1(R2n)⊆st,p(R2n)⊆Mp,q2(R2n);
(2) the operator kernel of at(x,D) belongs to Mp(R2n) if and only if the symbol

a∈Mp(R2n).

2. Schatten–von Neumann properties of Fourier integral operators

In this section we discuss Schatten–von Neumann operators for Fourier integral
operators with symbols in Mp,q. In the first part we assume that the symbol
a(x, y, ζ) belongs to Mp,1(R2n+m) while in the second part we consider a more
tricky case when the symbol is constant with respect to the y-variable, and belongs
to Mp,q(R2n) with respect to the remaining variables x and ζ.

Certain parts of these investigations depend on the following lemmas.
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Lemma 2.1. Assume that f∈M∞,1(Rn) and that χ∈C∞
0 (B), where B is the

unit ball with center at origin. Then the following are true:
(1) if t∈[0, 1], then f(t · )∈M∞,1(Rn), and for some constant C, independent

of f∈M∞,1 and t∈[0, 1],

‖f(t · )‖M∞,1 ≤C‖f‖M∞,1;

(2) if

gx0(x)=χ(x−x0)
∫ 1

0

(1−t)f(t(x−x0)+x0) dt

for some x0∈Rn, then g∈M∞,1, and for some constant C which is independent
of x0,

‖gx0‖M∞,1 ≤C‖f‖M∞,1.

Proof. The assertion (1) is an immediate consequence of Proposition 3.2 in [5].
(See also [22] for more general dilation properties.) In order to prove (2) we note
that the M∞,1-norm of χ( · −x0) is independent of x0. Hence Proposition 1.2 and
the first part of the proposition give

‖gx0‖M∞,1 ≤C1‖χ( · −x0)‖M∞,1

∫ 1

0

(1−t)‖f(t ·+(1−t)x0)‖M∞,1 dt

=C1‖χ‖M∞,1

∫ 1

0

(1−t)‖f(t · )‖M∞,1 dt≤C2‖f‖M∞,1

for some constants C1 and C2. The proof is complete. �

Lemma 2.2. Assume that B⊆Rn is a ball, ϕ∈C2(Rn) is real-valued and
satisfies ϕ(α)∈M∞,1 for all multi-indices α with |α|=2, and that f∈M1,q(Rn)∩
E ′(B). Then feiϕ∈M1,q(Rn), and for some constant C, which only depends on n

and the radius of the ball,

‖feiϕ‖M1,q ≤C‖f‖M1,q exp(C‖ϕ′′‖M∞,1).

Proof. We may assume that B is the unit ball which is centered at origin. By
Taylor expansion it follows that ϕ=ψ1+ψ2, where

ψ1(x)=ϕ(0)+〈ϕ′(0), x〉 and ψ2(x)=
∫ 1

0

(1−t)〈ϕ′′(tx);x, x〉 dt.

Since multiplications by modulations do not affect the modulation space norms we
obtain

‖feiψ1‖M1,q = ‖f‖M1,q .
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Furthermore, if χ∈C∞
0 (Rn) satisfies that χ(x)=1 on B, then it follows from

Lemma 2.1 that ‖χψ2‖M∞,1≤C‖ϕ′′‖M∞,1 . Hence by Proposition 1.2 it follows that
‖eiχψ2‖M∞,1≤C exp(C‖ϕ′′‖M∞,1) for some constant C. This gives

‖feiϕ‖M1,q = ‖(feiψ1)eiχψ2‖M1,q ≤C‖feiψ1‖M1,q‖eiχψ2‖M∞,1

≤C1‖f‖M1,q exp(C1‖ϕ′′‖M∞,1)

for some constants C and C1. This proves the assertion. �

We may now prove the following.

Proposition 2.3. Assume that a∈M1(R2n+m), and that ϕ∈C(R2n+m) is
real-valued and satisfies ϕ(α)∈M∞,1 for all multi-indices α with |α|=2. Then the
distribution kernel of the operator Opϕ(a) in (0.2) belongs to M1(R2n).

In particular, Opϕ(a)∈I1.

For the proof as well as later on, it is convenient to use the notation X,Y, Z, ...
for triples of the form (x, y, ζ)∈R2n+m.

Proof. Let {Xα}α∈I be a lattice in R2n+m, χ∈C∞
0 (R2n+m) be such that∑

α∈I χ( · −Xα)=1, and let aα=a·χ( · −Xα). From Lemma 2.1 it follows that

‖aeiϕ‖M1 ≤
∑
α∈I

‖aαeiϕ‖M1 ≤C

(∑
α∈I

‖aα‖M1

)
exp(C1‖ϕ′′‖M∞,1).

Furthermore, by Remark 1.3(4) and Proposition 1.4 we have∑
α∈I

‖aα‖M1 ≤C
∑
α∈I

‖âα‖L1 ≤C′‖a‖M1

for some constants C and C′. Summing up, we have proved that

‖aeiϕ‖M1 ≤C‖a‖M1 exp(C‖ϕ′′‖M∞,1)(2.1)

for some constant C, which in particular shows that aeiϕ∈M1(R2n+m). Hence
aeiϕ∈M1.

Next we recall that the map

f(x1, x2) �−!
∫
Rn2

f(x1, x2) dx2

is continuous from M1(Rn1+n2) to M1(Rn1) when xj∈Rnj . (See e.g. [13] and [25].)
Hence if

K(x, y)≡ (2π)−n
∫
Rm

a(x, y, ζ)eiϕ(x,y,ζ) dζ

is the kernel of Opϕ(a), it follows that K∈M1(R2n).
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The last part of the assertion is now a consequence of Proposition 1.6, and the
result follows. �

Theorem 2.4. Assume that p∈[1,∞] and that a∈Mp,1(R2n+m). Also assume
that ϕ∈C2(R2n+m) is real-valued and satisfies (0.4) for some d>0, and that ϕ(α)∈
M∞,1 for all multi-indices α with |α|=2. Then Opϕ(a)∈Ip.

Proof. In view of Theorem 3.1 in [5] and Proposition 2.3, the result is true
when p∈{1,∞}. For general p, the result now follows by interpolation, using The-
orem 4.1.2 in [3], Proposition 1.5 and (1.4). �

Next we discuss Fourier integral operators in (0.2) when a is a distribution of
2n variables. This situation is not covered in Theorem 2.4 when p<∞, due to the
fact that the distribution (x, y, ζ) �!a(x, 0, ζ) does not belong to Mp,1(R3n) when
a(x, y, ζ)∈Mp,1(R3n).

Theorem 2.5. Assume that p∈[1,∞], t1, t2∈R, d>0, and that ϕ∈C(R3n) is
real-valued and satisfies ϕ(α)∈M∞,1 for all multi-indices α with |α|=2 and

|det(t2ϕ′′
x,ζ(x, y, ζ)−t1ϕ′′

y,ζ(x, y, ζ))| ≥ d.(2.2)

Then the map

a �−!Ka,ϕ(x, y)≡
∫
Rn

a(t1x+t2y, ζ)eiϕ(x,y,ζ) dζ

from S(R2n) to S′(R2n) extends uniquely to a continuous map on Mp(R2n).

For the proof we need the following lemma.

Lemma 2.6. Assume that f∈M∞,1(Rn), χ∈C∞
0 (Rn) and x∈Rn, and let

hx,j,k(y)=χ(y)
∫ 1

0

(1−t)f(x+ty)yjyk dt.

Then there is a constant C and a function g∈L1(Rn) such that ‖g‖L1≤C‖f‖M∞,1

and |F(hx,j,k)(ξ)|≤g(ξ).

Proof. Let ψ(y)=ψj,k(y)=χ(y)yjyk. By a change of variables we obtain

F(hx,j,k)(ξ)=
∫ 1

0

(1−t)
∫
Rn

f(x+ty)ψ(y)e−i〈y,ξ〉 dy dt(2.3)

=
∫ 1

0

t−n(1−t)F
(
fψ

( · −x
t

))(
ξ

t

)
ei〈x,ξ〉/t dt.
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Hence, if

g(ξ)≡
∫ 1

0

t−n(1−t) sup
x∈Rn

∣∣∣∣F
(
fψ

( · −x
t

))(
ξ

t

)∣∣∣∣ dt,(2.4)

then it follows that |F(hx,j,k)(ξ)|≤g(ξ). We have to prove that ‖g‖L1≤C‖f‖M∞,1

for some constant C.
Assume that r>0 is chosen so that the support of χ is contained in the closed

ball Br with radius r and center at the origin, and let ψ1(x)=e−|x|2 and ψ2∈
C∞

0 (Rn) be such that ψ2(x)=e|x|
2

when x∈Br. Also assume that 0≤t≤1. By
straightforward computations we get∣∣∣F(

fψ
( · −x

t

))
(ξ)

∣∣∣≤ (2π)−n/2
(
|F(fψ1( · −x))|∗

∣∣∣F(
ψ

( · −x
t

)
ψ2( · −x)

)∣∣∣)(ξ),

where the convolution should be taken with respect to the ξ-variable only. Since∣∣∣F(
ψ

( · −x
t

)
ψ2( · −x)

)∣∣∣ =
∣∣∣F(

ψ
( ·
t

)
ψ2

)∣∣∣
we therefore get∣∣∣F(

fψ
( · −x

t

))
(ξ)

∣∣∣≤ (2π)−n/2(|F(fψ1( · −x))|∗Ft)(ξ),(2.5)

where

Ft(ξ)≡
∣∣∣F(

ψ
( ·
t

)
ψ2

)
(ξ)

∣∣∣.
We need to estimate Ft. Let Ω0 be the closed unit ball in Rn and let Ωj be the

set of all ξ∈Rn outside the unit ball such that |ξj |≥|ξ|/2n. Then
⋃∞
j=0 Ωj=Rn,

and since Ft(ξ)≤(2π)−n/2‖ψ( · /t)ψ2‖L1 it follows that

Ft(ξ)≤Ctn, ξ ∈Ω0.(2.6)

Furthermore, if N≥0 is an integer and ξ∈Ωj , then by integration by parts,
and the fact that 0≤t≤1, it follows that

|ξ|N |Ft(ξ)| ≤C1|ξNj Ft(ξ)|

=C2t
n

∣∣∣∣
∫
Rn

ψ(y)ψ2(ty)
(
Dyj

t

)N
(e−it〈y,ξ〉) dy

∣∣∣∣
=C2t

n−N
∣∣∣∣
∫
Rn

(
DN
yj

(ψ(y)ψ2(ty))
)
e−it〈y,ξ〉 dy

∣∣∣∣
≤C2t

n−N
∫
Rn

|DN
yj

(ψ(y)ψ2(ty))| dy

≤C3t
n−N

for some constant C1, C2 and C3 which are independent of j. Hence, by taking
geometric means of the latter estimates, it follows that for any real number s≥0,
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there is a constant Cs such that

|ξ|s|Ft(ξ)| ≤Cst
n−s, |ξ| ≥ 1.

A combination of this estimate, (2.6) and the fact that 0≤t≤1 now gives

|Ft(ξ)| ≤Cst
n−s〈ξ〉−s, ξ ∈Rn,(2.7)

for some constant Cs which is independent of ξ. Here 〈ξ〉=(1+|ξ|2)1/2.
By letting s=n+ 1

2 and combining (2.4), (2.5) and (2.7) it follows that

g(ξ)≤C

∫ 1

0

t−n(1−t)t−1/2
((

sup
x∈Rn

|F(fψ1( · −x))|
)
∗〈 · 〉−n−1/2

)(
ξ

t

)
dt.

Hence, by applying the L1-norm on the latter inequality, and changing the variables
of integration we get

‖g‖L1 ≤C

∫ 1

0

t−n(1−t)t−1/2

∫∫
R2n

sup
x∈Rn

∣∣∣∣F(fψ1( · −x))
(
ξ

t
−η

)∣∣∣∣〈η〉−n−1/2 dξ dη dt

=C′
∫
Rn

sup
x∈Rn

|F(fψ1( · −x))(ξ)| dξ=C′‖f‖M∞,1 ,

where

C′ =C‖〈 · 〉−n−1/2‖L1

∫ 1

0

(1−t)t−1/2 dt<∞.

This proves the assertion. �

Proof of Theorem 2.5. By letting

x1 = t1x+t2y, y1 = s1x+s2y and ξ= ζ

as new coordinates, where s1 and s2 are such that s1t2 �=s2t1, and observing that
the space Mp,q(R2n) is invariant under pullbacks with automorphisms on R2n, it
follows that we may assume that t1=1 and t2=0, and that the condition (2.2) is
reduced to

|det(ϕ′′
y,ξ(x, y, ξ))| ≥ d.(2.2)′

First we assume that p=1 and that a∈M1∩E ′, and we let χ∈C∞
0 (Rn) and ψ∈

C∞
0 (R3n) be such that ψ(x, y, ξ)=1 when a(x, ξ)χ(y) �=0. We also let X0=(0, y, 0),

X=(x, z, ζ) and

Ia(y, ξ, η)=F(Ka,ϕ(1⊗χ)( · −(0, y))(ξ, η)

=
∫
R3n

a(x, ζ)eiϕ(X)χ(z−y)e−i(〈x,ξ〉+〈z,η〉) dX,
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and note that the L1-norm of Ia is equivalent to the M1-norm of Ka,ϕ in view of
Remark 1.3, since a has compact support. By a change of variables it follows that

Ia(y, ξ, η)= ei〈y,η〉
∫
R3n

a(x, ζ)eiϕ(X+X0)χ(z)e−i(〈x,ξ〉+〈z,η〉) dX.

In a similar way as in the proof of Lemma 2.2 we now set

ψ1,X0(X)=ϕ(X0)+〈ϕ′(X0), X〉,

ψ2,X0(X)=ψ(X)
∫ 1

0

(1−t)〈ϕ′′(X0+tX)X,X〉 dt.

Then an application of Taylor’s formula on ϕ gives

|Ia(y, ξ, η)|=
∣∣∣∣
∫
R3n

a(x, ζ)χ(z)eiψ1,X0 (X)e−i(〈x,ξ〉+〈z,η〉)eiψ2,X0 (X) dX

∣∣∣∣
= (2π)−3n/2|(F(a⊗χ)∗F(eiψ2,X0 ))(ξ−ϕ′

x(X0),−ϕ′
ζ(X0), η−ϕ′

y(X0))|.
As remarked above, we are interested in applying the L1-norm on Ia. A prob-

lem here with the right-hand side in the latter equality is that F(eiψ2,X0 ) depends
on X0. For this reason we set

Φk,X0 ≡F(ψ2,X0)∗...∗F(ψ2,X0),

where k≥1 is the number of factors in the convolution. An application of Lemma 2.5
then shows that there exists a function G such that |F(ψ2,X0)|≤G and ‖G‖L1≤
C‖ϕ′′‖M∞,1 for some constant C>0. Hence if Ψk≡G∗...∗G with k factors of G in
the convolution, then it follows that |Φk,X0 |≤Ψk and that ‖Ψk‖L1≤Ck‖ϕ′′‖kM∞,1 .

This implies that

|Ia(y, ξ, η)| ≤
∞∑
k=0

1
k!
Ja,k(y, ξ, η),(2.8)

where

Ja,0(y, ξ, η)= |F(a⊗χ)(ξ−ϕ′
x(X0),−ϕ′

ζ(X0), η−ϕ′
y(X0))|,

Ja,k(y, ξ, η)= (|F(a⊗χ)|∗|Φk,X0|)(ξ−ϕ′
x(X0),−ϕ′

ζ(X0), η−ϕ′
y(X0))

≤ (|F(a⊗χ)|∗|Ψk|)(ξ−ϕ′
x(X0),−ϕ′

ζ(X0), η−ϕ′
y(X0)), k≥ 1.

Hence, by applying the L1-norm on the latter estimates, and using the fact that a
has compact support, we get

‖Ja,0‖L1 =
∫∫∫

R3n

|F(a⊗χ)(ξ−ϕ′
x(X0),−ϕ′

ζ(X0), η−ϕ′
y(X0))| dy dξ dη

=
∫∫∫

R3n

|F(a⊗χ)(ξ,−ϕ′
ζ(X0), η)| dy dξ dη
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≤ 1
d

∫∫∫
R3n

|F(a⊗χ)(ξ, x, η)| dx dξ dη

=
1
d
‖â‖L1

≤ C

d
‖a‖M∞,1 ,

and

‖Ja,k‖L1 =
∫∫∫

R3n

(|F(a⊗χ)|∗|Ψk|)(ξ−ϕ′
x(X0),−ϕ′

ζ(X0), η−ϕ′
y(X0)) dy dξ dη

= ‖Ja,0‖L1‖Ψk‖L1 ≤ C

d
‖a‖M∞,1(C‖ϕ′′‖M∞,1)k.

In the first inequality we have used (2.2)′ and taking x=−ϕ′
ζ(X0) as a new variable

of integration in the y-direction. By combining these estimates we get

‖Ka,ϕ‖M1,1 ≤‖Ia‖L1 ≤
∞∑
k=0

1
k!
‖Ja,k‖L1 ≤ C

d
‖a‖M∞,1

∞∑
k=0

1
k!

(C‖ϕ′′‖M∞,1)k

=
C

d
‖a‖M1 exp(C‖ϕ′′‖M∞,1).

This proves the assertion in this case.
For general a∈M1, the asserted continuity now follows by applying Prop-

osition 1.4 in a way similar to the proof of Proposition 2.3. We leave the details to
the reader.

Next we consider the case when p=∞. Assume that a, b∈M1(R2n), and let
ϕ̃(x, y, ξ)=−ϕ(x, ξ, y). Then (2.2)′ also holds when ϕ is replaced by ϕ̃. Hence,
the first part of the proof shows that Kb,ϕ̃∈M1. Furthermore, by straightforward
computations we have

(Ka,ϕ, b)= (a,Kb,ϕ̃).(2.9)

In view of Proposition 1.1(3), it follows that the right-hand side in (2.9) makes sense
if, more generally, a is an arbitrary element in M∞(R2n), and then

|(a,Kb,ϕ̃)| ≤ C

d
‖a‖M∞‖b‖M1 exp(C‖ϕ′′‖M∞,1)

for some constant C which is independent of d, a∈M∞ and b∈M1.
Hence, by lettingKa,ϕ be defined as (2.9) when a∈M∞, it follows that a �!Ka,ϕ

on M1 extends to a continuous map on M∞. Furthermore, since S is dense in M∞

with respect to the weak∗ topology, it follows that this extension is unique. We
have therefore proved the theorem for p∈{1,∞}.

For general p∈[1,∞], the result now follows by interpolation, using The-
orem 4.1.2 in [3] and Proposition 1.5. �
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Assume that a∈M∞(R2n), t1, t2∈R, and that ϕ∈C(R3n) is real-valued and
satisfies ϕ(α)∈M∞,1 for all multi-indices α with |α|=2 and (2.2) for some d>0.
Then we let the Fourier integral operator opϕ(a)=opϕ,t1,t2(a) be the continuous
operator from S(Rn) to S′(Rn) with kernel Ka,ϕ in Theorem 2.5. The following
result is an immediate consequence of Theorem 2.5 and Theorem 4.3 in [26].

Theorem 2.7. Assume that p∈[1,∞], a∈Mp(R2n), t1, t2∈R, and that ϕ∈
C(R3n) is real-valued and satisfies ϕ(α)∈M∞,1 for all multi-indices α with |α|=2.
Also assume that (2.2) is fulfilled for some d>0. Then the definition of opϕ,t1,t2(a)
from S(Rn) to S′(Rn) extends uniquely to a continuous map from Mp′(Rn) to
Mp(Rn).

By combining Theorems 2.4, 2.5 and interpolation, we obtain the following
result.

Theorem 2.8. Assume that p, q∈[1,∞] are such that q≤min(p, p′), that a∈
Mp,q(R2n), that t1, t2∈R, and that ϕ∈C(R3n) is real-valued and satisfies ϕ(α)∈
M∞,1 for all multi-indices α with |α|=2. Also assume that (0.4) and (2.2) are
fulfilled for some d>0. Then the definition of opϕ,t1,t2(a) from S(Rn) to S′(Rn)
extends uniquely to a Schatten–von Neumann operator of order p on L2(Rn).

Proof. We may assume that q=min(p, p′). First assume that p≤2, and let
b∈S′(R2n) be chosen such that b(x,D)=opϕ(a). Then the operator kernel of b
belongs to Mp, and since Mp is invariant under partial Fourier transformations in
view of Remark 1.3(5), the result is a consequence of Proposition 1.6(1).

If instead p=∞, then it follows from Theorem 2.4 that opϕ(a) is continuous
on L2, which proves the result in this case as well. The result now follows for general
p∈[2,∞] by interpolation, using Theorem 4.1.2 in [3], Proposition 1.5 and (1.4). The
proof is complete. �
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